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Appendix A

In this section we provide detailed proofs for Theorems 1-3.

Recall that our kernel matrix learning problem is given by

min
KW≽0

f(K−1/2KWK−1/2) s.t. gi(KW ) ≤ bi, 1 ≤ i ≤ m, (1)

while our linear transformation kernel learning problem is given by

min
W≽0

f(W ) s.t. gi(ΦTWΦ) ≤ bi, 1 ≤ i ≤ m. (2)

First we introduce and analyze an auxiliary optimization problem that will help in proving the main
theorems. Consider the following problem:

min
W≽0,L

f(W )

s.t. gi(Φ
TWΦ) ≤ bi, 1 ≤ i ≤ m,

W = αId + ULUT ,

(3)

where L ∈ Rk×k, U ∈ Rd×k is an orthogonal matrix, and Id is the d×d identity matrix. In general,
k can be significantly smaller than min(n, d). Note that the above problem is identical to (2) except
for an added constraint W = αId + ULUT . We now show that (3) is equivalent to a problem over
k × k matrices. In particular, (3) is equivalent to (4) defined below.

Lemma 1. Let f be a spectral function (see Defintion 3.1) and let α be the global minima for the
corresponding scalar function fs. Then, (3) is equivalent to:

min
L

f(αIk + L),

s.t. gi(αΦ
TΦ+ ΦTULUTΦ) ≤ bi, 1 ≤ i ≤ m,

L ≽ −αIk. (4)

Proof. The last constraint in (3) asserts that W = αId + ULUT , which implies that there is a one-
to-one mapping between W and L: given W , L can be computed and vice-versa. As a result, we
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can eliminate the variable W from (3) by substituting αId + ULUT for W (via the last constraint
in (3)). The resulting optimization problem is:

min
L

f(αI + ULUT ),

s.t. gi(αΦ
TΦ+ ΦTULUTΦ) ≤ bi, 1 ≤ i ≤ m,

L ≽ −αIk. (5)

Note that (4) and (5) are the same except for their objective functions. Below, we show that both
the objective functions are equal up to a constant, so they are interchangable in the optimization
problem. Let U ′ ∈ Rd×d be an orthonormal matrix obtained by completing the basis represented by
U , i.e., U ′ = [U U⊥] for some U⊥ ∈ Rd×(d−k) s.t. UTU⊥ = 0 and UT

⊥U⊥ = Id−k. Now,

W = αI + ULUT = U ′
(
αI +

[
L 0
0 0

])
U ′T . (6)

It is straightforward to see that for a spectral function f ,

f(VWV T ) = f(W ), (7)

where V is an orthogonal matrix. Also, ∀A,B ∈ Rd×d,

f

(
A 0
0 B

)
= f(A) + f(B). (8)

Using (6), (7), and (8), we get:

f(W ) = f(αI + ULUT ) =

(
αU ′T IU ′ +

[
L 0
0 0

])
,

= f

([
αI + L 0

0 αI

])
,

= f(αI + L)) + (d− n)f(α), (9)

Therefore, the objective functions of (4) and (5) differ by only a constant, i.e., they are equivalent
w.r.t. the optimization problem. The lemma follows.

We now show that for the convex spectral functions (see Definition 3.1) the optimal solution W ∗

to (2) is of the form W ∗ = I +ΦSΦT , for some S.
Lemma 2. Suppose f satisfies the conditions given in Theorem 1. Furthermore, denote the global
minima of the corresponding scalar function fs as α. Then, the optimal solution to (2) is of the form
W ∗ = αI +ΦSΦT , where S is a n× n matrix.

Proof. Let W = UΛUT =
∑

j λjuju
T
j be the eigenvalue decomposition of W . Consider a

constraint gi(ΦTWΦ) ≤ bi as specified in (2). Note that if the j-th eigenvector uj of W is or-
thogonal to the range space of Φ, i.e. ΦTuj = 0, then the corresponding eigenvalue λj is not
constrained (except for the non-negativity constraint imposed by the positive semi-definiteness con-
straint). Since the range space of Φ is at most n-dimensional, without loss of generality we can
assume that λj ≥ 0,∀j > n are not constrained by the linear inequality constraints in (2).

Since f satisfies the conditions of Theorem 1, f(W ) =
∑

j fs(λj). Also, fs(α) = minx fs(x).
Hence, to minimize f(W ), we can select λ∗

j = α ≥ 0,∀j > n (note that the non-negativity
constraint is satisfied for this choice of λj). Furthermore, the eigenvectors uj , ∀j ≤ n, lie in the
range space of X , i.e., ∀j ≤ n, uj = Xzj for some zj ∈ Rn. Therefore,

W ∗ =
n∑

j=1

λ∗
ju

∗
ju

∗T
j + α

d∑
j=n+1

u∗
ju

∗T
j ,

=
n∑

j=1

(λ∗
i − α)u∗

ju
∗T
j + α

d∑
j=1

u∗
ju

∗T
j ,

= ΦS∗ΦT + αI,

where S∗ =
∑n

j=1(λ
∗
j − α)z∗

j z
∗T
j .
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Now we use Lemmas 1 and 2 to prove Theorem 1.

Proof of Theorem 1. Let Φ = UΦΣV
T
Φ be the singular value decomposition (SVD) of Φ. Note that

K = ΦTΦ = VΦΣ
2V T

Φ .

Also, assuming Φ ∈ Rd×n to be full-rank and d > n, VΦV
T
Φ = I .

Using Lemma 2, the optimal solution to (2) is restricted to be of the form W = αI + ΦSΦT =
αI + UΦΣV

T
Φ SVΦΣU

T
Φ = αI + UΦV

T
Φ K1/2SK1/2VΦU

T
Φ = αI + UΦV

T
Φ LVΦU

T
Φ , where L =

K1/2SK1/2. Hence, for spectral functions f , (2) is equivalent to (3), so using Lemma 1, (2) is
equivalent to (4) with U = UΦV

T
Φ and L = K1/2SK1/2. Also, note that the constraints in (4) can

be simplified to:

gi(αΦ
TΦ+ ΦTULUTΦ) ≤ bi ≡ gi(αK +K1/2LK1/2) ≤ bi.

Now, let KW = αK+K1/2LK1/2 = αK+KSK, i.e., L = K−1/2(KW −αK)K−1/2. Theorem
1 now follows by substituting for L in (4).

Next, we prove Theorem 2.

Proof of Theorem 2. Let U = K1/2J(JTKJ)−1/2 and let J be a full rank matrix, then U is an
orthgonal matrix. Using (9) we get,

f(αI + U(JTKJ)1/2L(JTKJ)1/2UT ) = f(αI + (JTKJ)1/2L(JTKJ)1/2).

Now consider a linear constraint specified in (6) (from main text), Tr(Ci(αK +KJLJTK)) ≤ bi.
This can be easily simplified to:

Tr(LJTKCiKJ) ≤ bi − Tr(αKCi).

Similar simple algebraic manipulations to the PSD constraint completes the proof.

Finally, we prove Theorem 3.

Proof of Theorem 3. Consider the last constraint in (7) (from main text):

W = αI +ΦJLJΦT .

Let Φ = UΣV T be the SVD of Φ. Hence, W = αI + UV TV ΣV TJLJV ΣV TV UT = αI +
UV TK1/2JLJK1/2V UT . For disambiguity, rename L as L′ and U as U ′. Now, clearly (7) (from
main text) is same as (3) with U = U ′V T and L = K1/2JL′JK1/2. Theorem 3 now follows by
using Lemma 1 with L = K1/2JL′JK1/2.

Appendix B: Trace-SSIKDR

To recap, the updates for solving (11) (from main text) using Uzawa’s algorithm are given by:

UΣUT ← K1/2CK1/2, (10)

K̃t ← U max(Σ− τI, 0)UT , (11)

zti ← zt−1
i − δmax(Tr(CiK

1/2K̃tK1/2)− bi, 0),∀i, (12)

where C =
∑

i z
t−1
i Ci. We first prove a technical lemma to relate eigenvectors vectors U of matrix

K1/2CK1/2 and V of the matrix CK.
Lemma 3. Let K1/2CK1/2 = UkΣkU

T
k , where Uk contains the top-k eigenvectors of K1/2CK1/2

and Σk contains the top-k eigenvalues of K1/2CK1/2. Similarly, let CK = VkΛkV
−1
k , where Vk

contains the top-k right eigenvectors of CK and Λk contains the top-k eigenvalues of CK. Then,

Uk = K1/2VkDk,

Σk = Λk.

Note that eigenvalue decomposition is unique up to sign, so we assume that the sign has been set
correctly.
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Proof. Let vi be i-th eigenvector of CK. Then, CKvi = λivi. Multiplying both sides with K1/2,
we get K1/2CK1/2K1/2vi = K1/2vi. After normalization we get:

(K1/2CK1/2)
K1/2vi

vT
i Kvi

= λi
K1/2vi

vT
i Kvi

Hence, K1/2vi

vT
i Kvi

= K1/2vi/D(i, i) is the i-th eigenvector ui of K1/2CK1/2. Also, σi = λi.

Using the above lemma and (11), we get

K̃ = K1/2VkDkλDkV
−1
k K1/2.

Therefore, the update for the z variables (see (12)) reduces to:

zti ← zt−1
i − δmax(Tr(CiKVkDkλDkV

−1
k K)− bi, 0),∀i.

This proves that step 6 of Algorithm 1 is correct, so we do not need to compute the full eigenvalue
decompsotion or square-root of the kernel matrix K.
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