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Abstract

Algorithms based on iterative local approximations présepractical approach
to optimal control in robotic systems. However, they geligraquire the tem-
poral parameters (for e.g. the movement duration or the puoiat of reaching
an intermediate goal) to be specifiadoriori. Here, we present a methodology
that is capable of jointly optimizing the temporal paramgti@ addition to the
control command profiles. The presented approach is basadBagesian canon-
ical time formulation of the optimal control problem, withe temporal mapping
from canonical to real time parametrised by an additionaticd variable. An ap-
proximate EM algorithm is derived that efficiently optimizboth the movement
duration and control commands offering, for the first timeyactical approach to
tackling generic via point problems in a systematic way unide optimal control
framework. The proposed approach, which is applicabledaatslwith non-linear
dynamics as well as arbitrary state dependent and quadmattool costs, is eval-
uated on realistic simulations of a redundant robotic plant

1 Introduction

Control of sensorimotor systems, artificial or biologidaljnherently both a spatial and temporal
process. Not only do we have to specify where the plant hasoerto but also when it reaches
that position. In some control schemes, the temporal comiis implicit; for example, with a
PID controller, movement duration results from the appiaraof the feedback loop, while in other
cases it is explicit, like for example in finite or recedingizon optimal control approaches where
the time horizon is set explicitly as a parameter of the pob]8, 13].

Although control based on an optimality criterion is cemtgiattractive, practical approaches for
stochastic systems are currently limited to the finite ramif, 16] or first exit time formulation [14,
17]. The former does not optimize temporal aspects of theam®nt, i.e., duration or the time when
costs for specific sub goals of the problem are incurred,rasgyithem as givea priori. However,
how should one choose these temporal parameters? Thisaqusston trivial and important even
while considering a simple reaching problem. The solutienegally employed in practice is to use
a apriori fixed duration, chosen experimentally. This casulein not reaching the goal, having to
use unrealistic range of control commands or excessivetéfudsdurations for short distance tasks.
The alternative first exit time formulation, on the other Hagither assumes specific exit states in the
cost function and computes the shortest duration trajgetbich fulfils the task or assumes a time
stationary task cost function and computes the control vhimimizes the joint cost of movement
duration and task cost [17, 1, 14]. This formalism is thusyatitectly applicable to tasks which do
not require sequential achievement of multiple goals. @dih this limitation could be overcome
by chaining together individual time optimal single goahtollers, such a sequential approach has
several drawbacks. First, if we are interested in placingst on overall movement duration, we are
restricted to linear costs if we wish to remain time optimalsecond more important flaw is that



future goals should influence our control even before we hahéeved the previous goal, a problem
which we highlight during our comparative simulation sesli

A wide variety of successful approaches to address stach@gsdimal control problems have been
described in the literature [6, 2, 7]. The approach we preisere builds on a class of approximate
stochastic optimal control methods which have been suftdigsssed in the domain of robotic ma-
nipulators and in particular, the iLQG [9] algorithm used 3], and theApproximate Inference
Control (AICO) algorithm [16]. These approaches, as alluded toierarre finite horizon formu-
lations and consequently require the temporal structuth@fpproblem to be fixea priori. This
requirement is a direct consequence of a fixed length digat&in of the continuous problem and
the structure of the temporally non-stationary cost fusttised, which binds incurrence of goal
related costs to specific (discretised) time points. Thelfumental idea proposed here is to refor-
mulate the problem in canonical time and alternately omnthe temporal and spatial trajectories.
We implement this general approach in the context of the apiprate inference formulation of
AICO, leading to arExpectation Maximisatio(EM) algorithm where the E-Step reduces to the
standard inference control problem. It is worth noting tae to the similarities between AICO,
iLQG and other algorithms, e.g., DDP [6], the same princiahel approach should be applicable
more generally. The proposed approach provides an extetwsithe time scaling approach [12, 3]
by considering the scaling for a complete controlled systextiher then a single trajectory. Addi-
tionally, it also extends previous applications of ExpgotaMaximisation algorithms for system
identification of dynamical systems, e.g. [4, 5], which dat oonsider the temporal aspects.

2 Preliminaries

Let us consider a process with statec R”+= and controlai € RP+ which is of the form
dx = (F(x) + Bu)dt +d¢  (d¢d¢") = Q (1)

with non-linear state dependent dynami€scontrol matrixB and Brownian motiorg, and define
a cost of the form

T
L(x(-),u(")) =/0 [C(x(t),t) +u(t) Hu(t)] dt, )

with arbitrary state dependent castand quadratic control cost. Note in particular tfat the
trajectory length, is assumed to be known. The closed lamghsistic optimal control problem is to
find the policyr : x(t) — u(t) given by

I arg7{ninEx7u|,,7x(0) {L(x(-),u(-))} . 3)

In practice, the continuous time problem is discretized mfixed number of{ steps of lengti\,,
leading to the discreet problem with dynamics
P(Xpt1 Xk, ug) = N (xpa1|xx + (F(x) + Bu)Ag, QAy) , (4)
where we useV(-|a, A) to denote a Gaussian distribution with meaand covariance!, and cost
K-1

L(x1.x,01:x) = Cr(XK) + Z [ACr(xk) + u—,E(HAt)uk] ) (5)
k=0
Note that here we used the Euler Forward Method as the dizatieh scheme, which will prove
advantageous if a linear cost on the movement duration iseshdeading to closed form solution

for certain optimization problems. However, in other casdiernative discretisation methods could
be used and indeed, be preferable.

2.1 Approximatelnference Control

Recently, it has been suggested to consider a Bayesiaemteapproach [16] to (discreet) optimal
control problems formalised in Section 2. With the probiakig trajectory model in (4) as a prior,
an auxiliary (binary) dynamic random task variabje with the associated likelihood

P(ri, = 1%k, up) = exp {—(ACr(zr) + u,(HA)ug)} (6)
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Figure 1. The graphical models f¢a) standard inference control ar{d) the AICO-T model
with canonical time. Circle and square nodes indicate oon and discreet variables respectively.
Shaded nodes are observed.

(b)

is introduced, i.e., we interpret the cost as a negativeiladihood of task fulfilment. Inference
control consists of computing the posterior conditionedtloe observationy.x = 1 within the
resulting model (illustrated as a graphical model in Figa)),(and from it obtaining thenaximum
a posteriori(MAP) controls. For cases, where the process and cost aarlend quadratic im
respectively, the controls can be marginalised in closeohfand one is left with the problem of
computing the posterior

P(xo.|roc = 1) = [ [N ok i + F(xk) A, WA) exp(—ACr () , ()
k

with W := Q + BH!BT.

As this posterior is in general not tractable, the AICO [1igjegithm computes a Gaussian approxi-
mation to the true posterior using an approximate messaggrpapproach similar in nature to EP
(details are given in supplementary material). The algaribas been shown to have competitive
performance when compared to iLQG [16].

3 Temporal Optimization for Optimal Control

Often the state dependent cost taf(x, ¢) in (2) can be split into a set of costs which are incurred
only at specific times: also referred to as goals, and othbishnare independent of time, that is

N
Clx,1) = T(x) + D 6,3, V(x) - ®)
n=1

Classically{,, refer toreal timeand are fixed. For instance, in a reaching movement, geperatist
that is a function of the distance to the target is incurreg anhthe final timel” while collision costs
are independent of time and incurred throughout the movénherder to allow the time point at
which the goals are achieved to be influenced by the optimizatve will re-frame the goal driven
part of the problem in @anonical timeand in addition to optimizing the controls, also optimize th
mapping from canonical to real time.

Specifically, we introduce into the problem defined by (1) & % canonical time variabte with
the associated mapping

Tzﬁ(t):/o %ds, o(-) >0, ©)

with 6 as an additional control. We also reformulate the cost imgeof the timer as

N N
Lx(),u(),00) = 3 Valx(571 () + / T(0(s))ds
n=1

B~ (FN)
+ / 7 (x(t)) + u(t) Hu()] dt ,  (10)
0

INote that ag3 is strictly monotonic and increasing, the inverse functibrt exists



with 7" an additional cost term over the contréland ther;. ; € R assumed as given. Based on the
last assumption, we are still required to choose the timetatiwhich individual goals are achieved
and how long the movement lasts; however, this is now dorering of the canonical time and since
by controllingf, we can change the real time point at which the cost is induthe exact choices
for 71.,y are relatively unimportant. The real time behaviour is haspecified by the additional
cost termZ over the new control8 which we have introduced. Note that in the special case where

7T is linear, we havef;~ 7(0,)ds = T(T), i.e.,T is equivalent to a cost on the total movement
duration. Although here we will stick to the linear case, firteposed approach is also applicable
to non-linear duration costs. We briefly note the similadfythe formulation to the canonical time
formulation of [11] used in an imitation learning setting.

We now discretize the augmented system in canonical tirfeavixed number of steps. Making
the arbitrary choice of a step length of 14rinduces, by (9), a sequence of steps ith length?
A = 0;. Using this time step sequence and (4) we can now obtain eedisprocess in terms of
the canonical time with an explicit dependencégn . Discretization of the cost in (10) gives

K-1

N
L(X1.5, 01K, 00.k-1) = Z Vi(xy, ) + [T (0r) + T (x1)0 + uHOpuy] (11)
n=1 k=0

for some giverfcl;N. We now have a new formulation of the optimal control probl&iat no longer
of the form of equations (4) & (5), e.g. (11) is no longer quairin the controls a8 is a control.

Proceeding as for standard inference control and treatiagcbst (11) as a neg-log likelihood of
an auxiliary binary dynamic random variable, we obtain thieience problem illustrated by the
Bayesian network in Figure 1(b). With contralsmarginalised, our aim is now to find the posterior
P(xo0.x,00.x—1|ro.x = 1). Unfortunately, this problem is intractable even for thagiest case, e.qg.
LQG with linear duration cost. However, observing that foreg 0;'s, the problem reduces to the
standard case of Section 2.1 suggest restricting ourselfiesling the MAP estimate fdy. x 1 and
the associated posteriB(xo;ng{II‘%El, ro.x = 1) using an EM algorithm. The solution is obtained
by iterating the E- & M-Steps (see below) until the have converged; we call this algorithhCO-

T to reflect the temporal aspect of the optimization.

31 E-Step

In general, the aim of the E-Step is to calculate the postesier the unobserved variables, i.e. the
trajectories, given the current parameter values, i.eftise

q'(x0.1c) = P(x0.x|m0:c = 1,005 _1) - (12)

However, as will be shown below we actually only require thpeztationgx,x;, ) and(xxx;, ;)
during the M-Step. As these are in general not tractable,omepute a Gaussian approximation to
the posterior, following an approximate message passipgpagh with linear and quadratic approx-
imations to the dynamics and cost respectively [16] (foadetrefer to supplementary material).

32 M-Step
In the M-Step, we solve ‘
o1 = argmax Q(bo: k1105 1) » (13)
0:K—1
with
Q(Oo:k—1100.5c—1) = (log P(x0., To:c = 1|00:5-1))
K—1 K—1
= (log P(xpt1|xk, Ok)) — [7 (0k) + 0k (T (xx))] + constant ,
k=0 k=1
(14)

where(-) denotes the expectation with respect to the distributidcudated in the E-Step, i.e., the
posteriorg* (xo. ) Over trajectories given the previous parameter values.réfeired expectations,

2under the assumption of constdat) during each step



(J(xx)) and
(108 P (1, 1)) = 22 Tog Wil = 3 (01— ) "W G = Fr)))  (15)

with ]?(xk) = xy, + F(xx)0k ande = 6, W, are in general not tractable. Therefore, we take
approximations

1 .
F(xp) ~ap +Apx, and J(xp) ~ 5x;;lkxk — Xk, (16)

choosing the mean af (x;,) as the point of approximation, consistent with the equiveégproxi-
mations made in the E-Step. Under these approximationanibe shown that, up to additive terms
independent of,

K-1

1
Qs 1) =~ 3 [—1og|wk|+7<0k>+ Te(W; (xs1%s, )
k=0

_ 1 ~ o1 T 1%
— Tr(AL W (xkp1x)) + 5 (AW, AL (xixq)) + a Wi Ay (x)
1+ . 1 .
+ ia—',;Wk 1ak + 0y, [5 Tr(Jg <xkx—',;> —Jk <Xk>} } ,

with &), = 0.ay, A, =1+0,A, and taking partial derivatives leads to

9] 1 D?
% S0 T (W (i) — 2 (k) + () — 220

+a,Wla, +2a, WA, (x3)  (17)

- 5 Tr(AW ™ 1AT<X xk>) +2 — 47
[

ra

+ TI'(Jk <ka—£>) — 2jk <Xk> ] .

In the general case, we can now use gradient ascent to imprevs. However, in the specific
case wherd is a linear function of), we note that) = 309 is a quadratic irf, L and the unique
extremum under the constraifj > 0 can be found analy‘ucally

3.3 Practical Remarks

The performance of the algorithm can be greatly enhancedsimguhe result of the previous E-
Step as initialisation for the next one. As this is likely ®iear the optimum with the new temporal
trajectory, AICO converges within only a few iterations. ditlonally, in practise it is often sufficient
to restrict thef,’s between goals to be constant, which is easily achieve2liasa sum over thé'’s.

The proposed algorithms leads to a variation of discratimagtep length which can be a problem.
For one, the approximation error increases with the stegtlewhich may lead to wrong results. On
the other hand, the algorithm may lead to control frequenaikich are not achievable in practice.
In general, a fixed control signal frequency may be presdrtibethe hardware system. In practice,
f’s can be kept in a prescribed range by adjusting the numbédisafetization stepg after an
M-Step.

Finally, although we have chosen to express the time costring of a function of thé’s, often it
may be desirable to consider a cost directly over the durdfioNoting thatT' = > 6y, all that is

required is to replacéZ with 2Z2=% in (17).

4 Experiments

The proposed algorithm was evaluated in simulation. As &hant, we used a kinematic simula-
tion of a 2 degrees of freedom (DOF) planar arm, consistingvoflinks of equal length. The state
of the plant is given by = (q, q), with q € R? the joint angles and € R? associated angular
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Figure 2: Temporal scaling behaviour using AICO( & b) Effect of changing time-cost weight
«, (effectively the ratio between reaching cost and duratiost) on(a) duration andb) reaching
cost (control + state costjc) Comparison of reaching costs (control + error cost) for AKC@nd
a fixed duration approach, i.e. AlICO.

velocities. The controla € R? are the joint space accelerations. We also added some &d naih
small diagonal covariance.

For all experiments, we used a quadratic control cost andttiie dependent cost term:

V(xk) = Z Oy, (D3(x1) = ¥7) Ni(i(xx) = ¥7) (18)

for some giverk; and employed a diagonal weight matrix while y represented the desired state
in task space. For point targets, the task space mappingis= (z,vy,,7)’, i.e., the map from

x to the vector of end point positions and velocities in taskcgpcoordinates. The time cost was
linear, that is7 (0) = af.

4.1 Variable Distance Reaching Task

In order to evaluate the behaviour of AICO-T we applied it treaching task with varying start-
target distance. Specifically, for a fixed start point we édeed a series of targets lying equally
spaced along a line in task space. It should be noted thatugjththe targets are equally spaced
in task space and results are shown with respect to moverigtahde in task space, the distances
in joint space scale non linearly. The state cost (18) caethia single term incurred at the final
discrete step witlh = 106 - T and the control cost were given &y = 10* - 1. Fig. 2(a & b) shows
the movement duration< 3" 6;) and standard reaching céébr different temporal-cost parameters
a (we usecdy = 2-107), demonstrating that AICO-T successfully trades-off trevement duration
and standard reaching cost for varying movement distariodsig. 2(c), we compare the reaching
costs of AICO-T with those obtained with a fixed duration aggmh, in this case AICO. Note that
although with a fixed, long duration (e.g., AICO with durati®=0.41) the control and error costs
are reduced for short movements, these movements nedgbsae up todx longer durations than
those obtained with AICO-T. For example for a movement distaof 0.2 application of AICO-T
results in a optimised movement duration of 0.07 (cf. Fig)R(making the fixed time approach
impractical when temporal costs are considered. Choosémg# duration on the other hand (AICO
(T=0.07)) leads to significantly worse costs for long movatee We further emphasis that the
fixed durations used in this comparison were chosen postyegioiting the durations suggested
by AICO-T in absence of this, there would have been no prakti@y of choosing them apart
from experimentation. Furthermore, we would like to highili that, although the results suggests a
simple scaling of duration with movement distance, in €rgtl environments and plants with more
complex forward kinematics, an efficient decision on the eroent duration cannot be based only
on task space distance.

4.2 ViaPoint Reaching Tasks

We also evaluated the proposed algorithm in a more compkepeint task. The task requires the
end-effector to reach to a target, having passed at some thoough a given second target, the

3n.b. thestandard reaching coss the sum of control costs and cost on the endpoint errohawittaking
duration into account, i.e., (11) without tH&(9) term.
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Figure 3: Comparision of AICO-T (solid) to the common modejl approach, using AICO,
(dashed) with fixed times on a via point tasf@) End point task space trajectories for two dif-
ferent via points (circles) obtained for a fixed start poimiafigle). (b) The corresponding joint
space trajectorieqc) Movement durations and reaching costs (control + errorsydsdm 10 ran-
dom start points. The proportion of the movement duraticensibefore the via point is shown in
light gray (mean in the AICO-T case).

via point. This task is of interest as it can be seen as anaaiistn of a diverse range of complex
sequential tasks that requires one to achieve a series g@gaskb in order to reach a final goal. This
task has also seen some interest in the literature on mgadaiimuman movement using the optimal
control framework, e.g., [15]. Here the common approacloistioose the time point at which
one passes the via point such as to divide the movement duoiiatthe same ratio as the distances
between the start point, via point and end target. This reguin the one hand prior knowledge of
these movement distances and on the other, makes the ingsiétimption that the two movements
are in some sense independent.

In a first experiment, we demonstrate the ability of our apptoto solve such sequential problems,
adjusting movement durations between sub goals in a ptettipanner, and show that it improves
upon the standard modelling approach. Specifically, weyaflLO-T to the two via point problems
illustrated in Fig. 3(a) with randomised start stdtelSor comparison, we follow the standard mod-
eling approach and apply AICO to compute the controller. @&imchoose the movement duration
for the standard case post hoc to coincide with the mean meweduration obtained with AICO-T
for each of the individual via point tasks. Each task is egpeel using a cost function consisting of
two point target cost terms. Specifically, (18) takes thenfor

V(x1) = G s (6(xk) = ¥5) Ao (9(x) = ¥3) + Okmrc (S(31) — ¥2) Ae(o(xr) — v2) . (19)

with K the number of discrete steps and diagonal matritgs= diag(Apos, Apos,0,0), A =
diag(Apos, Aposs Avels Avet ), Whered,,s = 10° & A,e; = 107 and vectoryy? = (+,-,0,0)7, y* =
(-,-,0,0)" desired states for individual via point and target, respelst Note that the cost function
does not penalise velocity at the via point but encouragesttipping at the target. While admittedly
the choice of incurring the via point cost at the middle of thevement %) is likely to be a sub-
optimal choice for the standard approach, one has to cartidein more complex task spaces, the
relative ratio of movement distances may not be easily adoesand one may have to resort to the
most intuitive choice for the uninformed case as we have thene. Note that although for AICO-T
this cost is incurred at the same discrete step, we allbefore and after the via point to differ, but
constrain them to be constant throughout each part of theememnt, hence, allowing the cost to be
incurred at an arbitrary pointin real time. We sampled thigghposition of each jointindependently
from a Gaussian distribution with a variance3st In Fig. 3(a&b), we shownaximum a posteriori
(MAP) trajectories in task space and joint space for colgrsicomputed for the mean initial state.
Interestingly, although the end point trajectory for thear via point produced by AICO-T may
look sub-optimal than that produced by the standard AIC@ritlygm, closer examination of the
joint space trajectories reveal that our approach resultadre efficient actuation trajectories. In
Fig. 3(c), we illustrate the resulting average movemenations and costs of the mean trajectories.
As can be seen, AICO-T results in the expected passing tiorethé two via points, i.e. early
vs. late in the movement for the near and far via point, rethpedg. This directly leads to a lower
incurred cost compared to un-optimised movement durations

“For the sake of clarity, Fig. 3(a&b) show MAP trajectoriesoftrollers computed for the mean start state.
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Figure 4: Joint (solid) vs. sequential (dashed) optimisatising AICO-T for a sequential (via
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The movement durations and reaching costs (control + east) dor 10 random start points. The
mean proportion of the movement duration spend before thpaeint is shown in light gray.

In order to highlight the shortcomings of sequential timéiropl control, next we compare plan-
ning a complete movement over sequential goals to plannsegiaence of individual movements.
Specifically, using AICO-T, we compare planning the whole point movementgint planne to
planning a movement from the start to the via point followgdalsecond movement from the end
point of the first movement (n.b. not from the via point) to #rel target¢equential planngr The
joint planner used the same cost function as the previousrewpnt. For the sequential planner,
each of the two sub-trajectories had half the number of disdime steps of the joint planner and
the cost functions were given by appropriately splitting)(1.e.,

V() = G s (d(xk) —y7) Ao (0(xi)—y7)  and V2(xx) = 8 s (6(xr) —y2) Ae(P(x1)—¥2) |

with A, Ac,y?, ¥ as for (19). The start states were sampled according to gtelition used in
the last experiment and in Fig. 4(a&b), we plot the MAP trggeies for the mean start state, in task
as well as joint space. The results illustrate that seqalepitinning leads to sub-optimal results as
it does not take future goals into consideration. This ledidsctly to a higher cost (c.f. Fig. 4(c)),
calculated from trials with randomised start state. Oneukhbowever note that this effect would
be less pronounced if the cost required stopping at the gt s it is the velocity away from the
end target which is the main problem for the sequential @ann

5 Conclusion

The contribution of this paper is a novel method for jointjytimizing a movement trajectory and

its time evolution (temporal scale and duration) in the k&stic optimal control framework. As a

special case, this solves the problem of an unknown goatwiand the problem of trajectory op-

timization through via points when the timing of intermediaonstraints is unknown and subject to
optimization. Both cases are of high relevance in practimadbtic applications where pre-specifying
a goal horizon by hand is common practice but typically Igaksification.

The method was derived in the form of an Expectation-Maxation algorithm where the E-step ad-
dresses the stochastic optimal control problem reforredlats an inference problem and the M-step
re-adapts the time evolution of the trajectory. In prineighe proposed framework can be applied
to extend any algorithm that — directly or indirectly — prdgs us with an approximate trajectory
posterior in each iteration. AICO [16] does so directly imts of a Gaussian approximation; simi-
larly, the local LQG solution implicit in iLQG [9] can, withttle extra computational cost, be used
to compute a Gaussian posterior over trajectories. Forigfgos like DDP [6], which do not lead to
an LQG approximation, we can employ the Laplace method tainl@aussian posteriors or adjust
the M-Step for the non-Gaussian posterior. We demonsttagdlgorithm on a standard reaching
task with and without via points. In particular, in the viaipiocase, it becomes obvious that fixed
horizon methods and sequenced first exit time methods cdimdatqually efficient motions as the
proposed method.
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