
Supplementary Material
for Pose-Sensitive Embedding by Nonlinear NCA Regression

by Graham W. Taylor, Rob Fergus, George Williams, Ian Spiro, and Christoph Bregler

6 Review: NCA

For linear NCA, it is straightforward to derive the gradient of the NCA loss with respect to the matrix
of parameters [14]. However, if we are to use a nonlinear mapping, it is useful to derive the gradient
of the NCA loss function with respect to the output (i.e. the low-dimensional representation) so that
we may perform backpropagation.

As a review, we perform this derivation for the case of standard NCA before we consider NCA
regression. Recall, the loss is

LNCA = −
N∑

i=1

∑
j:yi=yj

pij , (8)

where

pij =
exp(−d2

ij)∑
l 6=i exp(−d2

il)
, pii = 0, dij = ||zi − zj ||2. (9)

Considering just a single training example, zk = f(xk), we wish to calculate

∂LNCA

∂zk
= −

N∑
i=1

∑
j:yi=yj

∂pij

∂zk
. (10)

Since pij is a softmax, ∂pij

∂zk
has the form

∂pij

∂zk
= pij

∂γij

∂zk
−
∑
l 6=i

pil
∂γil

∂zk

 (11)

where γij = −d2
ij and

∂d2
ij

∂zk
= 2 (zi − zj) [i = k] + 2 (zj − zi) [j = k] (12)

where [i = k] and [j = k] are indicator variables in {0, 1}. Combining Eq. 10-12 we arrive at

∂LNCA

∂zk
= 2

N∑
i=1

∑
j:yi=yj

pij

 (zi − zj) [i = k] + (zj − zi) [j = k]

−
∑
l 6=i

pil ((zi − zl) [i = k] + (zl − zi) [l = k])

 (13)

The above expression can be further simplified:

10

∂LNCA

∂zk
= 2

 ∑
j:yj=yk

pkj (zk − zj) +
∑

i:yi=yk

pik (zk − zi)

−
∑

j:yj=yk

pkj

∑
l 6=k

pkl (zk − zl)−
∑

i

∑
j:yi=yj

pijpik (zk − zi)

 (14)

= 2

 ∑
j:yj=yk

pkj (zk − zj) +
∑

i:yi=yk

pik (zk − zi)

−pk

∑
l 6=k

pkl (zk − zl)−
∑

i

pipik (zk − zi)

 (15)

= 2

 ∑
j:yj=yk

pkj (zk − zj) +
∑

j:yj=yk

pjk (zk − zj)

−pk

∑
j 6=k

pkj (zk − zj)−
∑

j

pjpjk (zk − zj)

 (16)

= 2

 ∑
j:yj=yk

(zk − zj) (pkj + pjk)−
∑
j 6=k

(zk − zj) (pkpkj + pjpjk)

 (17)

where we have used the shorthand pi =
∑

j:yi=yj
pij . We can also rearrange the above expression

to match the expression given in the Appendix of [34] (here, using our notation):

−∂LNCA

∂zk
=− 2

 ∑
j:yj=yk

pkj (zk − zj)− pk

∑
j 6=k

pkj (zk − zi)

+ 2

 ∑
j:yj=yk

pjk (zj − zk)−
∑
j 6=k

pjpjk (zj − zk)

 . (18)

7 NCA regression

We can similarly derive an expression for the gradient of the NCAR objective with respect to the
output units. Recall that the NCAR objective is

LNCAR =
N∑

i=1

∑
j 6=i

pij ||yi − yj ||22. (19)

where yk are real-valued rather than discrete. Again we consider a single training example, zk =
f(xk), and aim to calculate

∂LNCAR

∂zk
=

N∑
i=1

∑
j 6=i

y2
ij

∂pij

∂zk
(20)

where we have used the shorthand y2
ij = ||yi − yj ||22. Note the similarity between Eq. 20 is to Eq.

10. Combining Eq. 20 with Eq. 11 and Eq. 12, we arrive at

11

∂LNCAR

∂zk
= −2

N∑
i=1

∑
j 6=i

y2
ijpij

 (zi − zj) [i = k] + (zj − zi) [j = k]

−
∑
l 6=i

pil ((zi − zl) [i = k] + (zl − zi) [l = k])

 (21)

The above expression can be further simplified

∂LNCAR

∂zk
= −2

∑
j 6=k

y2
kjpkj (zk − zj) +

∑
i6=k

y2
ikpik (zk − zi)

−
∑
j 6=k

y2
kjpkj

∑
l 6=k

pkl (zk − zl)−
∑

i

∑
j 6=k

y2
ijpijpik (zk − zi)

 (22)

= −2

∑
j 6=k

y2
kjpkj (zk − zj) +

∑
i6=k

y2
ikpik (zk − zi)

−δk
∑
l 6=k

pkl (zk − zl)−
∑

i

δipik (zk − zi)

 (23)

= −2

∑
j 6=k

y2
kjpkj (zk − zj) +

∑
j 6=k

y2
jkpjk (zk − zj)

−δk
∑
j 6=k

pkj (zk − zj)−
∑

j

δjpjk (zk − zj)

 (24)

= −2
∑
j 6=k

(zk − zj)
(
y2

kjpkj + y2
jkpjk − δkpkj − δjpjk

)
(25)

= −2
∑
j 6=k

(zk − zj)
(
pkj

(
y2

kj − δk
)

+ pjk

(
y2

jk − δj
))

(26)

where we have used the shorthand δi =
∑

j 6=i y
2
ijpij . Note that the matrix formed by elements yij

is symmetric while the one formed by elements pij is not.

8 Parameter updates

In the case of linear NCAR, we have a single parameter matrix, A, where zk = Axk. The gradient
of LNCAR with respect to A is given by

∂LNCAR

∂A
=

N∑
k=1

∂LNCAR

∂zk

∂zk

∂A
=

N∑
k=1

∂LNCAR

∂zk
xT

k (27)

where ∂LNCAR
∂zk

is given by Eq. 26.

In the case of nonlinear NCAR (e.g. C-NCAR), we can update parameters recursively using back-
propagation. Here, we present the weight updates for the specific convolutional network that we
used in our experiments: two convolution and subsampling layers, and one fully-connected layer
(Fig. 2). A more general, practical treatment for arbitrary convolutional nets is given in [7].

12

8.1 Forward pass

We now generalize our notation to accommodate multiple layers of representation. Let x`
j be the jth

feature map at layer l. This is a 3D array: the first two dimensions are spatial, and the third is the
feature, indexed by j. We use greyscale images, so the first layer, x0, represents the preprocessed
input which does not have a 3rd dimension. Note that previously we used a subscript to represent
cases in our training set. In the discussion that follows, we will always discuss a single case, and
therefore the subscript indexes features.

The first step is to convolve the input with a series of learned 2D filters, k1
j , add a per-feature map

bias, b1j , and apply a nonlinearity:

x1
j = f

(
x0 ∗ k1

j + b1j
)

(28)

where f (uj) = abs (tanh (uj)) . Each feature map is then averaged and downsampled (in our
experiments, by a factor of five):

x2
j = β2

j down
(
x1

j , 5
)

(29)

where βj is a per-map learned coefficient (the superscript being a layer index, not a square) and
down (·,m) is an operator that performs average downsampling by a factor of m. The second
convolutional layer is similar to the first:

x3
j = f

∑
i∈Mj

x2
i ∗ k3

ij + b3j

 , (30)

except that now we have multiple feature maps as input, instead of a single greyscale image. Rather
than fully connecting all input maps to all output maps, we use sparse random connectivity [21].
Each output map is connected to four randomly chosen input maps specified by a map index Mj

which is constructed prior to training. The nonlinearity, f (·), remains the same. We then downsam-
ple by a factor of four:

x4
j = β4

j down
(
x4

j , 4
)
. (31)

The output is converted from a 3D array to a vector, and is processed by a final “fully-connected”
layer:

z = x5 = A5 × flatten
(
x4

1, . . . , x
4
J

)
(32)

where flatten (·) is a flattening operator that converts all J feature maps of layer 4 into a single
vector. The output, z, subsequently is a vector.

8.2 Backpropagation

Now that we have defined the forward pass, we can apply backpropagation to compute the updates
for the parameter set {k1,b1, β2,k3,b3, β4, A5}. Backpropagation alternates between computing
the “sensitivity”1 of layer l, δ`, and computing the gradient of the loss with respect to the parameters
at layer l.

The first step of backpropagation, that is, computing the sensitivity of the output layer, has already
been done: δ5 = ∂LNCAR

∂z (see Eq. 26 noting that we have dropped the case index). Since our output
units are linear, the gradient with respect to A (for notational simplicity, we drop the superscript) is
given by Eq. 27. Backpropagation continues as follows:

1Sensitivity is the derivative of the loss with respect to the input of a single unit of layer l.

13

δ4j = AT ∂LNCAR

∂z
, (33)

∂LNCAR

∂β4
j

=
∑
u,v

(
δ4j ◦ down

(
x3

j , 4
))

uv
(34)

where u and v are spatial indices and ◦ is element-wise multiplication. Continuing,

δ3j = β4
j

(
f ′
(
u3

j

)
◦ up

(
δ4j , 4

))
(35)

where u`
j is the input to feature map j at layer l (i.e. before the nonlinearity) and up (·,m) is an

upsampling operator that reverses down (·,m). In the following equations, we use Matlab notation
for the 2D convolution operations to be explicit about boundary conditions:

∂LNCAR

∂b3j
=
∑
u,v

(
δ3j
)
uv

(36)

∂LNCAR

∂k3
ij

= rot180
(
conv2

(
x2

i , rot180
(
δ3j
)
,′ valid′

))
(37)

where rot180 (·) flips the filter in both dimensions to perform correlation rather than convolution.
To calculate the sensitivity maps for layer 2, we must consider the connectivity map. Explicitly,
we must sum over all output maps j to which input map i is connected via the connectivity maps
Mj ,∀j:

δ2i =
∑

j:i∈Mj

conv2
(
δ3j , rot180

(
k3

ij

)
,′ full′

)
. (38)

The remaining expressions are similar to the ones above:

∂LNCAR

∂β2
j

=
∑
u,v

(
δ2j ◦ down

(
x1

j , 5
))

uv
, (39)

δ1j = β2
j

(
f ′
(
u1

j

)
◦ up

(
δ2j , 5

))
, (40)

∂LNCAR

∂b1j
=
∑
u,v

(
δ1j
)
uv
, (41)

∂LNCAR

∂k1
j

= rot180
(
conv2

(
x0, rot180

(
δ1j
)
,′ valid′

))
. (42)

Now that we have the gradient expressions for each set of parameters, we can optimize with respect
to the loss. We use an implementation of the nonlinear conjugate gradient method.

14

