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Abstract

Heavy-tailed distributions naturally occur in many real life problems. Unfortu-
nately, itis typically not possible to compute inference in closed-form in graphical
models which involve such heavy-tailed distributions.

In this work, we propose a novel simple linear graphical model for independent
latent random variables, called linear characteristic model (LCM), defined in the
characteristic function domain. Using stable distributions, a heavy-tailed family
of distributions which is a generalization of Cauchgw and Gaussian distri-
butions, we show for the first time, how to compute both exact and approximate
inference in such a linear multivariate graphical model. LCMs are not limited to
stable distributions, in fact LCMs are always defined for any random variables
(discrete, continuous or a mixture of both).

We provide a realistic problem from the field of computer networks to demon-
strate the applicability of our construction. Other potential application is iterative
decoding of linear channels with non-Gaussian noise.

1 Introduction

Heavy-tailed distributions naturally occur in many real life phenomena, for example in computer
networks [23, 14, 16]. Typically, a small set of machines are responsible for a large fraction of the
consumed network bandwidth. Equivalently, a small set of users generate a large fraction of the
network traffic. Another common property of communication networks is that network traffic tends
to be linear [8, 23]. Linearity is explained by the fact that the total incoming traffic at a node is
composed from the sum of distinct incoming flows.

Recently, several works propose to use linear multivariate statistical methods for monitoring network
health, performance analysis or intrusion detection [15, 13, 16, 14]. Some of the aspects of network
traffic makes the task of modeling it using a probabilistic graphical models challenging. In many
cases, the underlying heavy-tailed distributions are difficult to work with analytically. That is why
existing solutions in the area of network monitoring involve various approximations of the joint
probability distribution function using a variety of techniques: mixtures of distributions [8], spectral
decomposition [13] historgrams [14], sketches [16], entropy [14], sampled moments [23], etc.

In the current work, we propose a novel linear probabilistic graphical model called linear charac-
teristic model (LCM) to model linear interactions of independent heavy-tailed random variables
(Section 3). Using the stable family of distributions (defined in Section 2), a family of heavy-tailed
distributions, we show how to compute both exact and approximate inference (Section 4). Using
real data from the domain of computer networks we demonstrate the applicability of our proposed
methods for computing inference in LCM (Section 5).

We summarize our contributions below:



e We propose a new linear graphical model called LCM, defined as a product of factors in the
cf domain. We show that our model is well defined for any collection of random variables,
since any random variable has a matching cf.

e Computing inference in closed form in linear models involving continuous variables is typ-
ically limited to the well understood cases of Gaussians and simple regression problems in
exponential families. In this work, we extend the applicability of belief propagation to the
stable family of distributions, a generalization of Gaussian, Cauchy awg distributions.

We analyze both exact and approximate inference algorithms, including convergence and
accuracy of the solution.

e We demonstrate the applicability of our proposed method, performing inference in real
settings, using network tomography data obtained from the PlanetLab network.

1.1 Related work

There are three main relevant works in the machine learning domain which are related to the current
work: Convolutional Factor Graphs (CFG), Copulas and Independent Component Analysis (ICA).
Below we shortly review them and motivate why a new graphical model is needed.

Convolutional Factor Graphs (CFG) [18, 19] are a graphical model for representing linear relation
of independent latent random variables. CFG assume that the probability distribution factorizes
as a convolution of potentials, and proposes to use duality to derive a product factorization in the
characteristic function (cf) domain. In this work we extend CFG by defining the graphical model as
a product of factors in the cf domain. Unlike CFGs, LCMs are always defined, for any probability
distribution, while CFG may are not defined when the inverse Fourier transform does not exist.

A closely related technique is the Copula method [22, 17]. Similar to our work, Copulas assume a
linear underlying model. The main difference is that Copulas transform each marginal variable into
a uniform distribution and perform inference in the cumulative distribution function (cdf) domain. In
contrast, we perform inference in the cf domain. In our case of interest, when the underlying distri-
butions are stable, Copulas can not be used since stable distributions are not analytically expressible
in the cdf domain.

A third related technique is ICA (independent component analysis) on linear models [27]. Assum-
ing a linear model” = AX*!, where the observations are given, the task is to estimate the linear
relation matrix A, using only the fact that the latent variables X are statistically mutually indepen-
dent. Both techniques (LCM and ICA) are complementary, since ICA can be used to learn the linear
model, while LCM is used for computing inference in the learned model.

2 Stable distribution

Stable distribution [30] is a family of heavy-tailed distributions, where Caucbyyland Gaussian

are special instances of this family (see Figure 1). Stable distributions are used in different prob-
lem domains, including economics, physics, geology and astronomy [24]. Stable distribution are
useful since they can model heavy-tailed distributions that naturally occur in practice. As we will
soon show with our networking example, network flows exhibit empirical distribution which can be
modeled remarkably well by stable distributions.

We denote a stable distribution by a tuple of four parametg(s;, 3, v, d). We calla as the char-
acteristic exponent3 is the skew parametet, is a scale parameter aids a shift parameter. For
example (Fig. 1), a Gaussiavi(u, o?) is a stable distribution with the parameté&€, 0, %, w), a

Cauchy distributiorcauchy(, d) is stable withS(1,0,+, d) and a vy distribution &vy(y, §) is
stable withS(%, 1,,6). Following we define formally a stable distribution. We begin by defining
a unit scale, zero-centered stable random variable.

Definition 2.1. [25, Def. 1.6] A random variabl& is stableif and only if X ~ aZ +b,0 < o < 2,

-1<B3<1,a,b€R,a+#0andZ is arandom variable with characteristic functibn

Elexp(iuZz)] = {GXP (= lul*[L - iBtan(5)sign(w)]) o #1

exp (— |ul[1 +iB2 sign(u) log(|ul)]) a=1" (1)

Linear model is formally defined in Section 3.
2\We formally define characteristic function in the supplementary material.



Next we define a general stable random variable.
Definition 2.2. [25, Def. 1.7] A random variabl& is S(«, 3,7, 0) if

X~ YZ - Btan(TF)) +0 a#1
NZ 46 a=1"

whereZ is given by(1). X has characteristic function

exp(—*ul*[L — i tan(%2) sign(u) (Jyul' = — 1)) +idu) o #1

exp(—7|ul[1 + i32 sign(u) log(7|ul|)] + idu) a=1"

A basic property of stable laws is that weighted sume-atable random variables isstable (and
hence the family is called stable). This property will be useful in the next section where we compute

inference in a linear graphical model with underlying stable distributions. The following proposition
formulates this linearity.

Proposition 2.1. [25, Prop. 1.16]

Eexp(iuZ) = {

a) Multiplication by a scalar. If X ~ S(a, 8,7, 9) then for anya,b € R,a # 0,
aX + b~ S(a,sign(a)s,|aly,ad + b) .
b) Summation of two stable variables.If X; ~ S(a, 81,71,61) and Xz ~ S(«, B2,72,02)
are independent, thel; + X, ~ S(«, 3,7, d) where
Bt + 275 o

ﬁ = ) =7 + 5 ) 6=96 + 1) + 5

T Y Y1 T2 1 2+¢&
= {tan(wga)[ﬂ’Y — Bim — B a#l
2[Bylogy — Biy1logyi — Beyelogye] a=1

Note that bothX;, X5 have to be distributed with the same characteristic expoaent

3 Linear characteristic models

A drawback of general stable distributions, is that they do not have closed-form equation for the pdf
or the cdf. This fact makes the handling of stable distributions more difficult. This is probably one
of the reasons stable distribution are rarely used in the probabilistic graphical models community.

We propose a novel approach for modeling linear interactions between random variables distributed
according to stable distributions, using a new linear probabilistic graphical model called LCM. A
new graphical model is needed, since previous approaches like CFG or the Copula method can not be
used for computing inference in closed-form in linear models involving stable distribution, because
they require computation in the pdf or cdf domains respectively. We start by defining a linear model:

Definition 3.1. (Linear model) LetX1, - - - , X,, a set of mutually independent random variables.
LetYs,---,Y,, be aset of observations obtained using the linear model:

Y~ ZAinj Y,
J
whereA;; € R are weighting scalars. We denote the linear model in matrix notatiari as AX.

Linear models are useful in many domains. For example, in linear channel decédiag the
transmitted codewords, the matviis the linear channel transformation aYids a vector of obser-
vations. WhenX are distributed using a Gaussian distribution, the channel model is called AWGN
(additive white Gaussian noise) channel. Typically, the decoding task is finding the most probable
X, given A and the observatioli. Despite the fact thak’ are assumed statistically mutually inde-
pendent when transmitting, given an observafionX are not independent any more, since they
are correlated via the observation. Besides of the network application we focus on, other potential
application to our current work is linear channel decoding with stable, non-Gaussian, noise.

In the rest of this section we develop the foundations for computing inference in a linear model using
underlying stable distributions. Because stable distributions do not have closed-form equations in
the pdf domain, we must work in the cf domain. Hence, we define a dual linear model in the cf
domain.

3We do not limit the type of random variables. The variables may be discrete, continuous, or a mixture of
both.



3.1 Duality of LCM and CFG

CFG [19] have shown that the joint probabilityx, y) of any linear model can be factorized as a
convolution:

p(xvy) :p(‘rh"' s Tns Y1y 000 7ym) = Hp(xiayh'" 7ym) (2)

Informally, LCM is the dual representation of (2) in the characteristic function domain. Next, we
define LCM formally, and establish the duality to the factorization given in (2).

Definition 3.2. (LCM) Given the linear model Y=AX, we define the linear characteristic model
(LCM)

@(tla"' ytn, 1,0 7Sm) éH(ﬂ(ti,Sl,"' ,Sm),
i

whereg(t;, s1,- -+ , ) is the characteristic functidhof the joint distributionp(z;, y1, - -+ , Ym)-

The following two theorems establish duality between the LCM and its dual representation in the
pdf domain. This duality is well known (see for example [18, 19]), but important for explaining the
derivation of LCM from the linear model.

Theorem 3.3. Given a LCM, assuming(z, y) as defined in (2) has a closed form and the Fourier
transformF[p(z, y)] exists, then théF[p(x, y)] = ©(t1, -+ ,tn, 81, , Sm)-

Theorem 3.4. Given a LCM, when the inverse Fourier transform exists, then
:F_l(so(th ot 81,7 7Sm)) = p(ﬂl,y) as defined in (2)

The proof of all theorem is deferred to the supplementary material. Whenever the inverse Fourier
transform exists, LCM model has a dual CFG model. In contrast to the CFG model, LCM are always
defined, even the inverse Fourier transform does not exist. The duality is useful, since it allows us to
compute inference in either representations, whenever it is more convenient.

4 Main result: exact and approximate inference in LCM

This section brings our main result. Typically, exact inference in linear models with continuous
variables is limited to the well understood cases of Gaussian and simple regression problem in
exponential families. In this section we extend previous results, to show how to compute inference
(both exact and approximate) in linear model with underlying stable distributions.

4.1 Exactinference in LCM

The inference task typically involves computation of marginal distribution or a conditional distri-
bution of a probability function. For the rest of the discussion we focus on marginal distribution.
Marginal distribution of the node; is typically computed by integrating out all other nodes:

sl ~ [ (o) dxs,
X\i
where X \ i is the set of all nodes excluding node Unfortunately, when working with stable

distribution, the above integral is intractable. Instead, we propose to use a dual operation called
slicing, computed in the cf domain.

Definition 4.1. (slicing/evaluation)[28, p. 110]

(a) Joint cf. Given random variableX;, X», thejoint cfis v x, x, (t1,ts) = Elettrertitar2],
(b) Marginal cf. The marginal cfis derived from the joint cf by x, (t1) = ¢x,.x,(t1,0).
This operation is called slicing or evaluation. We denote the slicing operatiopg$t:) =

©x1,X5(t1,t2)

to=0
The following theorem establishes the fact that marginal distribution can be computed in the cf
domain, by using the slicing operation.

“Defined in the supplementary material.
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for i€ |T|

Eliminate t; by computing

bmri(Nt)) =[] o1, 5m)

PFEN(t;) =0

Remove ¢(t;,s1, - ,sm) and t; from LCM.
Add ¢m+i to LCM.

Finally: If F~1 exists, compute

p(zi) = F (dfinal) -

Algorithm 1: Exact inference in LCM using Figure 1: The three special cases of stable
LCM-Elimination. distribution where closed-form pdf exists.

Theorem 4.2. Given a LCM, the marginal cf of the random variable can be computed using

@(tz):HQO(tj»Sh 7Sm) ) (3)
; T\i=0

In case the inverse Fourier transform exists, then the marginal probability of the hidden vakiable

is given byp(x;) ~ F~Hp(t:)} .

Based on the results of Thm. 4.2 we propose an exact inference algorithm, LCM-Elimination, for
computing the marginal cf (shown in Algorithm 1). We use the notafitiit) as the set of graph
neighbors of nodé, excludingk®. T is the se{t,--- ,t,}.

LCM-Elimination is dual to CFG-Elimination algorithm [19]. LCM-Elimination operates in the cf
domain, by evaluating one variable at a time, and updating the remaining graphical model accord-
ingly. The order of elimination does not affect correctness (although it may affect efficiency). Once
the marginal cfp(¢;), is computed, assuming the inverse Fourier transform exists, we can compute
the desired marginal probabilip(x;).

4.2 Exactinference in stable distributions

After defining LCM and showing that inference can be computed in the cf domain, we are finally
ready to show how to compute exact inference in a linear model with underlying stable distributions.
We assume that all observation nodésare distributed according to a stable distribution. From
the linearity property of stable distribution, it is clear that the hidden variaKleare distributed
according to a stable distribution as well. The following theorem is one of the the novel contributions
of this work, since as far as we know, no closed-form solution was previously derived.

Theorem 4.3.Givena LCM)Y = AX +Z, withn i.i.d. hidden variables\; ~ S(o, B, Vz;, 0z, )5

ni.i.d. noise variables with known paramet&fs ~ S(«, 3.,,72;, 9=, ), andn observationg; € R,
assuming the matrid,, ., is invertible®, then

a) the observations; are distributed according to stable distributidf ~ S(a, By, , 7y, 0y,) With

the following parameters:

Yy = |A|a’Yx + vz, By = ’Yy_a © [(|A| © sign(A))(ﬁx Q'Ym) +8: 0 ’Yz]: 0y = Ady + &y

T 218y Oy @ log(y) — A @ log(JA])(Br © 7a) — A(Br © 2 ©@log(2)) — B: ©7:] a=1"

b) the result of exact inference for computing the marginéls|y) ~ S(c, Bz, |y, Vaily> Oz:]y) 1S
given in vector notation:

Baty = oy © [(|AI* @ sign(A) T By © )]s oy = (A1) Ty, Sapy = AT 0y — &), (@)

SMore detailed explanation of the construction of a graphical model out of the linear relation masrix
found on [4, Chapter 2.3].

®To simplify discussion we assume that the length of both the hidden and observation {&dtersy’| =
n. However the results can be equivalently extended to the more general casé Mherer, |Y| = m,m #
n. See for example [6].



Initialize: mij(zj) =1, VA #0. Initialize: my;(x;) =1, VA #0.
Iterate until convergence Iterate until convergence
mij(t;) = @i(ti, 81, ,5m) H M (t;) m;(x;) :/P(Imyl,-“ , Ym ) * H my (z;)dz;
keN(i)\j t;=0 z; kEN(i)\j
Finally: Finally:
@(t:) = @ilti,s1,- - ssm) [ mea(te). p(@:i) = p(zs,y1, - s ym) x| mka(a).
(a) EEN(3) (b) kEN (i)
Initialize: Bajly> Yy lys Oy ly = S(e,0,0,0), V;.

Iterate until convergence:
W:i\y = 731‘ - Z ‘Aij‘aﬂysj\y v Bayly = ﬁyi’y;xi - ZSign(AiJ”Aij‘aﬁfj\y » Oy =0y, — ZA”‘;%‘W =&,y

7 iFi i
11—
tan(%)[ﬁyi')’yi -3, Aijﬁx~\y’¥ « ] a#1l
fzi\y = ! 7 el l—a 1—a (6)
%[ﬁyl Yy; IOg(’Yyi) - Z]‘:Aij #0 Aij IOg(‘Aijl)ﬁz_j\y'Yxﬁy - Zj Aijﬁzj\y’)/wj\y IOg(VIﬁy )N a=1
Output: zily ~ S(a,ﬁzi‘y/w;‘im,%”y,éz”y) (C)

Algorithm 2: Approximate inference in LCM using the (a) Characteristic-Sum-Product (CSP) algorithm (b)
Integral Convolution (IC) algorithm. Both are exact on tree topologies. (c) Stable-Jacobi algorithm.

e = [ta(R)By O - APy, ©721))] a7l
218y © v © log(yy) —(A @ log(|A]) (Baty © Yaly) — AlBaly @ Yaty @ log(vapy))] @=1"

5
where® is the entrywise product (of both vectors and matrided)is the absolute value (entry\(m)se)
log(A), A®, sign(A) are entrywise matrix operations ar, = [3,,, - ,3.,]T and the same for
ﬁyv 6,27 %cv'vi’sz 5%7 5y7 62-

4.3 Approximate Inference in LCM

Typically, the cost of exact inference may be expensive. For example, in the related linear model of a
multivariate Gaussian (a special case of stable distribution), LCM-Elimination reduces to Gaussian
elimination type algorithm with a cost @(n?), wheren is the number of variables. Approximate
methods for inference like belief propagation [26], usually require less work than exact inference,
but may not always converge (or convergence to an unsatisfactory solution). The cost of exact
inference motivates us to devise a more efficient approximations.

We propose two novel algorithms that are variants of belief propagation for computing approximate
inference in LCM. The first, Characteristic-Slice-Product (CSP) is defined in LCM (shown in Algo-
rithm 2(a)). The second, Integral-Convolution (IC) algorithm (Algorithm 2(b)) is its dual in CFG.
As in belief propagation, our algorithms are exact on tree graphical models. The following theorem
establishes this fact.

Theorem 4.4. Given an LCM with underlying tree topology (the matrxis an irreducible adja-
cency matrix of a tree graph), the CSP and IC algorithms, compute exact inference, resulting in the
marginal cf and the marginal distribution respectively.

The basic property which allows us to devise the CSP algorithm is that LCM is defined as a prod-
uct of factor in the cf domain. Typically, belief propagation algorithms are applied to a probability
distribution which factors as a product of potentials in the pdf domain. The sum-product algorithm
uses the distributivity of the integral and product operation to devise efficient recursive evaluation of
the marginal probability. Equivalently, the Characteristic-Slice-Product algorithm uses the distribu-
tivity of the slicing and product operations to perform efficient inference to compute the marginal
cf in the cf domain, as shown in Theorem 4.4. In a similar way, the Integral-Convolution algorithm
uses distributivity of the integral and convolution operations to perform efficient inference in the pdf
domain. Note that the original CFG work [18, 19] did not consider approximate inference. Hence
our proposed approximate inference algorithm further extends the CFG model.

4.4  Approximate inference for stable distributions

For the case of stable distributions, we derive an approximation algorithm, Stable-Jacobi (Algo-
rithm 2(c)), out of the CSP update rules. The algorithm is derived by substituting the convolution
and multiplication by scalar operations (Prop. 2.1 b,a) into the update rules of the CSP algorithm
given in Algorithm 2(a).
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Figure 2: (a) Distribution of network flows on a typical PlanetLab host is fitted quite well with a Levy dis-
tribution. (b) The core of the PlanetLab network. 1% of the flows consists of 19% of the total bandwidth. (c)
Convergence of Stable-Jacobi.

Like belief propagation, our approximate algorithm Stable-Jacobi is not guaranteed to converge on
general graphs containing cycles. We have analyzed the evolution dynamics of the update equations
for Stable-Jacobi and derived sufficient conditions for convergence. Furthermore, we have analyzed
the accuracy of the approximation. Not surprisingly, the sufficient condition for convergence relates
to the properties of the linear transformation matdix The following theorem is one of the main

novel contributions of this work. It provides both sufficient condition for convergence of Stable-
Jacobi as well as closed-form equations for the fixed point.

Theorem 4.5. Given a LCM withn i.i.d hidden variablesX;, n observationsY; distributed ac-
cording to stable distributioy; ~ S(a, By, , 7Yy, 0y, ), @ssuming the linear relation matriA,, ., is
invertible and normalized to a unit diagorialStable-Jacobi (as given in Algorithm 2(c)) converges

to a unique fixed point under both the following sufficient conditions for convergence (both should
hold):

(1) p(IRI%) <1, (2) p(R) <1.

wherep(R) is the spectral radius (the largest absolute value of the eigenvalug$,dt = I — A,

|R| is the entrywise absolute value ang|* is the entrywise exponentiation. Furthermore, the
unique fixed points of convergence are given by equati)és). The algorithm converges to the
exact marginalsfor the linear-stable channél.

5 Application: Network flow monitoring

In this section we propose a novel application for inference in LCMs to model network traffic flows

of a large operational worldwide testbed. Additional experimental results using synthetic examples
are found in the supplementary material. Network monitoring is an important problem in monitoring
and anomaly detection of communication networks [15, 16, 8]. We obtained Netflow PlanetLab net-
work data [10] collected on 25 January 2010. The PlanetLab network [1] is a distributed networking
testbed with around 1000 server nodes scattered in about 500 sites around the world. We define a
network flow as a directed edge between a transmitting and receiving hosts. The number of packets
transmitted in this flow is the scalar edge weight.

We propose to use LCMs for modeling distribution of network flows. Figure 2(a) plots a distribution
of flows, sorted by their bandwidth, on a typical PlanetLab node. Empirically, we found out that
network flow distribution in a single PlanetLab node are fitted quite well uséngy Idistribution a
stable distribution withe = 0.5, 3 = 1. The empirical means amean(y) ~ le~*, mean(d) ~ 1.

For performing the fitting, we use Mark Veillette’s Matlab stable distribution package [31].

Using previously proposed techniques utilizing histograms [16] for tracking flow distribution in
Figure 2(a), we would need to store 40 values (percentage of bandwidth for each source port).
In contrast, by approximating network flow distribution with stable distributions, we need only 4

"When the matrix4 is positive definite it is always possible to normalize it to a unit diagonal. The nor-

1 1
malized matrix isSD~2 AD™ 2 whereD = diag(A). Normalizing to a unit diagonal is done to simplify
convergence analysis (as done for example in [12]) but does not limit the generality of the proposed method.
8Note that there is an interesting relation to the walk-summability convergence condition [12] of belief
propagation in the Gaussian capé[R|) < 1. However, our results are more general since they apply for any
characteristic exponefit< o < 2 and not just forx = 2 as in the Gaussian case.



parametersd, 3,7v,d)! Thus we dramatically reduce storage requirements. Furthermore, using
the developed theory in previous sections, we are able to linearly aggregate distribution of flows in
clusters of nodes.

We extracted a connected component of traffic flows connecting the core né&gankdes. We fit-

ted a stable distribution characterizing flow behavior for each machine. A partitRifé shachines

as the observed flow§ (where flow distribution is known). The task is to predict the distribution of

the unobserved remainirdg6 flows X;, based on the observed traffic flows (entriesigf). We run
approximate inference using Stable-Jacobi and compared the results to the exact result computed by
LCM-Elimination. We emphasize again, that using related techniques (Copula method , CFG, and
ICA) itis not possible to compute exact inference for the problem at hand. In the supplementary ma-
terial, we provide a detailed comparison of two previous approximation algorithms: non-parametric
BP (NBP) and expectation propagation (EP).

Figure 2(c) plots convergence of the three parametessé as a function of iteration number of

the Stable-Jacobi algorithm. Note that convergence speed is geomeiii®) £ 0.02 << 1).
Regarding computation overhead, LCM-Exact algorithm requiredy63 operations, while Stable-
Jacobi converged to an accuracylef® in only 4 - 3762 - 25 operations. Additional benefit of the
Stable-Jacobi is that it is a distributed algorithm, naturally suitable for communication networks.
Source code of some of the algorithms presented here can be found on [3].

6 Conclusion and future work

We have presented a novel linear graphical model called LCM, defined in the cf domain. We have
shown for the first time how to perform exact and approximate inference in a linear multivariate
graphical model when the underlying distributions are stable. We have discussed an application of
our construction for computing inference of network flows.

We have proposed to borrow ideas from belief propagation, for computing efficient inference, based
on the distributivity property of the slice-product operations and the integral-convolution operations.
We believe that other problem domains may benefit from this construction, and plan to pursue this
as a future work.

We believe there are several exciting directions for extending this work. Other families of distri-
butions like geometric stable distributions or Wishart can be analyzed in our model. The Fourier
transform can be replaced with more general kernel transform, creating richer models.
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