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Abstract

This supplementary material contains the proof for Theorem 2.2 and a sketch of the
proof of Theorem 2.3 of the main paper.

A Notation

We follow the notation used in the main part, in particular the operators Tn, T ∗n , T, T ∗ defined in Section
4.1, and we recall that Sn := T ∗nTn; S = T ∗T ; Kn = TnT ∗n ; and K = TT ∗. We define the auxiliary
notation N (λ) := Tr(K(K + λI)−1), which is the function entering on the LHS of the ED condition.

We denote by (ξi)i≥1 the possibly finite sequence in [0, κ] of nonzero eigenvalues of S and K , and by
(ξj,n)1≤j≤n the n-sequence of eigenvalues of Sn and Kn respectively (in each case in decreasing order
and with multiplicity). Finally, (Fu)u≥0 denotes the spectral family of the operator Sn , i.e. Fu is the
orthogonal projector on the subspace of H spanned by eigenvectors of Sn corresponding to eigenvalues
strictly less than u.

It is useful to consider the spectral integral representation: If (ei,n)1≤i≤n denotes the orthogonal eigen-
system of Sn associated to the non-zero eigenvalues (λi,n)1≤i≤n , for any integrable function h on [0, κ],
we set ∫ κ

0

h(u)d ‖Fu,nT ∗nY‖2 := 〈T ∗nY, h(Sn)T ∗nY〉 =
n∑

i=1

h(λi,n) 〈T ∗nY, ei,n〉2 .

By its definition, the output of the m-th iteration of the CG algorithm can be put under the form fm =
qm(Sn)T ∗nY , where qm ∈ Pm−1 , the set of real polynomials of degree less than m− 1 . A crucial role
is played by the residual polynomial

pm(x) = 1− xqm(x) ∈ P0
m ,

where P0
m is the set of real polynomials of degree less than m and having constant term equal to 1. In

particular T ∗nY − Snfm = pm(Sn)T ∗nY. Furthermore, the definition of the CG algorithm implies that
the sequence (pm)m≥0 are orthogonal polynomials for the scalar product [., .](1), where for i ≥ 0 we
define

[p, q](i) :=
〈
p(Sn)T ∗nY, Si

nq(Sn)T ∗nY
〉

=
∫ κ

0

p(u)q(u)uid ‖Fu,nT ∗nY‖2 .
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This can be shown as follows: pm is the orthogonal projection, of the origin onto the affine space P0
m =

1 + xPm−1 with the scalar product [., .](0), , where xPm−1 denotes (with some abuse of notation) the set
of polynomials of degree less than m with constant coefficient equal to zero. Thus 0 = [pm, xq](0) =
[pm, q](1) for any q ∈ Pm−1 . From the theory of orthogonal polynomials, it results that for any m ≤
mfinal := # {i : 1 ≤ i ≤ n, ξi,n 〈T ∗nY, ei,n〉 6= 0} , the polynomial pm has exactly m distinct roots
belonging to [0, κ] , which we denote by (xk,m)1≤k≤m (in increasing order). Finally, we use the notation
c(a, b) to denote a function depending on the stated parameters only, and whose exact value can change
from line to line.

B Preparation of the proof

We follow the general architecture of Nemirovskii’s proof to establish rates. We recall that since we
assume r ≥ 1/2, the representation f∗ = Tf∗H holds. The main difference to Nemirovskii’s original
result is that (similar to the approach of [2, 3]) we use deviation bounds in a “warped” norm rather than
in the standard norm. More precisely, we consider the following type of assumptions:

B1(λ)
∥∥∥(S + λI)−

1
2 (T ∗nY − Snf∗H)

∥∥∥ ≤ δ(λ) ,

B2(λ)
∥∥(S + λI)(Sn + λI)−1

∥∥ ≤ Λ2 , with Λ ≥ 1

(this implies in particular
∥∥∥(S + λI)

1
2 (Sn + λI)−

1
2

∥∥∥ ≤ Λ via (20) below) ,

B3 ‖S − Sn‖ ≤ κ∆ .

In the rest of this section we set µ = r − 1/2. Under the source condition assumption SC(r), for r ≥ 1
2

the representation f∗ = Kru can be rewritten

f∗ = (TT ∗)ru = T (T ∗T )r− 1
2 (T ∗T )−

1
2 T ∗u = TSµ(T ∗T )−

1
2 T ∗u,

by identification we therefore have the source condition for fH given by fH = Sµw with w =
(T ∗T )−

1
2 T ∗u, and ‖w‖H ≤ ‖u‖, since (T ∗T )−

1
2 T ∗ is a restricted isometry from L2(PX) into H.

We define the shortcut notation

Zµ(λ) =
{

λµ for µ ≤ 1 ,

κµ∆ for µ > 1.
(1)

We start with preliminary technical lemmas, before turning to the proof of Theorem 2.2.
Lemma B.1. For any λ > 0 , if assumptions SC(r), B1(λ), B2(λ) and B3 hold, then for any iteration
step 1 ≤ m ≤ mfinal

‖T ∗n(Tnfm −Y)‖ ≤c(µ)Λ2
(
|p′m(0)|−(µ+1) + Zµ(λ) |p′m(0)|−1

)
κ−µ− 1

2 ρ

+
(
|p′m(0)|−

1
2 + λ

1
2

)
Λδ(λ) . (2)

Proof. Recall that (xk,m)1≤k≤m denote the m roots of the polynomial pm ; define further the function
ϕm on the interval [0, x1,m] as

ϕm(x) = pm(x)
(

x1,m

x1,m − x

) 1
2

Following the idea introduced by Nemirovski, it can be shown that

‖T ∗n(Tnfm −Y)‖ = ‖pm(Sn)T ∗nY‖
≤
∥∥Fx1,m

ϕm(Sn)T ∗nY
∥∥

≤
∥∥Fx1,m

ϕm(Sn)Snf∗H
∥∥+

∥∥Fx1,m
ϕm(Sn)(T ∗nY − Snf∗H)

∥∥ := (I) + (II).
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Above, the first inequality (lemma 3.7. in [4]) is the crucial point, and relies fundamentally on the fact
that (pm) is an orthogonal polynomial sequence.

We start with controlling the second term:

(II) =
∥∥Fx1,m

ϕm(Sn)(T ∗nY − Snf∗H)
∥∥ =

∥∥∥Fx1,m
ϕm(Sn)(S + λI)

1
2 (S + λI)−

1
2 (T ∗nY − Snf∗H)

∥∥∥
≤
∥∥∥Fx1,m

ϕm(Sn)(Sn + λI)
1
2

∥∥∥Λδ(λ)

≤

(
sup

x∈[0,x1,m]

x
1
2 ϕm(x) + λ

1
2 sup

x∈[0,x1,m]

ϕm(x)

)
Λδ(λ)

≤
(
|p′m(0)|−

1
2 + λ

1
2

)
Λδ(λ) ,

where the last line used the inequality (see (3.10) in [4])

sup
x∈[0,x1,m]

xνϕ2
m(x) ≤ νν |p′m(0)|−ν

, (3)

for any ν ≥ 0 (using the convention 00 = 1), which we applied above for ν = 0, 1 . For the first term, we
use assumption SC(r); first consider the case µ > 1:
(I) =

∥∥Fx1,m
ϕm(Sn)Snf∗H

∥∥ =
∥∥Fx1,m

ϕm(Sn)SnSµw
∥∥

≤
(∥∥Fx1,m

ϕm(Sn)Sµ+1
n

∥∥+
∥∥Fx1,m

ϕm(Sn)Sn

∥∥ ‖Sµ − Sµ
n‖
)
κ−µ− 1

2 ρ

≤ c(µ)
(
|p′m(0)|−(µ+1) + κµ∆ |p′m(0)|−1

)
κ−µ− 1

2 ρ ,

where we applied (3) with ν = 2(µ + 1), ν = 2 and (19).

For the case µ ≤ 1, using (20) and arguments similar to the previous case:

(I) =
∥∥Fx1,m

ϕm(Sn)Snf∗H
∥∥

=
∥∥Fx1,m

ϕm(Sn)SnSµw
∥∥

≤
∥∥Fx1,m

ϕm(Sn)Sn(Sn + λI)µ
∥∥∥∥(Sn + λI)−µ(S + λI)µ

∥∥∥∥(S + λ)−µSµ
∥∥κ−µ− 1

2 ρ

≤ c(µ)Λ2
(
|p′m(0)|−(µ+1) + λµ |p′m(0)|−1

)
κ−µ− 1

2 ρ .

Lemma B.2. For any λ > 0 , if assumptions SC(r), B1(λ), B2(λ) and B3 hold, then for any iteration
step 1 ≤ m ≤ mfinal, for any ε ∈ (0, x1,m):

‖T (fm − f∗H)‖ ≤Λ

(
3
(
1 + λ

(
|p′m(0)|+ ε−1

))
Λδ(λ) + c(µ)Λ2

(
ε

1
2 + λ

1
2

)
(εµ + Zµ(λ)) κ−µ− 1

2 ρ

+
√

2

(
1 +

λ
1
2

ε
1
2

)
ε−

1
2 ‖T ∗n(Tnfm −Y)‖

)
If m = 0, the above inequality is valid for any ε > 0.

Proof. Set f̄m = qm(Sn)Snf∗H . This is the element in H that we obtain by applying the mth-iteration
CG polynomial qm to the noiseless data. We have

‖T (fm − f∗H)‖ =
∥∥∥S 1

2 (fm − f∗H)
∥∥∥ ≤ Λ

∥∥∥(Sn + λI)
1
2 (fm − f∗H)

∥∥∥
≤ Λ

(∥∥∥Fε(Sn + λI)
1
2 (fm − f̄m)

∥∥∥+
∥∥∥Fε(Sn + λI)

1
2 (f̄m − f∗H)

∥∥∥
+
∥∥∥F⊥

ε (Sn + λI)
1
2 (fm − f∗H)

∥∥∥)
:= Λ((I) + (II) + (III)) ,
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where we denote F⊥
ε := (I − Fε). First summand:

(I) =
∥∥∥Fε(Sn + λI)

1
2 (fm − f̄m)

∥∥∥ =
∥∥∥Fε(Sn + λI)

1
2 qm(Sn)(S + λI)

1
2 (S + λI)−

1
2 (T ∗nY − Snf∗H)

∥∥∥
≤ Λ

∥∥∥Fε(Sn + λI)
1
2 qm(Sn)(Sn + λI)

1
2

∥∥∥ δ(λ)

≤ Λδ(λ)

(
sup

x∈[0,ε]

xqm(x) + λ sup
x∈[0,ε]

qm(x)

)
≤ Λδ(λ) (1 + λ |p′m(0)|) .

The last inequality is obtained by the following argument: if m ≥ 1, since ε ≤ x1,m, pm is convex in
[0, ε] , we have

qm(x) =
1− pm(x)

x
≤ |p′m(0)| for x ∈ [0, ε] ;

and also xqm(x) = 1 − pm(x) ≤ 1 for x ∈ [0, ε] . If m = 0, we have p0 ≡ 1 and qm ≡ 0, so that the
above is also trivially satisfied for any x.

Second summand: first subcase, µ > 1, using (19), and the fact that |pm| (x) ≤ 1 for x ∈ [0, ε]:

(II) =
∥∥∥Fε(Sn + λI)

1
2 (f̄m − f∗H)

∥∥∥
=
∥∥∥Fε(Sn + λI)

1
2 pm(Sn)Sµw

∥∥∥
≤
(∥∥∥Fε(Sn + λI)

1
2 pm(Sn)Sµ

n

∥∥∥+
∥∥∥Fε(Sn + λI)

1
2 pm(Sn)

∥∥∥ c(µ)κµ∆
)

κ−µ− 1
2 ρ

≤
(
εµ+ 1

2 + λ
1
2 εµ + c(µ)κµ

(
ε

1
2 + λ

1
2

)
∆
)

κ−µ− 1
2 ρ

≤ c(µ)
(
ε

1
2 + λ

1
2

)
(εµ + κµ∆) κ−µ− 1

2 ρ .

Bounding the second summand: second subcase, µ ≤ 1:

(II) =
∥∥∥Fε(Sn + λI)

1
2 pm(Sn)Sµw

∥∥∥ ≤ ∥∥∥Fε(Sn + λI)µ+ 1
2 pm(Sn)

∥∥∥Λ2κ−µ− 1
2 ρ

≤ c(µ)(ε + λ)µ+ 1
2 Λ2κ−µ− 1

2 ρ .

Third summand:

(III) =
∥∥∥F⊥

ε (Sn + λI)
1
2 (fm − f∗H)

∥∥∥ ≤ ∥∥∥F⊥
ε S

1
2
n (fm − f∗H)

∥∥∥+ λ
1
2
∥∥F⊥

ε (fm − f∗H)
∥∥

≤

(
(ε + λ)

1
2

ε
1
2

+ λ
1
2
(ε + λ)

1
2

ε

)∥∥∥F⊥
ε (Sn + λI)−

1
2 Sn(fm − f∗H)

∥∥∥
≤

(
1 +

λ
1
2

ε
1
2

)(
1 +

λ

ε

) 1
2 ∥∥∥F⊥

ε (Sn + λI)−
1
2 Sn(fm − f∗H)

∥∥∥
≤

(
1 +

λ
1
2

ε
1
2

)(
1 +

λ

ε

) 1
2 (∥∥∥F⊥

ε (Sn + λI)−
1
2 T ∗n(Tnfm −Y)

∥∥∥
+
∥∥∥(Sn + λI)−

1
2 (T ∗nY − Snf∗H)

∥∥∥)
≤

(
1 +

λ
1
2

ε
1
2

)
ε−

1
2 ‖T ∗n(Tnfm −Y)‖+

√
2Λ
(

1 +
λ

ε

)∥∥∥(S + λI)−
1
2 (T ∗nY − Snf∗H)

∥∥∥
≤

(
1 +

λ
1
2

ε
1
2

)
ε−

1
2 ‖T ∗n(Tnfm −Y)‖+

√
2Λ
(

1 +
λ

ε

)
δ(λ) .
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We now consider the sequence of polynomials that are orthogonal with respect to the scalar product
[., .](2), which we denote by p

(2)
m , and its roots by x

(2)
m .

Lemma B.3. For any λ > 0 , if assumptions SC(r), B1(λ), B2(λ) and B3 hold, then for any iteration
step 1 ≤ m ≤ mfinal, for any ε ∈ (0, x1,m−1):

[pm−1, pm−1]
1
2
(0) = ‖pm−1(Sn)T ∗nY‖

≤ Λ(ε + λ)
1
2 δ(λ) + c(µ)Λ2ε (εµ + Zµ(λ)) κ−µ− 1

2 ρ + ε−
1
2

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)
. (4)

Proof. By the optimality property defining our CG algorithm,

‖pm−1(Sn)T ∗nY‖ ≤
∥∥∥p(2)

m−1(Sn)T ∗nY
∥∥∥ ≤ ∥∥∥Fεp

(2)
m−1(Sn)T ∗nY

∥∥∥+
∥∥∥F⊥

ε p
(2)
m−1(Sn)T ∗nY

∥∥∥
≤ ‖FεT

∗
nY‖+ ε−

1
2

∥∥∥p(2)
m−1(Sn)S

1
2
n T ∗nY

∥∥∥ = ‖FεT
∗
nY‖+ ε−

1
2

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)

For the last inequality, we have used the fact that |p(2)
m−1|(x) ≤ 1 for x ∈ [0, x

(2)
m−1] , along with the

assumption 0 < ε < x1,m−1 ≤ x
(2)
1,m−1 ; the latter inequality is due to interlacing properties of the roots

of orthogonal polynomials for [., .](i) and [., .](i+1) (see [4], Cor 2.7). We now bound

‖FεT
∗
nY‖ ≤ ‖Fε(T ∗nY − Snf∗H)‖+ ‖FεSnSµw‖

≤
∥∥∥Fε(Sn + λI)

1
2

∥∥∥ ∥∥∥(Sn + λI)−
1
2 (T ∗nY − Snf∗H)

∥∥∥+ ‖FεSnSµw‖

≤ Λ(ε + λ)
1
2 δ(λ) + ‖FεSnSµw‖ ;

for the second term, we divide as usual into two cases: for µ > 1:

‖FεSnSµw‖ ≤
∥∥FεS

µ+1
n w

∥∥+ ‖FεSn(Sµ
n − Sµ)w‖ ≤ εc(µ) (εµ + κµ∆) κ−µ− 1

2 ρ ,

and for µ ≤ 1:

‖FεSnSµw‖ ≤ ‖FεSn(Sn + λI)µ‖Λ2κ−µ− 1
2 ρ ≤ ε(εµ + λµ)Λ2κ−µ− 1

2 ρ .

C Proof of Theorem 2.2

We fix
λ∗ =

((
4D/

√
n
)
log (6/γ)

) 2
2µ+s+1 κ . (5)

and assume n is big enough to ensure λ∗ ≤ κ . Furthermore we denote λ̃∗ = κ−1λ∗ (this normalization
was introduced in [2]).

We rewrite equivalently the discrepancy stopping rule as follows: for some fixed τ > 0 ,

m̂ := min
{

0 ≥ m : ‖T ∗n(Tnfm −Y)‖ ≤ (2 + τ)λ
1
2
∗ δ(λ∗)

}
, (6)

where

δ(λ∗) :=
3
4
Mλ̃

µ+ 1
2

∗ . (7)

(Observe that the above τ > 0 is deduced from the constant τ ′ > 3/2 considered in the main part of the
paper via τ = 4

3 (τ − 3
2 ).)
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We first check B1(λ∗), B2(λ∗) and B3 are satisfied simultaneously with large probability, using for this
concentration results which are recalled in Section E. Concerning B1(λ∗) , inequality (17) ensures that
with probability 1− γ , we have∥∥∥(S + λ∗I)−

1
2 (T ∗nY − Snf∗H)

∥∥∥ ≤ 2M

(√
N (λ∗)

n
+

2
√

κ√
λ∗n

)
log

6
γ

≤ 2M√
n

Dλ̃
− s

2
∗

(
1 +

1
2D2

(
4D√

n
log

6
γ

)
λ̃

s−1
2

∗

)
log

6
γ

≤ M

2
λ̃

µ+ 1
2

∗

(
1 +

1
2D2

λ̃µ+s
∗

)
≤ 3

4
Mλ̃

µ+ 1
2

∗ = δ(λ∗) , (8)

where we have used SC(r), (5) and the assumptions D ≥ 1 and λ̃∗ ≤ 1 . We now turn to B2(λ∗) .
Inequality (18) along with a repetition of the above reasoning yields that with probability 1− γ:∥∥∥(S + λ∗I)−

1
2 (Sn − S)

∥∥∥
HS

≤
√

κ

M
δ(λ∗) ,

so that ∥∥∥(S + λ∗I)−
1
2 (Sn − S)(S + λ∗I)−

1
2

∥∥∥ ≤ √
κ

M
λ
− 1

2
∗ δ(λ∗) .

Observe that √
κ

M
λ
− 1

2
∗ δ(λ∗) =

3
4
λ̃µ
∗ ≤

3
4

, (9)

so that with Lemma E.2, we obtain that B2(λ∗) is satisfied with Λ := 2 (with probability 1− γ). Finally,
equation (11) in the main paper implies that (B3) is also satified with probability 1− γ, with

∆ :=
2√
n

log
1
γ

. (10)

To conclude, by the union bound, the event that B1(λ∗), B2(λ∗) and B3 satisfied simultaneously has
probability larger than 1− 3γ , and we assume for the rest of the proof that we are on this event.

We will assume m̂ ≥ 1 for the remainder of the proof and postpone to the end the (simpler) case m̂ = 0.

First step: upper bound on
∣∣p′bm−1(0)

∣∣ . By definition of the stopping rule we have

‖T ∗n(Tnf bm−1 −Y)‖ > (2 + τ)λ
1
2
∗ δ(λ∗) . Now applying this together with the upper bound of Lemma

B.1 we get

τλ
1
2
∗ δ(λ∗) ≤ c(µ)

(∣∣p′bm−1(0)
∣∣−(µ+1) + Zµ(λ∗)

∣∣p′bm−1(0)
∣∣−1
)

κ−µ− 1
2 ρ + 2

∣∣p′bm−1(0)
∣∣− 1

2 δ(λ∗)

≤ 3 max
(
2
∣∣p′bm−1(0)

∣∣− 1
2 δ(λ∗), c(µ)ρκ−µ− 1

2
∣∣p′bm−1(0)

∣∣−(µ+1)
,

c(µ)ρκ−µ− 1
2 Zµ(λ∗)

∣∣p′bm−1(0)
∣∣−1
)

.

We examine in succession the possibility that the maximum in the above expression is attained for each of
the terms which comprise it. If the first term attains the maximum, this implies |p′bm−1(0)| ≤ (9/τ2)λ−1

∗ .
If the second term attains the maximum, this entails

c(µ)ρκ−µ− 1
2
∣∣p′bm−1(0)

∣∣−(µ+1) ≥ τλ
1
2
∗ δ(λ∗) ,

which using (7) yields: ∣∣p′bm−1(0)
∣∣ ≤ c(µ, τ)

( ρ

M

) 1
µ+1

λ−1
∗ .
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Finally, if the third term attains the maximum, we have

c(µ)ρZµ(λ∗)κ−µ− 1
2
∣∣p′bm−1(0)

∣∣−1 ≥ τλ
1
2
∗ δ(λ∗) ,

which using (7) yields: ∣∣p′bm−1(0)
∣∣ ≤ c(µ, τ)

ρ

M
λ−µ−1
∗ Zµ(λ∗) .

We now establish the inequality
Zµ(λ∗)λ−µ

∗ ≤ 1 . (11)
The inequality is trivial if µ ≤ 1 given the definition of Zµ(λ∗) in (1). If µ > 1 holds, from the definition

(10), it holds that ∆ ≤ 1
2 λ̃

2µ+s+1
2

∗ , hence

Zµ(λ∗)λ−µ
∗ = ∆λ̃−µ

∗ ≤ 1
2
λ̃

s+1
2

∗ ≤ 1
2

.

Gathering all three cases, we obtain that it always holds that∣∣p′bm−1(0)
∣∣ ≤ c(µ, τ) max

( ρ

M
, 1
)

λ−1
∗ . (12)

Second step: upper bound on |p′bm(0)| . For this we use the result of the first step and relate
∣∣p′bm−1(0)

∣∣ to
|p′bm(0)| . It is a property of orthogonal polynomials (see Hanke, Corollary 2.6) that for any m ≥ 1

pm−1
′(0)− pm

′(0) =
[pm−1, pm−1](0) − [pm, pm](0)[

p
(2)
m−1, p

(2)
m−1

]
(1)

≤
[pm−1, pm−1](0)[
p
(2)
m−1, p

(2)
m−1

]
(1)

. (13)

To upper bound the above quantity, we apply Lemma B.3 whithe the choice λ = λ∗ and

ε = ε∗ := a(µ, τ) min
(

M

ρ
, 1
)

λ∗ ,

where 0 < a(µ, τ) ≤ 1 should be chosen small enough in order to satisfy some constraints to be specified
below. The first constraint is the requirement ε∗ ∈ (0, x1,m−1) in order to apply Lemma B.3. For this, it
can be seen from (12) that a(µ, τ) can be chosen small enough to ensure

ε∗ ≤
∣∣p′m−1(0)

∣∣−1 ≤ x1,m−1 ,

the last inequality is an easy consequence of the fact that pm−1 has exactly (m − 1) positive real roots
and pm−1(0) = 1 . We now turn to upper bound the following quantity appearing on the RHS of (4):

Λ(ε∗ + λ∗)
1
2 δ(λ∗) + c(µ)Λ2ε∗ (εµ

∗ + Zµ(λ∗)) κ−µ− 1
2 ρ

≤ 2(a(µ, τ) + 1)λ
1
2
∗ δ(λ∗) + c(µ)a(µ, τ) min (ρ, M) λ∗λ̃

µ
∗κ

− 1
2 ρ

≤ (c(µ)a(µ, τ) + 2)λ
1
2
∗ δ(λ∗) ,

(14)

where we have used the definition (7) for δ(λ∗) and inequality Zµ(λ∗) ≤ λµ
∗ , see (11) . Now, we chose

a(µ, τ) so that the factor in the last display satisfies c(µ)a(µ, τ) ≤ τ
2 . Remember that the definition of

the stopping rule entails

[pm−1, pm−1]
1
2
(0) = ‖T ∗n(Tnf bm−1 −Y)‖ > (2 + τ)λ

1
2
∗ δ(λ∗) > (2 + τ)λ

1
2
∗ δ(λ∗) , (15)

Now combining (4), (15) and (14), we obtain(
1−

τ + 1
2

τ + 2

)
[pm−1, pm−1]

1
2
(0) ≤ ε

− 1
2

∗

[
p
(2)
m−1, p

(2)
m−1

] 1
2

(1)
;
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using this inequality in relation with (13) and (12), we obtain

|p′bm(0)| ≤
∣∣p′bm−1(0)

∣∣+ c(τ)ε−1
∗ ≤ c(µ, τ) max

( ρ

M
, 1
)

λ−1
∗ .

Final step. We apply Lemma B.2 (with λ = λ∗ and ε = ε∗), together with the bound on |p′bm(0)| just
obtained, and the inequality (by definition of the stopping rule)

‖T ∗n(Tnf bm −Y)‖ ≤ (2 + τ)λ
1
2
∗ δ(λ∗) ,

obtaining, using again (11):

‖f bm − f∗‖2 = ‖T (f bm − f∗H)‖

≤ c(µ, τ)
(
δ(λ∗) max

( ρ

M
, 1
)

+ min(ρ, M)λ̃µ+ 1
2

∗

)
≤ c(µ, τ)(M + ρ)λ̃µ+ 1

2
∗ .

If m̂ = 0, we can apply directly Lemma B.2 as above without requiring the two previous steps, since in
this case p′0(0) = 0, so that we obtain the same final bound.

D Sketch of the proof of Theorem 2.3

For the proof of Theorem 2.3, the condition B1(λ) is replaced by

B1’(λ)
∥∥∥(S + λI)−

1
2 (T ∗nY − T ∗f∗)

∥∥∥ ≤ δ(λ) .

We check that B1’(λ∗), B2(λ∗) and B3 are satisfied in the setting of Theorem 2.3. To check B1’(λ∗), we
use (16) instead of (17). Since the easily checked relation T ∗nY = T ∗ñỸ holds, the upper bound obtained
here has the same form as for Theorem 2.2, therefore we can use the same value δ(λ∗) for condition
B1’(λ∗) as in the previous section, given by (8). Notice however that we must now use the condition
µ + s = r + s− 1

2 ≥ 0 to ensure that the chain of inequalities leading to (8) is valid.

For condition B2(λ∗), we can apply the deviation inequality (18) but with n replaced by ñ, since we make
use of all the unlabeled data. Using the fact that n

ñ ≤ λ̃
−(1−2r)+
∗ and some elementary algebra leads to

B2(λ∗) being satisfied with Λ := 2.

Finally condition B3 is satisfied with ∆ given by (10) with n replaced by ñ.

Once these conditions are established, intermediate results similar in structure to Lemmas B.1, B.2 and
B.3 can be derived, but where B1(λ) is replaced by B1’(λ). The details are omitted here.

E More technical lemmas

In this section we collect some technical lemmas which underpin the main results. These are taken
from previous sources and are recalled here for completeness. The main statistical tool is the following
deviation inequality:
Lemma E.1. Let λ be a positive number. Under assumption (Bounded), the following holds:

P

[∥∥∥(S + λI)−
1
2 (T ∗nY − T ∗f∗)

∥∥∥ ≤ 2M

(√
N (λ)

n
+

2
√

κ√
λn

)
log

6
γ

]
≥ 1− γ . (16)

If the representation f∗ = Tf∗H holds and under assumption (Bernstein), we have the following:

P

[∥∥∥(S + λI)−
1
2 (T ∗nY − Snf∗H)

∥∥∥ ≤ 2M

(√
N (λ)

n
+

2
√

κ√
λn

)
log

6
γ

]
≥ 1− γ . (17)
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Finally, the following holds:

P

[∥∥∥(S + λI)−
1
2 (Sn − S)

∥∥∥
HS

≤ 2
√

κ

(√
N (λ)

n
+

2
√

κ√
λn

)
log

6
γ

]
≥ 1− γ , (18)

where we recall that ‖.‖HS denotes the Hilbert-Schmidt norm.

The proof can be found in [3], and is based on a Bernstein-type inequality for random variables taking
values in a Hilbert space, as established in [5, 6].

Inequality (18) can be fruitfully combined with the following:
Lemma E.2. Assume there exists η > 0 such that the following inequality holds:∥∥∥(S + λ)−

1
2 (Sn − S)(S + λ)−

1
2

∥∥∥ < 1− η ,

then ∥∥∥(S + λ)
1
2 (Sn + λ)−

1
2

∥∥∥ ≤ 1
√

η
.

Proof. First we have∥∥∥(S + λ)
1
2 (Sn + λ)−

1
2

∥∥∥ =
∥∥∥(S + λ)

1
2 (Sn + λ)−1(S + λ)

1
2

∥∥∥ 1
2

;

then simple algebraic manipulation shows

(S + λ)
1
2 (Sn + λ)−1(S + λ)

1
2 =

(
I − (S + λ)

1
2 (S − Sn)−1(S + λ)

1
2

)−1

.

Finally, using the inequality
∥∥(I −A)−1

∥∥ =
∥∥∥∑k≥0 Ak

∥∥∥ ≤ (1 − ‖A‖)−1 for ‖A‖ < 1 yields the
conclusion.

We make use of the following operator inequalities:
Lemma E.3. Let A, B be two positive, self-adjoint operators with max(‖A‖ , ‖B‖) ≤ C . Then for any
r ≥ 0 , putting ζ = (r − 1)+ , the following inequality holds:

‖Ar −Br‖ ≤ (ζ + 1)Cζ ‖A−B‖r−ζ
. (19)

Proof. Follows from the fact that the power function x 7→ xr is operator monotone for r ≤ 1 and
Lipschitz with constant rCr−1 on [0, C] if r > 1.

Lemma E.4 ([1], Theorem IX.2.1-2). Let A, B be to self-adjoint, positive operators. Then for any
s ∈ [0, 1]:

‖AsBs‖ ≤ ‖AB‖s
. (20)

Note: this result is stated for positive matrices in [1], but it is easy to check that the proof applies as well
to positive operators on a Hilbert space.
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