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Abstract

In many real-world scenarios, it is nearly impossible to collect explicit social net-
work data. In such cases, whole networks must be inferred from underlying ob-
servations. Here, we formulate the problem of inferring latent social networks
based on network diffusion or disease propagation data. We consider contagions
propagating over the edges of an unobserved social network,where we only ob-
serve the times when nodes became infected, but not who infected them. Given
such node infection times, we then identify the optimal network that best explains
the observed data. We present a maximum likelihood approachbased on convex
programming with al1-like penalty term that encourages sparsity. Experiments
on real and synthetic data reveal that our method near-perfectly recovers the un-
derlying network structure as well as the parameters of the contagion propagation
model. Moreover, our approach scales well as it can infer optimal networks of
thousands of nodes in a matter of minutes.

1 Introduction

Social network analysis has traditionally relied on self-reported data collected via interviews and
questionnaires [27]. As collecting such data is tedious andexpensive, traditional social network
studies typically involved a very limited number of people (usually less than 100). The emergence
of large scale social computing applications has made massive social network data [16] available,
but there are important settings where network data is hard to obtain and thus the whole network
must thus be inferred from the data. For example, populations, like drug injection users or men who
have sex with men, are “hidden” or “hard-to-reach”. Collecting social networks of such populations
is near impossible, and thus whole networks have to be inferred from the observational data.

Even though inferring social networks has been attempted inthe past, it usually assumes that the
pairwise interaction data is already available [5]. In thiscase, the problem of network inference
reduces to deciding whether to include the interaction between a pair of nodes as an edge in the un-
derlying network. For example, inferring networks from pairwise interactions of cell-phone call [5]
or email [4, 13] records simply reduces down to selecting theright thresholdτ such that an edge
(u, v) is included in the network ifu andv interacted more thanτ times in the dataset. Similarly,
inferring networks of interactions between proteins in a cell usually reduces to determining the right
threshold [9, 20].

We address the problem of inferring the structure of unobserved social networks in a much more
ambitious setting. We consider a diffusion process where a contagion (e.g., disease, information,
product adoption) spreads over the edges of the network, andall that we observe are the infection
times of nodes, but not who infected whom i.e. we do not observe the edges over which the contagion
spread. The goal then is to reconstruct the underlying social network along the edges of which the
contagion diffused.
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We think of a diffusion on a network as a process where neighboring nodes switch states from in-
active to active. The network over which activations propagate is usuallyunknown andunobserved.
Commonly, we only observe the times when particular nodes get “infected” but wedo not observe
who infected them. In case of information propagation, as bloggers discover new information, they
write about it without explicitly citing the source [15]. Thus, we only observe the time when a blog
gets “infected” but not where it got infected from. Similarly, in disease spreading, we observe peo-
ple getting sick without usually knowing who infected them [26]. And, in a viral marketing setting,
we observe people purchasing products or adopting particular behaviors without explicitly knowing
who was the influencer that caused the adoption or the purchase [11]. Thus, the question is, if we as-
sume that the network is static over time, is it possible to reconstruct the unobserved social network
over which diffusions took place? What is the structure of such a network?

We develop convex programming based approach for inferringthe latent social networks from dif-
fusion data. We first formulate a generative probabilistic model of how, on a fixed hypothetical
network, contagions spread through the network. We then write down the likelihood of observed
diffusion data under a given network and diffusion model parameters. Through a series of steps we
show how to obtain a convex program with al1-like penalty term that encourages sparsity. We evalu-
ate our approach on synthetic as well as real-world email andviral marketing datasets. Experiments
reveal that we can near-perfectly recover the underlying network structure as well as the parameters
of the propagation model. Moreover, our approach scales well since we can infer optimal networks
of a thousand nodes in a matter of minutes.

Further related work. There are several different lines of work connected to our research. First is
the network structure learning for estimating the dependency structure of directed graphical mod-
els [7] and probabilistic relational models [7]. However, these formulations are often intractable
and one has to reside to heuristic solutions. Recently, graphical Lasso methods [25, 21, 6, 19] for
static sparse graph estimation and extensions to time evolving graphical models [1, 8, 22] have been
proposed with lots of success. Our work here is similar in a sense that we “regress” the infection
times of a target node on infection times of other nodes. Additionally, our work is also related to a
link prediction problem [12, 23, 18, 24] but different in a sense that this line of work assumes that
part of the network is already visible to us.

The work most closely related to ours, however, is [10], which also infers networks through cascade
data. The algorithm proposed (called NetInf) assumes that the weights of the edges in latent network
are homogeneous, i.e. all connected nodes in the network infect/influence their neighbors with the
same probability. When this assumption holds, the algorithm is very accurate and is computationally
feasible, but here we remove this assumption in order to address a more general problem. Further-
more, where [10] is an approximation algorithm, our approach guaranteesoptimality while easily
handling networks with thousands of nodes.

2 Problem Formulation and the Proposed Method

We now define the problem of inferring a latent social networks based on network diffusion data,
where we only observe identities of infected nodes. Thus, for each node we know the interval
during which the node was infected, whereas the source of each node’s infection is unknown. We
assume only that an infected node was previously infected bysome other previously infected node
to which it is connected in the latent social network (which we are trying to infer). Our method-
ology can handle a wide class of information diffusion and epidemic models, like the independent
contagion model, the Susceptible–Infected (SI), Susceptible–Infected–Susceptible (SIS) or even the
Susceptible–Infected–Recovered (SIR) model [2]. We show that calculating the maximum likeli-
hood estimator (MLE) of the latent network (under any of the above diffusion models) is equivalent
to a convex problem that can be efficiently solved.

Problem formulation: The cascade model. We start by first introducing the model of the diffusion
process. As the contagion spreads through the network, it leaves a trace that we call acascade.
Assume a population ofN nodes, and letA be theN×N weighted adjacency matrix of the network
that is unobserved and that we aim to infer. Each entry(i, j) of A models the conditional probability
of infection transmission:

Aij = P (nodei infects nodej | nodei is infected).
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The temporal properties of most types of cascades, especially disease spread, are governed by a
transmission (or incubation) period. The transmission time modelw(t) specifies how long it takes
for the infection to transmit from one node to another, and the recovery modelr(t) models the time
of how long a node is infected before it recovers. Thus, whenever some nodei, which was infected
at timeτi, infects another nodej, the time separating two infection times is sampled fromw(t), i.e.,
infection time of nodej is τj = τi+ t, wheret is distributed byw(t). Similarly, the duration of each
node’s infection is sampled fromr(t). Bothw(t) andr(t) are general probability distributions with
strictly nonnegative support.

A cascadec is initiated by randomly selecting a node to become infectedat time t = 0. Let τi
denote the time of infection of nodei. When nodei becomes infected, it infects each of its neighbors
independently in the network, with probabilities governedby A. Specifically, ifi becomes infected
andj is susceptible, thenj will become infected with probabilityAij . Once it has been determined
which of i’s neighbors will be infected, the infection time of each newly infected neighbor will
be the sum ofτi and an interval of time sampled fromw(t). The transmission time for each new
infection is sampled independently fromw(t).

Once a node becomes infected, depending on the model, different scenarios happen. In the SIS
model, nodei will become susceptible to infection again at timeτi + ri. On the other hand, under
the SIR model, nodei will recover and can never be infected again. Our work here mainly considers
the SI model, where nodes remain infected forever, i.e., it will never recover,ri = ∞. It is important
to note, however, that our approach can handle all of these models with almost no modification to
the algorithm.

For each cascadec, we then observe the node infection timesτci as well as the duration of infection,
but the source of each node’s infection remains hidden. The goal then is to, based on observed set
of cascade infection timesD, infer the weighted adjacency matrixA, whereAij models the edge
transmission probability.

Maximum Likelihood Formulation. Let D be the set of observed cascades. For each cascade
c, let τci be the time of infection for nodei. Note that if nodei did not get infected in cascadec,
thenτci = ∞. Also, letXc(t) denote the set of all nodes that are in an infected state at time t in
cascadec. We know the infection of each node was the result of an unknown, previously infected
node to which it is connected, so the component of the likelihood function for each infection will be
dependent on all previously infected nodes. Specifically, the likelihood function for a fixed givenA
is

L(A;D) =
∏

c∈D









∏

i;τc
i
<∞

P (i infected atτci |Xc(τ
c
i ))



 ·





∏

i;τc
i
=∞

P (i never infected|Xc(t)∀ t)









=
∏

c∈D









∏

i;τc
i
<∞



1−
∏

j;τj≤τi

(1− w(τci − τcj )Aji)







 ·





∏

i;τc
i
=∞

∏

j;τc
j
<∞

(1 −Aji)







 .

The likelihood function is composed of two terms. Consider some cascadec. First, for every node
i that got infected at timeτci we compute the probability that at least one other previously infected
node could have infected it. For every non-infected node, wecompute probability that no other
node ever infected it. Note that we assume that both the cascades and infections are conditionally
independent. Moreover, in the case of the SIS model each nodecan be infected multiple times
during a single cascade, so there will be multiple observed values for eachτci and the likelihood
function would have to include each infection time in the product sum. We omit this detail for the
sake of clarity.

Then the maximum likelihood estimate ofA is a solution tominA − log(L(A;D)) subject to the
constraints0 ≤ Aij ≤ 1 for eachi, j.

Since a node cannot infect itself, the diagonal ofA is strictly zero, leaving the optimization problem
with N(N − 1) variables. This makes scaling to large networks problematic. We can, however,
break this problem intoN independent subproblems, each with onlyN − 1 variables by observing
that the incoming edges to a node can be inferred independently of the incoming edges of any other
node. Note that there is no restriction on the structure ofA (for example, it is not in general a
stochastic matrix), so the columns ofA can be inferred independently.
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Let nodei be the current node of interest for which we would like to infer its incoming connections.
Then the MLE of theith column ofA (designatedA:,i) that models the strength ofi’s incoming
edges, is the solution tominA:,i

− log(Li(A:,i;D)), subject to the constraints0 ≤ Aji ≤ 1 for each
j, and where

Li(A:,i;D) =
∏

c∈D;τc
i
<∞



1−
∏

j;τj≤τi

(

1− w(τci − τcj )Aji

)



 ·
∏

c∈D;τc
i
=∞





∏

j∈c;τc
j
<∞

(1−Aji)



 .

Lastly, the number of variables can further be reduced by observing that if nodej is never infected
in the same cascade as nodei, then the MLE ofAji = 0, andAji can thus be excluded from the set
of variables. This dramatically reduces the number of variables as in practice the trueA does not
induce large cascades, causing the cascades to be sparse in the number of nodes they infect [14, 17].

Towards the convex problem. The Hessian of the log-likelihood/likelihood functions are indefinite
in general, and this could make finding the globally optimal MLE for A difficult. Here, we derive a
convex optimization problem that is equivalent to the aboveMLE problem. This not only guarantees
convergence to a globally optimal solution, but it also allows for the use of highly optimized convex
programming methods.

We begin with the problemmaxA:,i
Li(A;D) subject to0 ≤ Aji ≤ 1 for eachj. If we then make

the change of variablesBji = 1−Aji andγc = 1−
∏

j∈Xc(τc
i
)

(

1− w(τci − τcj )Aji

)

, the problem
then becomes

max
γc,B(:,i)

∏

c∈D;τc
i
<∞

γc ·
∏

c∈D;τc
i
=∞

∏

j∈c;τc
j
<∞

Bji

subject to

0 ≤ Bji ≤ 1 ∀ j

0 ≤ γc ≤ 1 ∀ c

γc +
∏

j∈Xc(τc
i
)

(

1− wc
j + wc

jBji

)

≤ 1 ∀ c.

where we use shorthand notationwc
j ≡ w(τci − τcj ) (note thati is fixed). Also, note that the last

constraint onγc is an inequality instead of an equality constraint. The objective function will strictly
increase when either increasingγc or Bji, so this inequality will always be a binding constraint
at the solution, i.e., the equality will always hold. The reason we use the inequality is that this
turns the constraint into an upper bound on a posynomial (assumingw(t) ≤ 1 ∀t). Furthermore,
with this change of variables the objective function is a monomial, and our problem satisfies all the
requirements for a geometric program. Now in order to convexify the geometric program, we apply
the change of variableŝγ = log(γ) andB̂ji = log(Bji), and take the reciprocal of the objective
function to turn it into a minimization problem. Finally, wetake the logarithm of the objective
function as well as the constraints, and we are left with the following convex optimization problem

min
γ̂c,B̂(:,i)

∑

c∈D;τc
i
<∞

−γ̂c−
∑

c∈D;τc
i
=∞

∑

j∈c;τc
j
<∞

B̂ji

subject to

B̂ji ≤ 0 ∀ j

γ̂c ≤ 0 ∀ c

log



exp γ̂c +
∏

j;τj≤τi

(

1− wc
j + wc

j exp B̂ji

)



 ≤ 0 ∀ c.

Network sparsity. In general, social networks are sparse in a sense that on average nodes are
connected to a constant number rather than a constant fraction of other nodes in the network. To en-
courage a sparse MLE solution, anl1 penalty term can be added to the original (pre-convexification)
log-likelihood function, making the objective function

− logLi(A:,i|D) + ρ

N
∑

j=1

|Aji|
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whereρ is the sparsity parameter. Experimentation has indicated that including this penalty function
dramatically increases the performance of the method; however, if we apply the same convexification
process to this new augmented objective function the resulting function is

∑

c∈D;tc
i
<∞

−γ̂c −
∑

c∈D;tc
i
=∞

∑

j∈c;tc
j
<∞

B̂ji − ρ

N
∑

j=1

exp B̂ji,

which is concave and makes the whole problem non-convex. Instead, we propose the use of the
penalty functionρ

∑N
j=1

1
1−Aji

. This penalty function still promotes a sparse solution, and even
though we no longer have a geometric program, we can convexify the objective function and so the
global convexity is preserved:

∑

c∈D;tc
i
<∞

−γ̂c −
∑

c∈D;tc
i
=∞

∑

j∈c;tc
j
<∞

B̂ji + ρ

N
∑

j=1

exp
(

−B̂ji

)

.

Implementation. We use the SNOPT7 library to solve the likelihood optimization. We break the
network inference down into a series of subproblems corresponding to the inference of the inbound
edges of each node. Special concern is needed for the sparsity penalty function. The presence of
the l1 penalty function makes the method extremely effective at predicting the presence of edges
in the network, but it has the effect of distorting the estimated edge transmission probabilities. To
correct for this, the inference problem is first solved with the l1 penalty. Of the resulting solution,
the edge transmission probabilities that have been set zeroare then restricted to remain at zero, and
the problem is then relaxed with the sparsity parameter set to ρ = 0. This preserves the precision
and recall of the edge location prediction of the algorithm while still generating accurate edge trans-
mission probability predictions. Moreover, with the implementation described above, most 1000
node networks can be inferred inside of 10 minutes, running on a laptop. A freely-distributable (but
non-scalable) MATLAB implementation can be found at http://snap.stanford.edu/connie.

3 Experiments

In this section, we evaluate our network inference method, which we will refer to asConNIe
(Convex Network Inference) on a range of datasets and network topologies. This includes both
synthetically generated networks as well as real social networks, and both simulated and real dif-
fusion data. In our experiments we focus on the SI model as it best applies to the real data we
use.

3.1 Synthetic data

Each of the synthetic data experiments begins with the construction of the network. We ran our
algorithm on a directed scale-free network constructed using the preferential attachment model [3],
and also on a Erdős-Rényi random graph. Both networks have512 nodes and 1024 edges. In each
case, the networks were constructed as unweighted graphs, and then each edge(i, j) was assigned a
uniformly random transmission probabilityAij between 0.05 and 1.

Transmission time model. In all of our experiments, we assume that the modelw(t) of trans-
mission times is known. We experimented with various realistic models for the transmission
time [2]: exponential (w(t) = αe−αt), power-law (w(t) ∝ (α − 1)t−α) and the Weibull distri-

bution
(

w(t) = k
α

(

x
α

)k−1
e−(

x
α)

k
)

as it has been argued that Weibull distribution ofα = 9.5 and

k = 2.3 best describes the propagation model of the SARS outbreak inHong Kong [26]. Notice that
our model does not make any assumption about the structure ofw(t). For example, our approach
can handle the exponential and power-law that both have a mode at 0 and monotonically decrease in
t, as well as the Weibull distribution which can have a mode at any value.

We generate cascades by first selecting a random starting node of the infection. From there, the
infection is propagated to other nodes until no new infections occur: an infected nodei transmits
the infection to uninfectedj with probabilityAij , and if transmission occurs then the propagation
time t is sampled according to the distributionw(t). The cascade is then given to the algorithm in
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Figure 1: (a)-(c): Precision and recall of ConNIe compared to NetInf for the SI diffusion model, run
on a synthetical scale-free graph with synthetically generated cascades. Transmission time models
used are power law (PL), exponential (Exp), and Weibull (WB). All networks contain 512 nodes,
and the weight of each edge was sampled from a uniform random distribution between 0 and 1. For
the MLE method, the PR curves were generated by varying the sparsity parameterρ between 0 and
1000. (d)-(f): Mean square error of the edge transmission probability of the two algorithms. The
dotted green line indicates the number of edges in the true network.

the form of a series of timestamps corresponding to when eachnode was infected. Not to make the
problem too easy we generate enough cascades so that99% of all edges of the network transmitted
at least one infection. The number of cascades needed for this depends on the underlying network.
Overall, we generate on the same order of cascades as there are nodes in the network.

Quantifying performance. To assess the performance of ConNIe, we consider both the accuracy of
the edge prediction, as well as the accuracy of edge transmission probability. For edge prediction, we
recorded the precision and recall of the algorithm. We simply vary the value ofρ to obtain networks
on different numbers of edges and then for each such inferrednetwork we compute precision (the
number of correctly inferred edges divided by the total number of inferred edges), and recall (the
number of correctly inferred edges divided by the total number of edges in the unobserved network).
For large values ofρ inferred networks have high precision but low recall, whilefor low values ofρ
the precision will be poor but the recall will be high.

To assess the accuracy of the estimated edge transmission probabilitiesAij , we compute the mean-
square error (MSE). The MSE is taken over the union of potential edge positions (node pairs) where
there is an edge in the latent network, and the edge positionsin which the algorithm has predicted
the presence of an edge. For potential edge locations with noedge present, the weight is set to 0.

Comparison to other methods. We compare our approach to NetInf which is an iterative algorithm
based on submodular function optimization [10]. NetInf first reconstructs the most likely structure of
each cascade, and then based on this reconstruction, it selects the next most likely edge of the social
network. The algorithm assumes that the weights of all edgeshave the same constant value (i.e.,
all nonzeroAij have the same value). To apply this algorithm to the problem we are considering,
we simply first use the NetInf to infer the network structure and then estimate the edge transmission
probabilitiesAij by simply counting the fraction of times it was predicted that a cascade propagated
along the edge(i, j).

Figure 1 shows the precision-recall curves for the scale-free synthetic network with the three trans-
mission modelsw(t). The results for the Erdős-Rényi random graph were omitted due to space
restrictions, but they were very similar. Notice our approach achieves the break even point (point
where precision equals recall) well above 0.85. This is a notable result: we were especially careful
not to generate too many cascades, since more cascades mean more evidence that makes the problem
easier. Also in Figure 1 we plot the Mean Squared Error of the estimates of the edge transmission
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Figure 2: (a)-(b): Precision-Recall break-even point for the two methods as a function of the num-
ber of observed cascades, with a power law (PL) and exponential (EXP) transmission distribution.
(c)-(d): Mean Square Error at the PR-Break-even point as a function of the number of observed
cascades. (e) PR Break-even point versus the perturbation size applied to the infection times.

probabilityAij as a function of the number of edges in the inferred network. The green vertical
line indicates the point where the inferred network contains the same number of edges as the real
network. Notice that ConNIe estimates the edge weights witherror less than 0.05, which is more
than a factor of two smaller than the error of the NetInf algorithm. This, of course, is expected as
NetInf assumes the network edge weights are homogeneous, which is not the case.

We also tested the robustness of our algorithm. Figure 2 shows the accuracy (Precision-Recall
break-even point as well as edge MSE) as a function of the number of observed diffusions, as well
as the effect of noise in the infection times. Noise was addedto the cascades by adding indepen-
dent normally distribution perturbations to each of the observed infection times, and the noise to
signal ratio was calculated as the average perturbation over the average infection transmission time.
The plot shows that ConNIe is robust against such perturbations, as it can still accurately infer the
network with noise to signal ratios as high as 0.4.

3.2 Experiments on Real data

Real social networks. We also experiment with three real-world networks. First,we consider a
small collaboration network between 379 scientists doing research on networks. Second, we ex-
periment on a real email social network of 593 nodes and 2824 edges that is based on the email
communication in a small European research institute.

For the edges in the collaboration network we simply randomly assigned their edge transmission
probabilities. For the email network, the number of emails sent from a personi to a personj
indicates the connection strength. Let there be a rumor cascading through a network, and assume
the probability that any one email contains this rumor is fixed at ξ. Then if personi sent personj
mij emails, the probability ofi infecting j with the rumor isAij = 1 − (1 − φ)(1 − ξ)mij . The
parameterφ simply enforces a minimum edge weight between the pairs who have exchanged least
one email. We setξ = .001 andφ = .05.

For the email network we generated cascades using the power-law transmission time model, while
for the collaboration network we used the Weibull distribution for sampling transmission times. We
then ran the network inference on cascades, and Figure 3 gives the results. Similarly as with syn-
thetic networks our approach achieves break even points of around 0.95 on both datasets. Moreover,
the edge transmission probability estimation error is lessthan 0.03. This is ideal: our method is ca-
pable of near perfect recovery of the underlying social network over which a relatively small number
of contagions diffused.

7



0 0.5 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on
 

 

ConNIe
Netinf

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re

ci
si

on

 

 

ConNIe
Netinf

2000 2500 3000 3500
0

0.01

0.02

0.03

0.04

Num. of Edges

M
S

E

 

 

ConNIe
Netinf

600 700 800 900 1000
0.03

0.035

0.04

0.045

0.05

0.055

Num. of Edges

M
S

E

 

 
ConNIe
Netinf

0 0.2 0.4 0.6 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

 

 

ConNIe
Netinf

Network estimation Edge weight error Recommendation network

Figure 3: The precision-recall curve of the network estimation and the mean-square error (left) of
predicted transmission probabilities as a function of number edges being predicted (middle). Top
row shows the results for the email network, and the bottom row for the collaboration network.
(Right) Precision-recall curve on inferring a real recommendation network based on real product
recommendation data.

Real social networks and real cascades. Last, we investigate a large person-to-person recommen-
dation network, consisting of four million people who made sixteen million recommendations on
half a million products [14]. People generate cascades as follows: a node (person)v buys productp
at timet, and then recommends it to nodes{w1, . . . , wn}. These nodeswi can then buy the product
(with the option to recommend it to others). We trace cascades of purchases on a small subset of the
data. We consider a recommendation network of 275 users and 1522 edges and a set of 5,767 rec-
ommendations on 625 different products between a set of these users. Since the edge transmission
model is unknown we model it with a power-law distribution with parameterα = 2.

We present the results in rightmost plot of Figure 3. Our approach is able to recover the underlying
social network surprisingly accurately. The break even point of our approach is 0.74 while NetInf
scores 0.55. Moreover, we also note that our approach took less than 20 seconds to infer this net-
work. Since there are no ground truth edge transmission probabilities for us to compare against, we
can not compute the error of edge weight estimation.

4 Conclusion

We have presented a general solution to the problem of inferring latent social networks from the
network diffusion data. We formulated a maximum likelihoodproblem and by solving an equivalent
convex problem, we can guarantee the optimality of the solution. Furthermore, thel1 regularization
can be used to enforce a sparse solution while still preserving convexity. We evaluated our algo-
rithm on a wide set of synthetic and real-world networks withseveral different cascade propagation
models. We found our method to be more general and robust thanthe competing approaches. Ex-
periments reveal that our method near-perfectly recovers the underlying network structure as well as
the parameters of the edge transmission model. Moreover, our approach scales well as it can infer
optimal networks on thousand nodes in a matter of minutes.

One possible venue for future work is to also include learning the parameters of the underlying model
of diffusion timesw(t). It would be fruitful to apply our approach to other datasets, like the spread
of a news story breaking across the blogosphere, a SARS outbreak, or a new marketing campaign
on a social networking website, and to extend it to additional models of diffusion. By inferring and
modeling the structure of such latent social networks, we can gain insight into positions and roles
various nodes play in the diffusion process and assess the range of influence of nodes in the network.

Acknowledgements. This research was supported in part by NSF grants CNS-1010921, IIS-
1016909, LLNL grant B590105, the Albert Yu and Mary BechmannFoundation, IBM, Lightspeed,
Microsoft and Yahoo.

8



References

[1] A. Ahmed and E. Xing. Recovering time-varying networks of dependencies in social and
biological studies.PNAS, 106(29):11878, 2009.

[2] N. T. J. Bailey.The Mathematical Theory of Infectious Diseases and its Applications. Hafner
Press, 2nd edition, 1975.

[3] A.-L. Barabási and R. Albert. Emergence of scaling in random networks.Science, 1999.

[4] M. Choudhury, W. A. Mason, J. M. Hofman, and D. J. Watts. Inferring relevant social networks
from interpersonal communication. InWWW ’10, pages 301–310, 2010.

[5] N. Eagle, A. S. Pentland, and D. Lazer. Inferring friendship network structure by using mobile
phone data.PNAS, 106(36):15274–15278, 2009.

[6] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with the graph-
ical lasso.Biostat, 9(3):432–441, 2008.

[7] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models of link struc-
ture. JMLR, 3:707, 2003.

[8] Z. Ghahramani. Learning dynamic Bayesian networks.Adaptive Processing of Sequences and
Data Structures, page 168, 1998.

[9] L. Giot, J. Bader, C. Brouwer, A. Chaudhuri, B. Kuang, Y. Li, Y. Hao, C. Ooi, B. Godwin,
et al. A protein interaction map of Drosophila melanogaster. Science, 302(5651):1727, 2003.

[10] M. Gomez-Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion and influ-
ence. InKDD ’10, 2010.

[11] S. Hill, F. Provost, and C. Volinsky. Network-based marketing: Identifying likely adopters via
consumer networks.Statistical Science, 21(2):256–276, 2006.

[12] R. Jansen, H. Yu, D. Greenbaum, et al. A bayesian networks approach for predicting protein-
protein interactions from genomic data.Science, 302(5644):449–453, October 2003.

[13] G. Kossinets and D. J. Watts. Empirical analysis of an evolving social network.Science, 2006.

[14] J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics of viral marketing.ACM
TWEB, 1(1):2, 2007.

[15] J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dynamics of the news
cycle. InKDD ’09, pages 497–506, 2009.

[16] J. Leskovec and E. Horvitz. Planetary-scale views on a large instant-messaging network. In
WWW ’08, 2008.

[17] J. Leskovec, A. Singh, and J. M. Kleinberg. Patterns of influence in a recommendation network.
In PAKDD ’06, pages 380–389, 2006.

[18] D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. InCIKM
’03, pages 556–559, 2003.

[19] N. Meinshausen and P. Buehlmann. High-dimensional graphs and variable selection with the
lasso.The Annals of Statistics, pages 1436–1462, 2006.

[20] M. Middendorf, E. Ziv, and C. Wiggins. Inferring network mechanisms: the Drosophila
melanogaster protein interaction network.PNAS, 102(9):3192, 2005.

[21] M. Schmidt, A. Niculescu-Mizil, and K. Murphy. Learning graphical model structure using
l1-regularization paths. InAAAI, volume 22, page 1278, 2007.

[22] L. Song, M. Kolar, and E. Xing. Time-varying dynamic bayesian networks. InNIPS ’09.

[23] B. Taskar, M. F. Wong, P. Abbeel, and D. Koller. Link prediction in relational data.NIPS ’03.

[24] J. Vert and Y. Yamanishi. Supervised graph inference.NIPS ’05.

[25] M. J. Wainwright, P. Ravikumar, and J. D. Lafferty. High-dimensional graphical model selec-
tion usingℓ1-regularized logistic regression. InPNAS, 2006.

[26] J. Wallinga and P. Teunis. Different epidemic curves for severe acute respiratory syndrome
reveal similar impacts of control measures.Amer. J. of Epidemiology, 160(6):509–516, 2004.

[27] S. Wasserman and K. Faust.Social Network Analysis : Methods and Applications. Cambridge
University Press, 1994.

9


