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Abstract

We present a novel approach to inference in conditionally Gaussian continuous
time stochastic processes, where the latent process is a Markovian jump process.
We first consider the case of jump-diffusion processes, where the drift of a linear
stochastic differential equation can jump at arbitrary time points. We derive partial
differential equations for exact inference and present a very efficient mean field
approximation. By introducing a novel lower bound on the free energy, we then
generalise our approach to Gaussian processes with arbitrary covariance, such as
the non-Markovian RBF covariance. We present results on both simulated and
real data, showing that the approach is very accurate in capturing latent dynamics
and can be useful in a number of real data modelling tasks.

Introduction

Continuous time stochastic processes are receiving increasing attention within the statistical machine
learning community, as they provide a convenient and physically realistic tool for modelling and
inference in a variety of real world problems. Both continuous state space [1, 2] and discrete state
space [3–5] systems have been considered, with applications ranging from systems biology [6] to
modelling motion capture [7]. Within the machine learning community, Gaussian processes (GPs)
[8] have proved particularly popular, due to their appealing properties which allow to reduce the
infinite dimensional smoothing problem into a finite dimensional regression problem. While GPs
are indubitably a very successful tool in many pattern recognition tasks, their use is restricted to
processes with continuously varying temporal behaviour, which can be a limit in many applications
which exhibit inherently non-stationary or discontinuous behaviour.

In this contribution, we consider the state inference and parameter estimation problems in a wider
class of conditionally Gaussian (or Gaussian-Jump) processes, where the mean evolution of the GP is
determined by the state of a latent (discrete) variable which evolves according to Markovian dynam-
ics. We first consider the special, but important, case where the GP is a Markovian process, i.e. an
Ornstein-Uhlenbeck (OU) process. In this case, exact inference can be derived by using a forward-
backward procedure. This leads to partial differential equations, whose numerical solution can be
computationally expensive; alternatively, a variational approximation leads to an iterative scheme
involving only the numerical solution of ordinary differential equations, and which is extremely
efficient from a computational point of view. We then consider the case of general (non-Markov)
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GPs coupled to a Markovian latent variable. Inference in this case is intractable, but, by means of a
Legendre transform, we can derive a lower bound on the exact free energy, which can be optimised
using a saddle point procedure.

1 Conditionally Gaussian Markov Processes

We consider a continuous state stochastic system governed by a linear stochastic differential equa-
tion (SDE) with piecewise constant (in time) drift bias which can switch randomly with Markovian
dynamics (see e.g. [9] for a good introduction to stochastic processes). For simplicity, we give the
derivations in the case when there are only two states in the switching process (i.e. it is a random
telegraph process) and the diffusion system is one dimensional; generalisation to more dimensions
or more latent states is straightforward. The system can be written as

dx = (Aµ+ b− λx) dt+ σdw(t),
µ(t) ∼ T P (f±) , (1)

where w is the Wiener process with variance σ2 and µ(t) is a random telegraph process with switch-
ing rates f±. Our interest in this type of models is twofold: similar models have found applications
in fields like systems biology, where the rapid transitions of regulatory proteins make a switching
latent variable a plausible model [6]. At the same time, at least intuitively, model (1) could be con-
sidered as an approximation to more complex non-linear diffusion processes, where diffusion near
local minima of the potential is approximated by linear diffusion.

Let us assume that we observe the process x at a finite number of time points with i.i.d. noise, giving
values

yi ∼ N
(
x(ti), s2

)
, i = 1, . . . , N.

For simplicity, we have assumed that the process itself is observed; nothing would change in what
follows if we assumed that the variable y is linearly related to the process (except of course that
we would have more parameters to estimate). The problem we wish to address is the inference of
the joint posterior over both variables x and µ at any time within a certain interval, as well as the
determination of (a subset of) the parameters and hyperparameters involved in equation (1) and in
the observation model.

1.1 Exact state inference

As the system described by equation (1) is a Markovian process, the marginal probability distribution
qµ(x, t) for both state variables µ ∈ {0, 1} and x of the posterior process can be calculated using
a smoothing algorithm similar to the one described in [6]. Based on the Markov property one can
show that

qµ(x, t) =
1
Z
pµ(x, t)Ψµ(x, t). (2)

Here pµ(x, t) denotes the marginal filtering distribution, while Ψµ(x, t) = p({yi|ti > t}|xt =
x, µt = µ) is the likelihood of all observations after time t under the condition that the process has
state (x, µ) at time t (backward message). The time evolution of the backward message is described
by the backward Chapman-Kolmogorov equation for µ ∈ {0, 1} [9]:

∂Ψµ

∂t
+ (Aµ+ b− λx)

∂Ψµ

∂x
+
σ2

2
∂2Ψµ

∂x2
= f1−µ(Ψµ(x, t)−Ψ1−µ(x, t)). (3)

This PDE must be solved backward in time starting at the last observation yN using the initial
condition

Ψµ(x, tN ) = p(yN |x(tN ) = x). (4)

The other observations are taken into account by jump conditions

Ψµ(x, t−j ) = Ψµ(x, t+j ) p(yj |x(tj) = x), (5)

where Ψµ(x, t∓k ) being the values of Ψµ(x, t) before and after the k-th observation and p(yj |x(tj) =
x) is given by the noise model.
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In order to calculate qµ(x, t) we need to calculate the filtering distribution pµ(x, t), too. Its time
evolution is given by the forward Chapman-Kolmogorov equation [9]

∂pµ
∂t

+
∂

∂x
(Aµ+ b− λx)pµ(x, t)− σ2

2
∂2pµ
∂x2

= fµ p1−µ(x, t)− f1−µ pµ(x, t). (6)

We can show that the posterior process qµ(x, t) fulfils a similar PDE by calculating its time derivative
and using both (3) and (6). By doing so we find

∂qµ
∂t

+
∂

∂x
(Aµ+ b−λx+ cµ(x, t))qµ(x, t)− σ

2

2
∂2qµ
∂x2

= gµ(x, t) q1−µ(x, t)− g1−µ(x, t) qµ(x, t),
(7)

where

gµ(x, t) =
Ψµ(x, t)

Ψ1−µ(x, t)
fµ (8)

are time and state dependent posterior jump rates, while the drift

cµ(x, t) = σ2 ∂

∂x
log Ψµ(x, t) (9)

takes the observations into account. It is clearly visible that (7) is also a forward Chapman-
Kolmogorov equation. Consequently, the only differences between prior and posterior process are
the jump rates for the telegraph process µ and the drift of the diffusion process x.

1.2 Variational inference

The exact inference approach outlined above gives rise to PDEs which need to be solved numeri-
cally in order to estimate the relevant posteriors. For one dimensional GPs this is expensive, but
in principle feasible. This work will be deferred to a further publication. Of course, numerical so-
lutions become computationally prohibitive for higher dimensional problems, leading to a need for
approximations. We describe here a variational approximation to the joint posterior over the switch-
ing process µ(t) and the diffusion process x(t) which gives an upper bound on the true free energy;
it is obtained by making a factorised approximation to the probability over paths (x0:T , µ0:T ) of the
form

q (x0:T , µ0:T ) = qx (x0:T ) qµ (µ0:T ) , (10)
where qx is a pure diffusion process (which can be easily shown to be Gaussian) and qµ is a pure
jump process. Considering the KL divergence between the original process (1) and the approxi-
mating process, and keeping into account the conditional structure of the model and equation (10),
we obtain the following expression for the Kullback-Leibler (KL) divergence between the true and
approximating posteriors:

KL [q‖p] = K0 +
N∑
i=1

〈log p (yi|x(ti))〉qx + 〈KL [qx‖p (x0:T |µ0:T )]〉qµ +KL [qµ‖p(µ0:T )] . (11)

By using the general formula for the KL divergence between two diffusion processes [1], we obtain
the following form for the third term in equation (11):

〈KL [qx‖p (x0:T |µ0:T )]〉qµ =
∫
dt

1
2σ2
{[α(t) + λ]2

[
c2(t) +m2(t)

]
+ [β(t)− b]2 +

+ 2 [α(t) + λ] [β(t)− b]m(t) +
[
A2 − 2A (α(t) + λ)m(t)− 2A (β(t)− b)

]
q1µ(t)}.

(12)

Here α and β are the gain and bias (coefficients of the linear term and constant) of the drift of
the approximating diffusion process, m and c2 are the mean and variance of the approximating
process, and q1µ(t) is the marginal probability at time t of the switch being on (computed using
the approximating jump process). So the KL is the sum of an initial condition part (which can
be set to zero) and two other parts involving the KL between a Markovian Gaussian process and
a Markovian Gaussian process observed linearly with noise (second and third terms) and the KL
between two telegraph processes. The variational E-step iteratively minimises these two parts using
recursions of the forward-backward type. Interleaved with this, variational M-steps can be carried
out by optimising the variational free energy w.r.t. the parameters; the fixed point equations for this
are easily derived and will be omitted here due to space constraints. Evaluation of the Hessian of
the free energy w.r.t. the parameters can be used to provide a measure of the uncertainty associated.
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1.2.1 Computation of the approximating diffusion process

Minimisation of the second and third term in equation (11) requires finding an approximating Gaus-
sian process. By inspection of equation (12), we see that we are trying to compute the posterior
process for a discretely observed Gaussian process with (prior) driftAq1µ(t)+b−λx, with the obser-
vations being i.i.d. with Gaussian noise. Due to the Markovian nature of the process, its single time
marginals can be computed using the continuous time version of the well known forward-backward
algorithm [10, 11]. The single time posterior marginal can be decomposed as

q (x(t)) = p (x(t)|y1, . . . , yN ) =
1
Z
φ (x(t)) ξ (x(t)) , (13)

where φ is the filtered process or forward message, and ξ is the backward message, i.e. the likelihood
of future observations conditioned on time t. The recursions are based on the following general
ODEs linking mean m̂ and variance ĉ2 of a general Gaussian diffusion process with system noise σ2

to the drift coefficients α̂ and β̂ of the respective SDE, which are a consequence of the Fokker-Planck
equation for Gaussian processes

dm̂

dt
= α̂m̂+ β̂,

dĉ2

dt
= 2α̂ĉ2 + σ2.

(14)

The filtered process outside the observations satisfies the forward Fokker-Planck equation of the
prior process, so its mean and variance can be propagated using equations (14) with prior drift
coefficients α̂ = −λ and β̂ = Aq1µ + b. Observations are incorporated via the jump conditions

lim
t→t+i

φ (x(t)) ∝ p (yi|x(ti)) lim
t→t−i

φ (x(t)) , (15)

whence the recursions on the mean and variances easily follow. Notice that this is much simpler than
(discrete time) Kalman filter recursions as the prior gain is zero in continuous time. Computation of
the backward message (smoothing) is analogous; the reader is referred to [10,11] for further details.

1.2.2 Jump process smoothing

Having computed the approximating diffusion process, we now turn to give the updates for the
approximating jump process.The KL divergence in equation (11) involves the jump process in two
terms: the last term is the KL divergence between the posterior jump process and the prior one, while
the third term, which gives the expectation of the KL between the two diffusion processes under the
posterior jump, also contains terms involving the jump posterior. The KL divergence between two
telegraph processes was calculated in [4]; considering the jump terms coming from equation (12),
and adding a Lagrange multiplier to take into account the Master equation fulfilled by the telegraph
process, we end up with the following Lagrangian:

L [qµ, g±, ψ, ξ] = KL [qµ‖pprior] +
∫
dt

1
2σ2

[
A2 − 2A (α+ λ)m− 2A (β − b)

]
q1(t)+∫

dtψ(t)
(
dq1
dt

+ (g− + g+)q1 − g+
)
.

(16)

Notice we use q1(t) = qµ(µ(t) = 1) to lighten the notation. Functional derivatives w.r.t. to the
posterior rates g± allow to eliminate them in favour of the Lagrange multipliers; inserting this into
the functional derivatives w.r.t. to the marginals q1(t) gives ODEs involving the Lagrange multiplier
and the prior rates only (as well as terms from the diffusion process), which can be solved backward
in time from the conditionψ(T ) = 0. This allows to update the rates and then the posterior marginals
can be found in a forward propagation, in a manner similar to [4].

2 Conditionally Gaussian Processes: general case

In this section, we would like to generalise our model to processes of the form

dx = (−λx +Aµ+ b)dt+ df(t), (17)
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where the white noise driving process σdw(t) in (1) is replaced by an arbitrary GP df(t) 1. The ap-
plication of our variational approximation (11) requires the KL divergence KL [qx‖p (x0:T |µ0:T )]
between a GP qx and a GP with a shifted mean function p (x0:T |µ0:T ). Assuming the same co-
variance this could in principle be computed using the Radon-Nykodym derivative between the two
measures. Our preliminary results (based on the Cameron-Martin formula for GPs [12]) indicates
that even in simple cases (like Ornstein-Uhlenbeck noise) the measures are not absolutely continu-
ous and the KL divergence is infinite. Hence, we have resorted to a different variational approach,
which is based on a lower bound to the free energy.

We use the fact, that conditioned on the path of the switching process µ0:T , the prior of x(t)
is a GP with a covariance kernel K(t, t′) and can be marginalised out exactly. The kernel K
can be easily computed from the kernel of the driving noise process f(t) [2]. In the previous
case of white noise K is given by the (nonstationary) Ornstein-Uhlenbeck kernel KOU (t, t′) =
σ2

2λ

{
e−λ|t−t

′| − e−λ(t+t′)
}

. The mean function of the conditioned GP is obtained by solving the
linear ODE (17) without noise, i.e. with f = 0. This yields

EGP [x(t)|µ0:T ] =
∫ t

0

e−λ(t−s)(Aµ(s) + b) ds . (18)

Marginalising out the conditional GP, the negative log marginal probability of observations (free
energy) F = − ln p(D) is represented as

F = − lnEµ [p(D|µ0:T )] = κ− lnEµ

[
exp

{
−1

2
(y − xµ)>(K + σ2I)−1(y − xµ)

}]
. (19)

Here Eµ denotes expectation over the prior switching process pµ, y is the vector of observations,
and xµ = EGP [(x(t1), . . . , x(tN ))> |µ0:T ] is the vector of conditional means at observation times
ti. K is the kernel matrix and κ = 1

2 ln(|2πK|). This intractable free energy contains a functional in
the exponent which is bilinear in the switching process µ. In the spirit of other variational transfor-
mations [13, 14] this can be linearised through a Legendre transform (or convex duality). Applying
1
2z
>A−1z = maxθ

{
θ>z − 1

2θ
>Aθ

}
to the vector z = (y − xµ) and the matrix A = (K + σ2I),

and exchanging the max operation with the expectation over µ, leads to the lower bound

F ≥ κ+ max
θ

(
−1

2
θ>(K + σ2I)θ − lnEµ

[
exp

{
−θ>(y − xµ)

}])
. (20)

A similar upper bound which is however harder to evaluate computationally will be presented else-
where. It can be shown that the lower bound (20) neglects the variance of the Eµ [xµ] process
(intuitively, the two point expectations in (19) are dropped). The second term in the bracket looks
like the free energy for a jump process model having a (pseudo) log likelihood of the data given by
−θ>(y−xµ). This auxiliary free energy can again be rewritten in terms of the “standard variational”
representation

− lnEµ
[
exp

{
−θ>(y − xµ)

}]
= min

q

{
KL[q‖pprior] + θ>(y − Eq[xµ])

}
, (21)

where in the second line we have introduced an arbitrary process q over the switching variable and
used standard variational manipulations. Inserting (18) into the last term in (21), we see that this KL
minimisation is of the same structure as the one in equation (16) with a linear functional of q in the
(pseudo) likelihood term. Therefore the minimiser q is an inhomogeneous Markov jump process,
and we can use a backward and forward sweep to compute marginals q1(t) exactly for a fixed θ!
These marginals are used to compute the gradient of the lower bound (K + σ2I)θ + (y − Eq[xµ])
and we iterate between gradient ascent steps and recomputations of Eq[xµ]. Since the minimax
problem defined by (20) and (21) is concave in θ and convex in q the solution must be unique. Upon
convergence, we use the switching process marginals q1 for prediction. Statistics of the smoothed
x process can then be computed by summing the conditional GP statistics (obtained by exact GP
regression) and the xµ statistics, which can be computed using the same methods as in [6].

1In case of a process with smooth sample paths, we can write df(t) = g(t)dt with an “ordinary” GP g
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Figure 1: Results on synthetic data. Variational Markovian Gaussian-Jump process on the left,
approximate RBF Gaussian-Jump process on the right. Top row, inferred posterior jump means
(solid line) and true jump profile (dotted black) Bottom row: inferred posterior mean x (solid) with
confidence intervals (dotted red); data points are shown as red crosses, and the true sample profile
is shown as black dots. Notice that the less confident jump prediction for the RBF process gives a
much higher uncertainty in the x prediction (see text). The x axis units are the simulation time steps.

3 Results

3.1 Synthetic data

To evaluate the performance and identifiability of our model, we experimented first with a simple
one-dimensional synthetic data set generated using a jump profile with only two jumps. A sample
from the resulting conditional Gaussian process was then obtained by simulating the SDE using
the Euler-Maruyama method, and ten identically spaced points were then taken from the sample
path and corrupted with Gaussian noise. Inference was then carried out using two procedures: a
Markovian Gaussian-Jump process as described in Section 1, using the variational algorithm, and
a “RBF” Gaussian-Jump process with slowly varying covariance, as described in Section 2. The
parameters s2, σ2 and f± were kept fixed, while the A, b and λ hyperparameters were optimised
using type II ML.

The inference results are shown in Figure 1: the left column gives the results of the variational
smoothing, while the right column gives the results obtained by fitting a RBF Gaussian-Jump pro-
cess. The top row shows the inferred posterior mean of the discrete state distribution, while the
bottom row gives the conditionally Gaussian posterior. We notice that both approaches provide a
good smoothing of the GP and the jump process, although the second jump is inferred as being
slightly later than in the true path. Notice that the uncertainties associated with the RBF process are
much higher than in the Markovian one, and are dominated by the uncertainty in the posterior mean
caused by the uncertainty in the jump process, which is less confident than in the Markovian case
(top right figure). This is probably due to the fact that the lower bound (20) ignores the contributions
of the variance of the xµ term in the free energy, which is due to the variance of the jump pro-
cess, and hence removes the penalty for having intermediate jump posteriors. A similar behaviour
was already noted in a related context in [14]. In terms of computational efficiency, the variational
Markovian algorithm converged in approximately 0.1 seconds on a standard laptop, while the RBF
process took approximately two minutes. As a baseline, we used a standard discrete time Switching
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Figure 2: Results on double well diffusion. Left: inferred posterior switch mean; right smoothed
data, with confidence intervals. The x axis units are the simulation time steps.

Kalman Filter in the implementation of [15], but did not manage to obtain good results. It is not
clear whether the problem resided in the short time series or in our application of the model.

Estimation of the parameters using the variational upper bound also gave very accurate results, with
A = 3.1 ± 0.3 × 10−2 (true value 3 × 10−2), b = 1.0 ± 2 × 10−2 (true value 1 × 10−2) and
λ = 1.1 ± 0.1 × 10−2 (true value 1 × 10−2). It is interesting to note that, if the system noise
parameter σ2 was set at a higher value, then the A parameter was always driven to zero, leading to a
decoupling of the Gaussian and jump processes. In fact, it can be shown that the true free energy has
always a local minimum forA = 0: heuristically, the GP is always a sufficiently flexible model to fit
the data on its own. However, for small levels of system noise, the evidence of the data is such that
the more complex model involving a jump process is favoured, giving a type of automated Occam
razor, which is one of the main attractions of Bayesian modelling.

3.2 Diffusion in a double-well potential

To illustrate the properties of the Gaussian-jump process as an approximator for non-linear stochas-
tic models, we considered the benchmark problem of smoothing data generated from a SDE with
double-well potential drift and constant diffusion coefficient. Since the process we wish to approx-
imate is a diffusion process, we use the variational upper bound method, which gave good results
in the synthetic experiments. The data we use is the same as the one used in [1], where a non-
stationary Gaussian approximation to the non-linear SDE was proposed by means of a variational
approximation. The results are shown in Figure 2: as is evident the method both captures accurately
the transition time, and provides an excellent smoothing (very similar to the one reported in [1]);
these results were obtained in 0.07 seconds, while the Gaussian process approximation of [1] in-
volves gradient descent in a high dimensional space and takes approximately three to four orders of
magnitude longer. Naturally, our method cannot be used in this case to estimate the parameters of
the true (double well) prior drift, as it only models the linear behaviour near the bottom of each well;
however, for smoothing purposes it provides a very accurate and efficient alternative method.

3.3 Regulation of competence in B. subtilis

Regulation of gene expression at the transcriptional level provides an important application, as well
as motivation for the class of models we have been considering. Transcription rates are modulated
by the action of transcription factors (TFs), DNA binding proteins which can be activated fast in
response to environmental signals. The activation state of a TF is a notoriously difficult quantity
to measure experimentally; this has motivated a significant effort within the machine learning and
systems biology community to provide models to infer TF activities from more easily measurable
gene expression levels [2, 16, 17]. In this section, we apply our model to single cell fluorescence
measurements of protein concentrations; the intrinsic stochasticity inherent in single cell data would
make conditionally deterministic models such as [2, 6] an inappropriate tool, while our variational
SDE model should be able to better capture the inherent fluctuations.

The data we use was obtained in [18] during a study of the genetic regulation of competence in
B. subtilis: briefly, bacteria under food shortage can either enter a dormant stage (spore) or can

7



0 2.5 5 7.5 10 12.5 15 17.5 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (h)
0 2.5 5 7.5 10 12.5 15 17.5 20

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (h)

Figure 3: Results on competence circuit. Left: inferred posterior switch mean (ComK activity
profile); right smoothed ComS data, with confidence intervals. The y axis units in the right hand
panel are arbitrary fluorescence units.

continue to replicate their DNA without dividing (competence). Competence is essentially a bet that
the food shortage will be short-lived: in that case, the competent cell can immediately divide into
many daughter cells, giving an evolutionary advantage. The molecular mechanisms underpinning
competence are quite complex, but the essential behaviour can be captured by a simple system
involving only two components: the competence regulator ComK and the auxiliary protein ComS,
which is controlled by ComK with a switch-like behaviour (Hill coefficient 5). In [18], ComK
activity was indirectly estimated using a gene reporter system (using the ComG promoter). Here,
we leave ComK as a latent switching variable, and use our model to smooth the ComS data. The
results are shown in Figure 3, showing a clear switch behaviour for ComK activity (as expected, and
in agreement with the high Hill coefficient), and a good smoothing of the ComS data. Analysis of the
optimal parameters is also instructive: while theA and b parameters are not so informative due to the
fact that fluorescence measurements are reported in arbitrary units, the ComS decay rate is estimated
as 0.32± 0.06h−1, corresponding to a half life of approximately 3 hours, which is clearly plausible
from the data. It should be pointed out that, in the simulations in the supplementary material of [18],
a nominal value of 0.0014 s−1 was used, corresponding to a half life of only 20 minutes! While
the purpose of that simulation was to recreate the qualitative behaviour of the system, rather than to
estimate its parameters, the use of such an implausible parameter value illustrates all too well the
need for appropriate data-driven tools in modelling complex systems.

4 Discussion

In this contribution we proposed a novel inference methodology for continuous time conditionally
Gaussian processes. As well as being interesting in its own right as a method for inference in
jump-diffusion processes (to our knowledge the first to be proposed), these models find a powerful
motivation due to their relevance to fields such as systems biology, as well as plausible approxima-
tions to non-linear diffusion processes. We presented both a method based on a variational upper
bound in the case of Markovian processes, and a more general lower bound which holds also for
non-Markovian Gaussian processes.

A natural question from the machine learning point of view is what are the advantages of continuous
time over discrete time approaches. As well as providing a conceptually more correct description of
the system, continuous time approaches have at least two significant advantages in our view: a com-
putational advantage in the availability of more stable solvers (such as Runge-Kutta methods), and
a communication advantage, as they are more immediately understandable to the large community
of modellers which use differential equations but may not be familiar with statistical methods.

There are several possible extension to the work we presented: a relatively simple task would be
an extension to a factorial design such as the one proposed for conditionally deterministic systems
in [14]. A theoretical task of interest would be a thorough investigation of the relationship between
the upper and lower bounds we presented. This is possible, at least for Markovian GPs, but will be
presented in other work.
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