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1 Relationship between ĴY Y |X and ĴXY and Proof of Proposition 1

We start by noting that conditional independence X ⊥⊥ Y |B⊤X does not necessarily imply
the correlation between B⊤X and Y is maximized. To see this, let X be a Gaussian random
vairable with zero mean and diagonal covariance matrix. AssumeB is an identity matrix and
Y = X2 = (B⊤X)2 (elementwise square for a vectorial X). The conditional independence is
obviously satisfied yet the correlation between B⊤X and Y is zero. This observation is yet
another example showing the limitation of Spearson’s correlation measures, which detect
only linear dependence between random variables. In the following, we show that when
measured in the RKHS, the two measures ĴY Y |X and ĴXY are equivalent.

Assume we use Gaussian RBF kernel for both ĴY Y |X(B⊤X,Y ) and ĴXY (B
⊤X,Y ):

K(xi,xj) = exp
(

−‖xi − xj‖2/σ2

N

)

where σN is the bandwidth. It should be chosen

to match roughly the scale of the data. While ĴXY (B
⊤X,Y ) depends only on σN ,

ĴY Y |X(B⊤X,Y ) depends on σN and ǫN , which need to be adjusted in empirical studies.
Since both parameters control the smoothness of the kernel matrix KB⊤X , it is sensible
to adjust the relative scale of the two parameters. Particularly, the following statement
establishes the link between the two measures:

Proposition 1. Let N → +∞ and ǫN → 0. Additionally, assume the samples are dis-
tributed uniformly on the unit sphere. If σN ≪ ǫ2N , then up to a constant,

ĴY Y |X(B⊤X,Y ) ≈ −c0N
2ǫ2N ĴXY (B

⊤X,Y ) (1)

Therefore, It is equivalent to minimizing ĴY Y |X(B⊤X,Y ) and maximizing ĴXY (B
⊤X,Y ).

We sketch the proof in the following. The proof consists of two main steps. In the first step,
we bound the largest eigenvalue λ0 of KB⊤X from above. In the second step, we show that
applying the bound allows us to approximate the inverse (GB⊤X +NǫNIN )−1 with KB⊤X .

Bound on λ0. With Gaussian RBF kernel, the elements of the kernel matrix KB⊤X is
strictly positive. By Perron-Frobenius theorem, the spectral radius is λ0 and is bound by

λ0 ≤ max
i

∑

j

KB⊤X(i, j), (2)

namely, the maximum of the row sums. The (i, j)-th element of the kernel matrix is given
by

KB⊤X(i, j) = exp

(

−
∑

m

‖Bm
⊤xi −Bm

⊤xj‖2/σ2

N

)

(3)
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whereBm is them-th column of the matrixB. Since each column contributes nonnegatively
to the exponent, it is obvious

λ0 ≤ max
i

∑

j

exp
(

−‖Bm
⊤xi −Bmxj‖2/σ2

N

)

(4)

for any m. Furthermore, since xi are assumed to be uniformly distributed on the unit
sphere, we choose an arbitrary coordinate system such that Bm = [1 0 0 · · · 0]⊤. This gives
rise to

λ0 ≤
∑

j

exp
(

−(xi1 − xj1)
2/σ2

N

)

. (5)

Note that we have removed the maxi operation based on the symmetry argument. The first
element xi1 of xi can be set as 1 without loss of generality. Moreover, the first elements xj1

of xj can be parameterized as cos θj where θj is uniformly distributed between 0 and 2π.
This leads to

λ0 ≤
∑

j

exp
(

−(1− cos θj)
2/σ2

N

)

. (6)

When N → +∞, the right-hand-size tends to an integral

λ0 ≤ N

∫ 2π

0

e
− (1−cos θ)2

σ2
N dθ . (7)

The integral does not have a analytic closed-form. Our intention is to approximate it with
a function of σN . In particular, σN needs to tend to zero when N → +∞. Therefore, our
next step is to identify an asymptotic expansion in σN .

After a few variable substitutions ( 1 − cos θ = 2 cos2 θ/2, then cos θ/2 = t, the integral of
eq. (7) is transformed (omitting constants) to

I(σN ) =

∫

1

0

1√
1− t2

e−4t4/σ2
N dt (8)

Applying Watson Lemma [1] to the above integral as 4/σ2

N → +∞, we obtain the asymptotic

expansion up to (and including) the first-order of 1/
√
1− t2,

I(σN ) ∼ 1/4 Γ(1/4)
√

σN/2 +O(σ
3/2
N ) (σN → 0) . (9)

This gives us a bound on λ0

λ0 ≤ c0N
√
σN (10)

where c0 is a constant.

Approximate ĴY Y |X(B⊤X,Y ). We apply the Woodbury matrix inversion lemma to the
independence measure. Let δN = NǫN , we have

ĴY Y |X(B⊤X,Y ) (11)

= Trace
[

GY (HKB⊤XH + δNIN )−1
]

(12)

= Trace
[

GY

{

δ−1

N IN − δ−1

N H(K−1

B⊤X
+Hδ−1

N H)−1Hδ−1

N

}]

(13)

= −δ−2

N Trace
[

GY (K
−1

B⊤X
+ δ−1

N H)−1
]

+ const (14)

where we have used the identities HH = H and HGY H = GY . We have also assumed
that KB⊤X is invertible. This is reasonable as we are using Gaussian RBF kernels. If
we further assume that B⊤X yields different B⊤x1, B

⊤x2, . . . and B⊤xN , then the kernel
matrix is full ranked and invertible.

We consider the limiting case when N → +∞. We have shown in above that the largest
eigenvalue ofKB⊤X is bound from above byN

√
σN . This means that the smallest eigenvalue

1/λ0 ofK
−1

B⊤X
is bound from below by 1/(N

√
σN ). Note that the largest eigenvalue of δ−1

N H

is 1/(NǫN). Therefore, if
1/(N

√
σN ) ≫ 1/(NǫN), (15)
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we can approximate the inversion with

(K−1

B⊤X
+ δ−1

N H)−1 ≈ (K−1

B⊤X
)−1 = KB⊤X . (16)

The condition eq. (15) corresponds to the condition σN ≪ ǫ2N in the Proposition 1, which
leads to (after substituting eq. (16) into eq.(14)),

ĴY Y |X(B⊤X,Y ) = −δ2N ĴXY (B
⊤X,Y ) + const (17)

2 Relation between t-SNE and UKDR

t-SNE aims to preserve local conditional probability structure computed in the original
space of X [2] . The structure is encoded as the random walk probability of

pij = P (xi → xj) =
exp{−‖xi − xj‖2/σ2

i }
∑

j 6=i exp{−‖xi − xj‖2/σ2

i }
. (18)

The low dimensional coordinates Z are estimated such that the structure computed in the
low dimensional space

qij ∝ C(zi, zj) =
1

1 + ‖zi − zj‖2
(19)

has the smallest KL divergence: z = argminKL(P̃ ‖Q) where Q’s elements are qij . P̃ =
(P + P⊤)/2 is a symmetric version of P . Minimizing the KL divergence is equivalent to
maximize the conditional entropy
∑

ij

P̃ij logQij =
∑

ij

P̃ij logC(zi, zj)− log
∑

ij

C(zi, zj) = Trace[P logC]− log1⊤C 1 (20)

where the logarithm of the matrix C is taken element-wisely. There is a strong analogy
of this objective function to ĴXY (B

⊤X,X) with random walk kernel over X and Cauchy
kernel over B⊤X ,

ĴXY (B
⊤X,X) = Trace[PP⊤HCH ] ≈ Trace[PP⊤C]− 1/N 1⊤C1 (21)

where N is the number of data points. The approximation is valid if we assume data
are well-clustered and the distances between data in the same clusters are roughly the
same. We gain further insights about t-SNE by comparing the two objective functions of
eq. (20) and eq. (21). Apart from using different yet related “kernels” (tSNE’s kernel is
not positive semidefinite), both objective functions have two terms which function similarly.
The trace terms try to match the similarities between low dimensional coordinates (encoded
by C and logC respectively) with the similarities in the high dimensional coordinates. The
normalization terms, to be minimized, try to push data points far away from each other.

3 Effect of sparsity in RSN UKDR

For nonlinear unsupervised kernel dimension reduction, using random and sparse features
(RSF) extracted from X has significant computational advantage than using transformed
X by radial basis networks. RSF features are sparse and easy to compute. In particular,
the dimensionality of RSF features depends on the dimensionality of the data while RBF
transformation depends on the number of data points in the training data set. Furthermore,
in computing RSF features, the bias constant b can be used to yield sparser feature vectors.
In Fig. 1, we investigate the effect of the sparsity level on embeddings. The setup is similar
to what is used for generating the embedding in Fig.2(i)(in the main paper) where b is 0 and
leads to a feature vector with sparsity level of 50%. We change b to 5, 7 and 10, obtaining
sparsity levels of 75%, 82% and 90% in Fig. 1. Through visual inspection, it is clear that
a sparsity level of 82% does not bring detrimental effects, while the higher 90% starts to
show fragmented clustering of data. Therefore, we deem RSF features as a viable option in
handling high dimension data for nonlinear UKDR.
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(a) Sparsity: 75%
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(b) Sparsity: 82%
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(c) Sparsity: 90%

Figure 1: 2D Embedding of USPS-500 dataset, computed using random sparse features with
various degrees of sparsity. The higher the sparsity is, the sparser the features are.

4 Comparison to other dimensionality reduction method

We compare our UKDR method to other dimensionality reduction methods, including
SNE [3], t-SNE, MUSHIC (Colored Maximum Variance Unfolding) [4] and PCA. The first
dataset is USPS 500, which contains digit 1, 2, 3, 4, and 5. The second dataset is UPSPS
2007, which contains 2007 images of 10 digits. The third dataset is discussion postings from
5 Newsgroups with 100 posting in each group. It is a subset of the 20 Newsgroups used in
[4].

4.1 USPS 500

Fig.2 shows the 2D embedding results on dataset USPS 500.
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ric embedding)
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Figure 2: 2D embedding results on USPS 500 by our method UKDR and other methods.
UKDR performs much better than other methods

4.2 Results on USPS 2007

Fig.3 shows the 2D embedding results on dataset USPS 2007.

4.3 Results on 5 Newsgroup

Fig.4 shows the 2D embedding results on dataset 5 Newsgroups
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(a) RBN UKDR
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(c) t-SNE
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(e) PCA

Figure 3: 2D embedding results on USPS 2007 by our method UKDR and other methods.
Only UKDR and t-SNE separate all classes reasonably well
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(b) SNE
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(c) t-SNE
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Figure 4: 2D embedding results on 5 Newsgroups by our method UKDR and other methods.
UKDR, t-SNE and MUHSIC works well.
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