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Abstract

The problem of controlling the margin of a classifier is statli A detailed an-
alytical study is presented on how properties of the clasgitin risk, such as
its optimal link and minimum risk functions, are related e tshape of the loss,
and its margin enforcing properties. It is shown that forasslof risks, denoted
canonical risks, asymptotic Bayes consistency is comieatith simple analyti-
cal relationships between these functions. These enabkxase characterization
of the loss for a popular class of link functions. It is showatt when the risk is
in canonical form and the link is inverse sigmoidal, the nraggroperties of the
loss are determined by a single parameter. Novel famili@ages consistent loss
functions, of variable margin, are derived. These famgiesthen used to design
boosting style algorithms with explicit control of the céfgcation margin. The
new algorithms generalize well established approache$, asi LogitBoost. Ex-
perimental results show that the proposed variable magagisels outperform the
fixed margin counterparts used by existing algorithms. IKina is shown that
best performance can be achieved by cross-validating thgimearameter.

1 Introduction

Optimal classifiers minimize the expected value of a losstion, or risk. Losses commonly used
in machine learning are upper-bounds on the zero-one fitadgin loss of classical Bayes decision
theory. When the resulting classifier converges asymptbtimathe Bayes decision rule, as training
samples increase, the loss is said to be Bayes consistaames of such losses include the hinge
loss, used in SVM design, the exponential loss, used by imgpatgorithms such as AdaBoost,
or the logistic loss, used in both classical logistic regi@s and more recent methods, such as
LogitBoost. Unlike the zero-one loss, these losses asspgmalty to examples correctly classified
but close to the boundary. This guarantees a classificatemgim and improved generalization
when learning from finite datasets [1]. Although the coniterst between large-margin classification
and classical decision theory have been known since [2]s¢h@ef Bayes consistent large-margin
losses has remained small. Most recently, the design of lmssles has been studied in [3]. By
establishing connections to the classical literature abability elicitation [4], this work introduced

a generic framework for the derivation of Bayes consistessés. The main idea is that there are
three quantities that matter in risk minimization: the légsction ¢, a corresponding optimal link
function f7, which maps posterior class probabilities to classifiedjptéons, and a minimum risk
C, associated with the optimal link.

While the standard approach to classifier design is to definesa)| and then optimize it to obtain
[ andC7, [3] showed that there is an alternative: to spegifyandC7, and analytically derive the
loss¢. The advantage is that this makes it possible to maniputat@toperties of the loss, while
guaranteeinghat it is Bayes consistent. The practical relevance ofghoach is illustrated in [3],
where a Bayes consistenatbustloss is derived, for application in problems involving @erts. This



loss is then used to design a robust boosting algorithm tddri@avageBoost. SavageBoost has been,
more recently, shown to outperform most other boostingrélgos in computer vision problems,
where outliers are prevalent [5]. The main limitation of freemework of [3] is that it is not totally
constructive. It turns out that many pailsf;) are compatible with any Bayes consistent lpss
Furthermore, while there is a closed form relationship leetwp and (7, f;), this relationship is

far from simple. This makes it difficult to understand how gheperties of the loss are influenced
by the properties of eithef’; or ;. In practice, the design has to resort to trial and error, py 1
testing combinations of the latter and, 2) verifying whetie loss has the desired properties. This
is feasible when the goal is to enforce a broad loss propegythat a robust loss should be bounded
for negative margins [3], but impractical when the goal isxercise a finer degree of control.

In this work, we consider one such problem: how to controldize of the margin enforced by the
loss. We start by showing that, while many pait§ (f;) are compatible with a givep, one of these
pairs establishes a very tight connection between the aptink and the minimum risk: that; is
the derivative ofC}. We refer to the risk function associated with such a pair ear@nical risk
and show that it leads to an equally tight connection betvikerpair C'7,f;) and the loss). For

a canonical risk, all three functions can be obtained froohesher with one-to-one mappings of
trivial analytical tractability. This enables a detailethéytical study of howC'; or f7 affecto. We
consider the case where the inversg"pﬁs a sigmoidal function, i.ef} is inverse-sigmoidaland
show that this strongly constrains the loss. Namely, thed&tecomes 1) convex, 2) monotonically
decreasing, 3) linear for large negative margins, and 4¥tem for large positive margins. This
implies that, for a canonical risk, the choice of a particdiak in the inverse-sigmoidal family
only impacts the behavior @ around the origin, i.e. the size of the margin enforced byidiss.
This quantity is then shown to depend only on the slope of iffaaidal inverse-link at the origin.
Since this property can be controlled by a single param#ier|atter becomes a margin-tunning
parameter, i.e. a parameter that determines the margire @ftimal classifier. This is exploited to
design parametric families of loss functions that allexplicit controlof the classification margin.
These losses are applied to the design of novel boostingithligs of tunable margin. Finally,
it is shown that the requirements of 1) a canonical risk, andrinverse-sigmoidal link are not
unduly restrictive for classifier design. In fact, approesiike logistic regression or LogitBoost
are special cases of the proposed framework. A number ofiexpets are conducted to study the
effect of margin-control on the classification accuracys #hown that the proposed variable-margin
losses outperform the fixed-margin counterparts used Isyiegialgorithms. Finally, itis shown that
cross-validation of the margin parameter leads to classifiéh the best performance on all datasets
tested.

2 Loss functions for classification

We start by briefly reviewing the theory of Bayes consistdassifier design. See [2, 6, 7, 3] for
further details. A classifieh maps a feature vector € X to a class label, € {—1,1}. This
mapping can be written ds(x) = sign[p(x)] for some functiorp : X — R, which is denoted
as the classifier predictor. Feature vectors and classslabeldrawn from probability distributions
Px(x) and Py (y) respectively. Given a non-negative loss functigix, y), the classifier is optimal
if it minimizes the riskR(f) = Ex,y [L(h(x),y)]. This is equivalent to minimizing the conditional
risk By x[L(h(x),y)|X = x] for all x € X. Itis useful to expresg(x) as a composition of
two functions,p(x) = f(n(x)), wheren(x) = Py x(1]x), andf : [0,1] — R is alink function
Classifiers are frequently designed to be optimal with reisigethe zero-one loss

_ L—sign(yf) _ [ 0, ify=sign(f);
Lop(f,y) = T2 T ) 1, ify#sign(f), @
where we omit the dependenceffior notational simplicity. The associated conditionaktis

00/1(777f)=nL9”(f) 1—&—sign(f):{1_n’ if f>0;

I n,  iff<o. @)
The risk is minimized if _

f(x)>0 if n(x)>
f(x)=0 ifn(x)=
f(x) <0 ifn(x) <
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Table 1:Loss¢, optimal link £ (n), optimal inverse link f;]~'(v) , and minimum conditional risk’;; ()
for popular learning algorithms.

Algorithm ¢(v) S5 (n) THC) Cg(n)
SVM max(1l —v,0) | sign(2n—1) NA 1—1[2n—1]
Boosting exp(—v) 1log e He_% 2/n(1—n)
Logistic Regression log(1 +e~?) log ﬁ li% -nlogn — (1 —n)log(l —n)

Examples of optimal link functions includg = 2n — 1 and f* = log 11}. The associated optimal
classifierh* = sign[f*] is the well known Bayes decision rule (BDR), and the assediatinimum

conditional (zero-one) risk is

00 = (5 = goin(zn = 1)+ @ =) (5 + gsion20 1)) @

A loss which is minimized by the BDR is Bayes consistent. A bemof Bayes consistent alter-
natives to the 0-1 loss are commonly used. These includexfpenential loss of boosting, the log
loss of logistic regression, and the hinge loss of SVMs. Tteeye the formL(f,y) = ¢(yf), for
different functionsp. These functions assign a non-zero penalty to small pesjtfy encouraging
the creation of a margin, a property not shared by the 0-1 ldss resultingarge-marginclassifiers
have better generalization than those produced by the [a}teThe associated conditional risk

Co(n, ) = no(f) + (L = n)o(=f). (5)
is minimized by the link
fo(n) = arg mfin Co(n, f) (6)
leading to the minimum conditional risk functi@y; (1) = C(n, f;). Table 1 lists the loss, optimal
link, and minimum risk of some of the most popular classifiesign methods.

Conditional risk minimization is closely related to clasdiprobability elicitation in statistics [4].
Here, the goal is to find the probability estimafothat maximizes the expected reward

I(n, 1) = nli(9) + (1 = n)I-1(7), U]
wherel;(7) is the reward for predictioy when eventy = 1 holds andl_, (7)) the corresponding
reward wheny = —1. The functionsI;(-), I_1(-) should be such that the expected reward is
maximal whenj = 7, i.e.

I(n, 1) < I(n,n) = J(n), Vn ®)

with equality if and only if; = n. The conditions under which this holds are as follows.

Theorem 1. [4] Let I(n,7) and J(n) be as defined in (7) and (8). Then .I}y) is convex and
2) (8) holds if and only if

Lin) = Jm)+1—n)J(n) )
Ii(n) = Jm)—nJ'{). (10)

Hence, starting from any convek(n), it is possible to derivd;(-), I_;(-) so that (8) holds. This
enables the following connection to risk minimization.

Theorem 2. [3] Let J(n) be as defined in (8) anfla continuous function. If the following proper-
ties hold

1. J(n) =J1—n),
2. fis invertible with symmetry

FH o) =1 7 (v), (11)



then the functiong, (-) andI_+ (-) derived with (9) and (10) satisfy the following equalities

Li(n) = —o(f(n) (12)
Ii(m) = —o(=f(n), (13)

with
p(v) = =J[f W) = A= fH NI (). (14)

Under the conditions of the theoretfi(y;, 7)) = —Cy (7, f). This establishes a new path for classifier
design [3]. Rather than specifying a logsand minimizingC(7, f), so as to obtain whatever
optimal link f; and minimum expected risk7;(n) results, it is possible to speciff; andC7;(n)
and derive, from (14) witty (n) = —C;;(n), the underlying los®. The main advantage is the ability
to control directly the quantities that matter for classifion, namely the predictor and risk of the
optimal classifier. The only conditions are tizf(n) = C;(1 — n) and (11) holds forf;.

3 Canonical risk minimization

In general, givenJ(n) = —C;(n), there are multiple pairp, f) that satisfy (14). Hence, speci-
fication of either the minimum risk or optimal link does nonwpletely characterize the loss. This
makes it difficult to control some important properties df thtter, such as the margin. In this work,
we consider an important special case, where such contpalssible. We start with a lemma that
relates the symmetry conditions, difn) and f;(n), of Theorem 2.

Lemma 3. LetJ(n) be a strictly convex and differentiable function such thiay) = J(1 — 7).
Then.J'(n) is invertible and
[T (=0) = 1= [T (). (15)

Hence, under the conditions of Theorem 2, the derivativé(g) has thesamesymmetry asf; ().
Since this symmetry is the only constraint §f the former can be used as the latter. Whenever this
holds, the risk is said to be in canonical form, drfd, J) are denoted a canonical pair [6] .

Definition 1. Let.J(n) be as defined in (8), and(n) = —J(n) a minimum risk. If the optimal link
associated with’; (n) is

fom) =J'(n) (16)
the riskCy(n, f) is said to be in canonical formf;(n) is denoted a canonical link ang(v), the
loss given by (14), a canonical loss.

Note that (16) does not hold for all risks. For example, tis& 0f boosting is derived from the
convex, differentiable, and symmetti§n) = —2+/n(1 — n). Since this has derivative
2n—1
n(L—mn)
the risk is not in canonical form. What follows from (16) is thiais possibleto derive a canonical

risk for any maximal rewardJ(n), including that of boostingA(n) = —2v/n(1 —n)). This is
discussed in detail in Section 5.

T() = # 5108 T = £3(0), an

While canonical risks can be easily designed by specifyitigei/ (n) or f(n), and then using (14)

and (16), it is much less clear how to directly specify a Ig$s) for which (14) holds with a
canonical paif f*, J). The following result solves this problem.

Theorem 4. LetCy(n, f) be the canonical risk derived from a convex and symméifig. Then

¢'(v) = =[J]7 (~v) = [f5]7 () - 1. (18)
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Figure 1:Left: canonical losses compatible with an IS optimal link. Right: Averagssifigation rank as a
function of margin parameter, on the UCI data.
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This theorem has various interesting consequences. iestablishes an easy-to-verify necessary

1

condition for the canonical form. For example, logistic negsion haﬁfg]*l(v) = 17— and

¢ (v) = —t5= = [f3] "' (v) — 1, while boosting ha$f;] ' (v) = 2= and¢/(v) = —e* #
[f;]—l(v) — 1. This (plus the symmetry of and f;;) shows that the former is in canonical form
but the latter is not. Second, it makes it clear that, up tdteedconstants, the three components
(¢, €3, and f7) of a canonical risk are related by one-to-one relatiorshience, it is possible to
control the properties of thiareecomponents of the risk by manipulatingmglefunction (which
can be any of the three). Finally, it enables a very detaitettacterization of the losses compatible
with most optimal links of Table 1.

4 Inverse-sigmoidal links

Inspection of Table 1 suggests that the classifiers prodogédosting, logistic regression, and vari-
ants have sigmoidal inverse Iin[g,é;]*l. Due to this, we refer to the linkg; asinverse-sigmoidal
(IS). When this is the case, (18) provides a very detailedaattiarization of the losg. In particular,

it can be trivially shown that, letting™) be then!” order derivative off, that the following hold

lim [fi]7'(0)=0 & lim ¢M(v)=-1 (19)

lim [f5] 7' () =1 & lim ¢V(v) =0 (20)

Jim (7M@) =0n>1 & lim 6"V (w) =0n>1 (21)
[f3] ' (v) € (0,1) < ¢(v) monotonically decreasing (22)

[f;]_l(v) monotonically increasing <  ¢(v) convex (23)
[f37'0) =5 & ¢M(0)=-5. (24)

It follows that, as illustrated in Figure 1, the log$v) is convex, monotonically decreasing, linear
(with slope—1) for large negativey, constant for large positive, and has slope-.5 at the origin.
The set of losses compatible with an IS link is, thus, strgpraginstrained. The only degrees of
freedom are in the behavior of the function around the orig@ims is not surprising, since the only
degrees of freedom of the sigmoid itself are in its behavithivw this region.
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Figure 2:canonical link (left) and loss (right) for various valuesaof(Top) logistic, (bottom) boosting.

What is interesting is that these are the degrees of freedatctimtrol the margin characteristics
of the lossp. Hence, by controlling the behavior of the IS link around énigin, it is possible to
control the margin of the optimal classifier. In particuléye margin is a decreasing function of the
curvature of the loss at the origin{® (0). Since, from (18)¢(?)(0) = ([f;]~*)"(0), the margin
can be controlled by varying the slope[g&’g}—l at the origin.

5 \Variable margin loss functions

The results above enable the derivation of families of caraosses with controllable margin. In
Section 3, we have seen that the boosting loss is not canobitahere is a canonical loss for the
minimum risk of boosting. We consider a parametric extemsiothis risk,

Ty = /il 7), >0 (25)

From (16), the canonical optimal link is

2n—1
fo(mia) = ————= (26)
’ ay/n(L =)
and it can be shown that
_1 1 av
* ca) ==+ o 27
[f¢>] (’U a) 2 ZW ( )
is an IS link, i.e. satisfies (19)-(24). Using (18), the cepending canonical loss is
o(v;a) = i( 4+ (av)? — av). (28)

2a

Because it shares the minimum risk of boosting, we referigltiss as theanonical boosting loss
It is plotted in Figure 2, along with the inverse link, for i@us values of:. Note that the inverse



Table 2:Margin parameter value of rank 1 for each of the ten UCI datasets.

UCldataset# | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | #10
CanonicalLog | 0.4 [ 0.5 [ 06 [ 03 [ 0.1 | 2 | 05| 0.1 | 0.2 0.2
Canonical Boost| 0.9 6 2 2 04 1] 3 ]0.2 4 0.2 1 0.9

link is indeed sigmoidal, and that the margin is determingad.bSince¢? (0;a) = 4, the margin
increases with decreasiag

It is also possible to derive variable margin extensionsxgdting canonical losses. For example,
consider the parametric extension of the minimum risk ofdtigjregression

J(n;a) = énlog(n) + %(1 —n)log(1 —n). (29)
From (16),
) = slog T (3] ) = (30
This is again a sigmoidal inverse link and, from (18),
b(via) = é llog(1 + ¢*) — av] . (31)

We denote this loss threanonical logistic losslt is plotted in Figure 2, along with the corresponding
inverse link for various:. Sinces® (0; a) = ¢, the margin again increases with decreasing

Note that, in (28) and (31), margin control is not achievedibyply rescaling the domain of the loss
function. e.g. just replacintpg(1 4+ e~?) by log(1 + e~ ") in the case of logistic regression. This
would have no impact in classification accuracy, since ithdiust amount to a change of scale of the
original feature space. While this type of re-scaling ocanitsoth families of loss functions above
(which are both functions afv), it is localized around the origin, and only influences thargm
properties of the loss. As can be seen seen in Figure 2 alfuosfions are identical away from the
origin. Hence, varying: is conceptually similar to varying the bandwidth of an SVMr&. This
suggests that the margin parameteould be cross-validated to achieve best performance.

6 Experiments

A number of easily reproducible experiments were condutidestudy the effect of variable mar-
gin losses on the accuracy of the resulting classifiers. Tesryp UCI data sets were considered:
(#1)sonar, (#2)breast cancer prognostic, (#3)breasecali@gnostic, (#4)original Wisconsin breast
cancer, (#5)Cleveland heart disease, (#6)tic-tac-tage@ho-cardiogram, (#8)Haberman’s survival
(#9)Pima-diabetes and (#10)liver disorder. The data whsisfp five folds, four used for train-
ing and one for testing. This produced five training-testpaier dataset. The GradientBoost
algorithm [8], with histogram-based weak learners, was theed to design boosted classifiers
which minimize the canonical logistic and boosting losdes,various margin parameters. Gra-
dientBoost was adopted because it can be easily combinédhetdifferent losses, guaranteeing
that, other than the loss, every aspect of classifier desigomstant. This makes the compari-
son as fair as possibles0 boosting iterations were applied to each training set,1fovalues of

a € {0.1,0.2,...,0.9,1,2,...,10}. The classification accuracy was then computed per dataset,
averaging over its five train/test pairs.

Since existing algorithms can be seen as derived from dedas of the proposed losses, witk:

1, itis natural to inquire whether other values of the margirgmeter will achieve best performance.
To explore this question we show, in Figure-1, the averagk o the classifier designed with each
loss and margin parameter To produce the plot, a classifier was trained on each datasedll

19 values ofa. The results were then ranked, with rahkl9) being assigned to theparameter of
smallest (largest) error. The ranks achieved with eaalere then averaged over the ten datasets, as
suggested in [9]. For the canonical logistic loss, the baktes ofa is in the rangd#.2 < a < 0.3.
Note that the average rank for this range (betwgand6), is better than that (close ®) achieved
with the logistic loss of LogitBoost [2]d = 1). In fact, as can be seen from Table 2, the canonical



Table 3:Classification error for each loss function and UCI dataset.

UCI dataset# #1 #2 #3 #4 #5 #6 #7 #8 #9 #10
Canonical Log 11.2 | 114 | 8 56 | 124 | 11.8 7 18.8 | 38.2 27
LogitBoost @ = 1) 11.6 | 124 | 10 6.6 134 | 486 | 6.8 | 21.2 | 39.6 | 28.4
Canonical Boost 126 | 11.6 | 21 | 186 | 176 | 7.2 6 21.8 | 37.6 | 28.6
Canonical Boosty =1 | 13.2 | 124 | 21 | 186 | 18.6 | 50.8 | 7.2 | 21.2 | 39.4 | 28.2

| AdaBoost [114 [ 11494 ] 64 | 14 [ 28 |66 21.8 | 41.2 | 282 |

Table 4:Classification error for each loss function and UCI dataset.

UCI dataset# #1 #2 #3 #4 #5 #6 #1 #8 #9 #10
Canonical Loga = 0.2 13.2 15 8.4 5 11.2 | 56.2 | 6.8 24 39.8 | 25.8
Canonical Boosty = 0.2 | 12.6 | 14.8 | 17.2 | 18.6 12 56.8 | 6.8 | 23.2 | 384 | 264
LogitBoost(a = 1) 12.4 | 154 | 8.6 5.6 11.4 46 7.2 25 40.4 | 26.4
AdaBoost 11.4 | 152 | 9.2 6 114 | 21.6 | 7.4 | 23.2 | 42.8 | 26.6

logistic loss witha = 1 did not achieve rank on any dataset, whereas canonical logistic losses with
0.2 < a < 0.3 were top ranked oB datasets (and with.1 < a < 0.4 on 6). For the canonical
boosting loss, there is also a ran@e’(< a < 2) that produces best results. We note thatdhe
values of the two losses are not directly comparable. Thidesseen from Figure-2 whetie= 0.4
produces a loss of much larger margin for canonical boostogthermore, the canonical boosting
loss has a heavier tail and approaches zero more slowly lleacanonical logistic loss.

Although certain ranges of margin parameters seem to peoldest results for both canonical loss
functions, the optimal parameter value is likely to be dettdependent. This is confirmed by Table 2
which presents the parameter value of ranfor each of the ten datasets. Improved performance
should thus be possible by cross-validating the marginrpatera. Table 3 presents the 5-fold
cross validation test error (# of misclassified points) otgtd for each UCI dataset and canonical
loss. The table also shows the results of AdaBoost, LogisB@manonical logistica = 1), and
canonical boosting loss withh = 1. Cross validating the margin results in better performdnce

9 out of 10 (8 out 10) datasets for the canonical logistic (boosting) loss, wbempared to the
fixed margin ¢ = 1) counterparts. When compared to the existing algorithmkgaast one of the
margin-tunned classifiers is better than both Logit and AxteB for each dataset.

Under certain experimental conditions, cross validatiaghinnot be possible or computationally
feasible. Even in this case, it may be better to use a valuetifer than the standawd= 1. Table-4
presents results for the case where the margin parameteedsdic = 0.2 for both canonical loss
functions. In this case, canonical logistic and canonicalsbing outperfornboth LogitBoost and
AdaBoost in7 and5 of the ten datasets, respectively. The converse, i.e. Bogit and AdaBoost
outperforming both canonical losses only happerisand3 datasets, respectively.

7 Conclusion

The probability elicitation approach to loss function dgsiintroduced in [3], enables the derivation
of new Bayes consistent loss functions. Yet, because theegduwe is not fully constructive, this
requires trial and error. In general, it is difficult to ampiate the properties, and shape, of a loss
function that results from combining a certain minimal riskh a certain link function. In this
work, we have addressed this problem for the class of caabrigks. We have shown that the
associated canonical loss functions lend themselves tgsasiadue to a simple connection between
the associated minimum conditional risk and optimal linkdiions. This analysis was shown to
enable a precise characterization of 1) the relationshépsden loss, optimal link, and minimum
risk, and 2) the properties of the loss whenever the optimklis in the family of inverse sigmoid
functions. These properties were then exploited to desagarpetric families of loss functions
with explicit margin control. Experiments with boostinggatithms derived from these variable
margin losses have shown better performance than thosessfichl algorithms, such as AdaBoost
or LogitBoost.
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