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Abstract

We apply the framework of kernel dimension reduction, originally designed for
supervised problems, to unsupervised dimensionality reduction. In this frame-
work, kernel-based measures of independence are used to derive low-dimensional
representations that maximally capture information in covariates in order to pre-
dict responses. We extend this idea and develop similarly motivated measures
for unsupervised problems where covariates and responses are the same. Our
empirical studies show that the resulting compact representation yields meaning-
ful and appealing visualization and clustering of data. Furthermore, when used
in conjunction with supervised learners for classification, our methods lead to
lower classification errors than state-of-the-art methods, especially when embed-
ding data in spaces of very few dimensions.

1 Introduction

Dimensionality reduction is an important aspect of many statistical learning tasks. In unsupervised
dimensionality reduction, the primary interest is to preserve significant properties of the data in a
low-dimensional representation. Well-known examples of this theme include principal component
analysis, manifold learning algorithms and their many variants [1–4].

In supervised dimensionality reduction, side informationis available to influence the choice of the
low-dimensional space. For instance, in regression problems, we are interested in jointly discovering
a low-dimensional representationZ of the covariatesX and predicting well the response variable
Y givenZ. A classical example is Fisher discriminant analysis for binary response variables, which
projectsX to a one-dimensional line. For more complicated cases, however, one needs to specify
a suitable regression function,E [Y |X ], in order to identifyZ. This is often a challenging task in
itself, especially for high-dimensional covariates. Furthermore, one can even argue that this task is
cyclically dependent on identifyingZ, as one of the motivations for identifyingZ is that we would
hope that the low-dimensional representation can guide us in selecting a good regression function.

To address this dilemma, there has been a growing interest insufficient dimension reduction (SDR)
and related techniques [5–8]. SDR seeks a low-dimensionalZ which captures all the dependency
betweenX andY . This is ensured by requiring conditional independence among the three vari-
ables; i.e.,X ⊥⊥ Y |Z. Several classical approaches exist to identify such random vectorsZ [6, 9].
Recently, kernel methods have been adapted to this purpose.In particular,kernel dimensional re-
duction(KDR) develops a kernel-based contrast function that measures the degree of conditional in-
dependence [7]. Compared to classical techniques, KDR has the significant advantage that it avoids
making strong assumptions about the distribution ofX . Therefore, KDR has been found especially
suitable for high-dimensional problems in machine learning and computer vision [8, 10, 11].

In this paper we show how the KDR framework can be used in the setting of unsupervised learning.
Our idea is similar in spirit to a classical idea from the neural network literature: we construct
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an “autoencoder” or “information bottleneck” where the response variables are the same as the
covariates [12, 13]. The key difference is that autoencoders in the neural network literature were
based on a specific parametric regression function. By exploiting the SDR and KDR frameworks,
on the other hand, we can cast the unsupervised learning problem within a general nonparametric
framework involving conditional independence, and in particular as one of optimizing kernel-based
measures of independence.

We refer to this approach as “unsupervised kernel dimensionality reduction” (UKDR). As we will
show in an empirical investigation, the UKDR approach workswell in practice, comparing favorably
to other techniques for unsupervised dimension reduction.We assess this via visualization and via
building classifiers on the compact representations delivered by these methods. We also provide
some interesting analytical links of the UKDR approach to stochastic neighbor embedding (SNE)
andt-distributed SNE (t-SNE) [14, 15].

The paper is organized as follows. In Section 2, we review theSDR framework and discuss how
kernels can be used to solve the SDR problem. Additionally, we describe two specific kernel-
based measures of independences, elucidating a relationship between these measures. We show
how the kernel-based approach can be used for unsupervised dimensionality reduction in Section 3.
We report empirical studies in Section 4. Finally, we conclude and comment on possible future
directions in Section 5.

Notation Random variables are denoted with upper-case characters such asX andY . To refer to
their specific values, if vectorial, we use bold lower-case such asx andxn. xi stands for thei-th
element ofx. Matrices are in bold upper-case such asM .

2 Sufficient dimension reduction and measures of independence with kernels

Discovering statistical (in)dependencies among random variables is a classical problem in statistics;
examples of standard measures include Spearman’sρ, Kendall’sτ and Pearson’sχ2 tests. Recently,
there have been a growing interest in computing measures of independence in Reproducing Kernel
Hilbert spaces (RKHSs) [7, 16]. Kernel-based (and other nonparametric) methods detect nonlinear
dependence in random variables without assuming specific relationships among them. In particular,
the resulting independence measures attain minimum valueswhen random variables are indepen-
dent. These methods were originally developed in the context of independent component analy-
sis [17] and have found applications in a variety of other problems, including clustering, feature
selection, and dimensionality reduction [7, 8, 18–21].

We will be applying these approaches to unsupervised dimensionality reduction. Our proposed
techniques aim to yield low-dimensional representation which is “maximally” dependent on the
original high-dimensional inputs—this will be made precise in a later section. To this end, we first
describe briefly kernel-based measures of (conditional) independence, focusing on how they are
applied to supervised dimensionality reduction.

2.1 Kernel dimension reduction for supervised learning

In supervised dimensionality reduction for classificationand regression, the response variable,Y ∈
Y, provides side information about the covariates,X ∈ X . In a basic version of this problem we
seek a linear projectionB ∈ R

D×M to projectX from D-dimensional space to aM -dimensional
subspace. We would like the low-dimensional coordinatesZ = B

⊤X to be as predictive about
Y asX is; i.e.,E [Y |B⊤X ] = E [Y |X ]. Intuitively, knowingZ is sufficient for the purpose of
regressingY .

This problem is referred to assufficient dimension reduction(SDR) in statistics, where it has been
the subject of a large literature [22]. In particular, SDR seeks a projectionB such that,

X ⊥⊥ Y |B⊤X , subject toB⊤
B = I . (1)

whereI is theM×M identity matrix. Several methods have been proposed to estimateB [6, 9]. Of
special interest is the technique of kernel dimensional reduction (KDR) that is based on assessing
conditional independence in RKHS spaces [7]. Concretely, we map the two variablesX andY
to the RKHS spacesF andG induced by two positive semidefinite kernelsKX : X × X → R
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andKY : Y × Y → R. For any functiong ∈ G, there exists a conditional covariance operator
CY Y |X : G → G such that

〈g, CY Y |X g〉G = E
[

varY |X [g(Y )|X ]
]

(2)

calculates the residual errors of predictingg(Y ) with X [7, Proposition 3]. Similarly, we can define
the conditional covariance operatorCB

Y Y |X for predicting withB⊤X .

The conditional covariance operator has an important property: for any projectionB, CB

Y Y |X ≥
CY Y |X where the (partial) order is defined in terms of the trace operator. Moreover, the equality
holds if and only if eq. (1) is satisfied. This gives rise to thepossibility of using the trace of the
operators as a contrast function to estimateB.

Concretely, withN samples drawn fromP (X,Y ), we compute the corresponding kernel matrices
KB⊤X andKY . We centralize them with a projection matrixH = I − 1/N 11

⊤, where1 ∈ R
N

be the vector whose elements are all ones. The trace of the estimated conditional variance operator
CB

Y Y |X is then defined as follows:

ĴY Y |X(B⊤X,Y ) = Trace
[

GY (GB⊤X +NǫNIN )−1
]

, (3)

whereGY = HKYH andGB⊤X = HKB⊤XH . ǫN is a regularizer, smoothing the kernel
matrix. It should be chosen such that whenN → +∞, ǫN → 0 and

√
NǫN → +∞ to ensure con-

sistency [7]. The minimizer of the conditional independence measure yields the optimal projection
B for kernel dimensionality reduction:

BY Y |X = argmin
B⊤B=I

ĴY Y |X(B⊤X,Y ). (4)

We defer discussion on choosing kernels as well as numericaloptimization to later sections. When
it is clear from context, we usêJY Y |X as a shorthand for̂JY Y |X(B⊤X,Y ).

The optimization functional in eq. (3) is not the only way to implement the KDR idea. Indeed,
another kernel-based measure of independence that can be optimized in the KDR context is the
Hilbert-Schmidt Independence Criterion(HSIC) [16]. This is built as the Hilbert-Schmidt norm of
thecross-covariance operatorCXY , defined asG → F :

cov(f, g) = 〈f, CXY g〉F = EXY {[f(X)− EXf(X)] [g(Y )− EY g(Y )]} , (5)

where the expectations are taken with respect to the joint distribution and the two marginals respec-
tively. It has been shown that for universal kernels such as Gaussian kernels the Hilbert-Schmidt
norm ofCXY is zero if and only ifX andY are independent [16]. GivenN samples fromP (X,Y ),
the empirical estimate of HSIC is given by (up to a multiplicative constant):

ĴXY (X,Y ) = Trace[HKXHKY ] , (6)

whereKX andKY areRN×N kernel matrices computed overX andY respectively. To apply
this independence measure to dimensionality reduction, weseek a projectionB which maximizes
ĴXY (B

⊤X,Y ), such that the low-dimensional coordinatesZ = B
⊤X are maximally correlated

with X ,

BXY = argmax
B⊤B=I

ĴXY (B
⊤X,Y ) = argmax

B⊤B=I
Trace[HKB⊤XHKY ] . (7)

It is interesting to note that the independence measures in eq. (3) and eq. (6) are similar. In fact,
we have been able to find conditions under which they are equivalent, as stated in the following
proposition.

Proposition 1. LetN → +∞ andǫN → 0. Additionally, assume that the samples are distributed
uniformly on the unit sphere. IfσN ≪ ǫ2N , then up to a constant,

ĴY Y |X(B⊤
X, Y ) ≈ −c0N

2ǫ2N ĴXY (B
⊤
X, Y ). (8)

Therefore, under these conditions it is equivalent to minimize ĴY Y |X(B⊤
X, Y ) or to maximize

ĴXY (B
⊤
X, Y ). Thus,BXY ≈ BY Y |X .
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Proof The proof is sketched in the supplementary material. Note that assuming the norm ofX is
equal to one is not overly restrictive; in practice, one often needs to normalize data points to control
the overall scale.

We note that while the two measures are asymptotically equivalent, they have different computa-
tional complexity—computinĝJXY does not involve matrix inversion. Furthermore,ĴXY is slightly
easier to use in practice as it does not depend on regularization parameters to smooth the kernel ma-
trices.

The HSIC measurêJXY is also closely related to the technique of kernel alignmentwhich minimizes
the angles between (vectorized) kernel matricesKX andKY [23]. This is equivalent to maximizing
Trace[KXKY ]/(‖KX |‖F ‖KY ‖F ). The alignment technique has been used for clustering dataX
by assigning cluster labelsY so that the two kernel matrices are maximally aligned. The HSIC
measure has also been used for similar tasks [18]. While bothĴY Y |X and ĴXY have been used
for supervised dimensionality reduction with known valuesof Y , they have not yet been applied to
unsupervised dimensionality reduction, which is the direction that we pursue here.

3 Unsupervised kernel dimension reduction

In unsupervised dimensionality reduction, the low-dimensional representationZ can be viewed as
a compression ofX . The goal is to identify theZ that captures as much of the information inX
as possible. This desideratum has been pursued in the neuralnetwork literature where autoencoders
learn a pair of encoding and decoding functions,Z = f(X) andX = g(Z). A drawback of this
approach is thatf andg need to be specified a priori, in terms of number of layers and neurons in
neural nets.

Can we leverage the advantages of SDR and KDR to identifyZ without specifyingf(X) or g(Z)?
In this section, we describe how this can be done, viewing unsupervised dimensionality reduction as
a special type of supervised regression problem. We start byconsidering the simplest case whereZ
is a linear projection ofX . We then consider nonlinear approaches.

3.1 Linear unsupervised kernel dimension reduction

Given a random variableX ∈ R
D, we consider the regression problem̃X = f(B⊤X) whereX̃

is a copy ofX andZ = B
⊤X ∈ R

M is the low-dimensional representation ofX . Following the
framework of SDR and KDR in section 2, we seekB such thatX ⊥⊥ X̃ | B⊤X . SuchB⊤X thus
captures all information inX in order to construct itself (i.e.,̃X).

With a set ofN samples fromP (X), the linear projectionB can be identified as the minimizer of
the following kernel-based measure of independence

min
B⊤B=I

ĴXX|B⊤X = Trace
[

GX(GB⊤X +NǫNI)−1
]

, (9)

whereGX andGB⊤X are centralized kernel matrices ofKX andKB⊤X respectively. We can
alternatively maximize the corresponding HSIC measure of dependence betweenB⊤X andX

max
B⊤B=I

ĴB⊤X X = Trace[GXGB⊤X ]. (10)

We refer collectively to this kernel-based dimension reduction method as linear unsupervised KDR
(UKDR) and we useĴ(B⊤X,X) as a shorthand for the independence measure to be either mini-
mized or maximized.

3.2 Nonlinear unsupervised kernel dimension reduction

For data with complicated multimodal distributions, linear transformation of the inputsX is unlikely
to be sufficiently flexible to reveal useful structures. For example, linear projections can result in
overlapping clusters in low-dimensional spaces. For the purpose of better data visualization and
exploratory data analysis, we describe several simple yet effective nonlinear extensions to linear
UKDR. The main idea is to find a linear subspace embedding of nonlinearly transformedX . Let
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h(X) ∈ R
H denote the nonlinear transformation. The projectionB is then computed to optimize

Ĵ(B⊤h(X), X).

Radial Basis Network (RBN).In the spirit of neural network autoencoder, one obvious choice of
h(X) is to use a network of radial basis functions (RBFs). In this case,H = N , the number of
samples fromX . For a samplexi, then-th component ofh(xi) is given by

hRBN

n (xi) = exp{−‖xi − xn‖2/σ2

n}, (11)

wherexn is the center of then-th RBF andσn is the corresponding bandwidth.

Random Sparse Feature (RSF).In this approach we drawD × H elements ofW from a multi-
variate Gaussian distribution with zero mean and identity covariance matrix. We construct thek-th
element ofh(X) as

hRSF

k (X) = Heaviside(wk
⊤X − b), (12)

wherewk is thek-th row ofW andb is an adjustable offset term. Heaviside(t) is the step function
that takes the value of 1 whent > 0 and the value of 0 otherwise. Note thatb controls the sparsity
of hRSF(X), a property that can be computationally advantageous.

Our choice of random matrixW is motivated by earlier work in neural networks with infinitenum-
ber of hidden units, and recent work in large-scale kernel machines and deep learning kernels [24–
26]. In particular, in the limit ofH → +∞, the transformedX induces an RKHS space with the
arccos kernel:hRSF(u)⊤hRSF(v) = 1− 1/π cos−1(u⊤

v/‖u‖‖v‖) [26].

Nonparametric. We have also experimented with a setup whereZ is not constrained to any para-
metric form. In particular, we optimizêJ(Z,X) over all possible valuesZ ∈ R

M . While more
powerful in principle than either linear KDR or the RBF or RSFvariants of nonlinear KDR, we have
found that empirically that the optimization can get stuck in local optima. However, when initialized
with the solutions from the other nonlinear methods, the final solution is generally better.

3.3 Choice of kernels

The independence measuresĴ(B⊤X,X) are defined via kernels overB⊤X andX . A natural
choice is a universal kernel, in particular the Gaussian kernel: KB⊤X(xi,xj) = exp{−‖B⊤

xi −
B

⊤
xj‖2/σ2

B}, and similarly forX with a different bandwidthσX . We have also experimented with
other types of kernels; in particular we have found the following kernels to be of particular interest.

Random walk kernel over X . GivenN observations,{x1,x2, . . . ,xN}, we note that the RBN
transformedxi in eq. (11), when properly normalized, can be seen as the probability of random
walk fromxi toxj ,

pij = P (xi → xj) = exp{−‖xi − xj‖2/σ2

i } /
∑

j 6=i

exp{−‖xi − xj‖2/σ2

i }. (13)

The matrixP with elements ofpij is clearly not symmetric and not positive semidefinite. Never-
theless, a simple transformationKX = PP

⊤turns it into a positive semidefinite kernel. Intuitively,
the values ofpij describe local structures aroundxi [14]. ThusKX(xi,xj) =

∑

k pikpjk measures
the similarity betweenxi andxj in terms of these local structures.

Cauchy kernel for B⊤X . A Cauchy kernel is a positive semidefinite kernel and is givenby

C(u,v) = 1/
(

1 + ‖u− v‖2
)

= exp
{

− log(1 + ‖u− v‖2)
}

. (14)

We defineKB⊤X(xi,xj) = C(B⊤
xi,B

⊤
xj). Intuitively, the Cauchy kernel can be viewed as a

Gaussian kernel in the transformed spaceφ(B⊤X) such thatφ(xi)
⊤φ(xj) = C(xi,xj) [27].

These two types of kernels are closely related tot-distributed stochastic neighbor embedding (t-
SNE), a state-of-the-art technique for dimensionality reduction [15]. We discuss the link in the
Supplementary Material.

3.4 Numerical optimization

We apply gradient-based techniques (with line search) to optimize either independence mea-
sure. The techniques constrain the projection matrixB to lie on the Grassman-Stiefel manifold
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Figure 1: Experiments with synthetic 2D data. (a). Original. (b) 1D embedding byt-SNE. (c) and
(d) are 1D embeddings by UKDR. They differ in terms of how the embeddings are constrained (see
text for details). Vertical axes are the coordinates of 1D embeddings.t-SNE failed to separate data.
UKDR makes fewer mistakes in (c) and no mistakes in (d).

B
⊤
B = I [28]. While the optimization is nonconvex, our optimization algorithm works quite well

in practice.

The complexity of computing gradients is quadratic in the number of data points as the kernel ma-
trix needs to be computed. Standard tricks—such as chunking—for handling large kernel matrices
apply, though our empirical work has not used them. In order to optimize on the Stiefel manifold,
computing the search direction from the gradient needs a QR decomposition which depends cu-
bicly onD, the original dimensionality. More efficient implementation can bring the complexity to
quadratic onD and linearly onM , the dimensionality of the low-dimensional space. One simple
strategy is to use PCA as a preprocessing step to obtain a moderateD.

4 Experiments

We compare the performance of our proposed methods for unsupervised kernel dimension reduction
(UKDR) to a state-of-the-art method, specificallyt-distributed stochastic neighbor embedding (t-
SNE) [15]. t-SNE has been shown to excel in many tasks of data visualization and clustering. In
addition to visual examination of 2D embedding quality, we also investigate the performance of the
resulting low-dimensional representations in classification. In all of the experiments reported in this
section, we have used the independence measureĴB⊤X X(B⊤X,X) of eq. (10).

4.1 Synthetic example

Our synthetic example contains 300 data points randomly distributed on two rings, shown in
Fig. 1(a). We uset-SNE and our proposed method to yield 1D embeddings of these data points,
plotted in Fig. 1(b)–1(d). The horizontal axis indexes the data points where the first 100 indices
correspond to the inner ring.

Fig. 1(b) plots a typical embedding byt-SNE where we see that there is significant overlap be-
tween the clusters. On the other hand, UKDR is able to generate less overlapped or non-overlapped
clusters. In Fig. 1(c), the embedding is computed as the linear projection of the RBN-transformed
original data. In Fig. 1(d), the embedding is unconstrainedand free to take any value on 1D axis,
corresponding to the “nonparametric embedding” presentedin section 3.

4.2 Images of handwritten digits

Our second data set is a set of 2007 images of USPS handwrittendigits [20]. Each image has 256
pixels and is thus represented as a point inR

256. We refer to this data set as “USPS-2007.” We also
sampled a subset of 500 images, 100 each from the digits 1, 2, 3, 4 and 5. Note that images of digit
3 and 5 are often indistinguishable from each other. We referto this dataset as “USPS-500.”

USPS-500.Fig. 2 displays a 2D embedding of the 500 images. The colors encode digit categories
(which are used only for visualization). The first row was generated with kernel PCA, Laplacian
eigenmaps andt-SNE.t-SNE clearly outperforms the other two in yielding well-separated clusters.
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The second row was generated with our UKDR method with Gaussian kernels for both the low-
dimensional coordinatesZ andX . The difference between the three embeddings is whetherZ is
constrained as a linear projection of the originalX (linear UKDR), an RBN-transformedX (RBN
UKDR), or a Random Sparse Feature transform ofX (RSF UKDR). The Gaussian kernel band-
widths overZ were 0.1, 0.02 and 0.5, respectively. For the RBN transformation of X , we selected
the bandwidth of each RBF function in eq. (11) with the “perplexity trick” used in SNE andt-
SNE [15]. The bandwidth for the Gaussian kernel overX was 0.5 for all three plots. While linear
UKDR yields reasonably good clusters of the data, RBN UKDR and RSF UKDR yield significantly
improved clusterings. Indeed, the quality of the embeddings is on par with that oft-SNE.

In the third row of the figure, the embeddingZ is constrained to be RSF UKDR. However, instead
of using Gaussian kernels (as in the second row), we have usedCauchy kernels. The kernels overX
are Gaussian, Random Walk, and Diffusion Map kernels [29], respectively. In general, contrasting
to embeddings in the second row, using a Cauchy kernel for theembedding spaceZ leads to tighter
clusters. Additionally, the embeddings by the diffusion map kernel is the most visually appealing
one, outperformingt-SNE by significantly increasing the gap of digit 1 and 4 from the others.

−6 −4 −2 0 2 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 

 

1
2
3
4
5

(a) Kernel PCA

−0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

 

 

1
2
3
4
5

(b) Laplacian eigenmap

−50 0 50 100
−40

−20

0

20

40

 

 1
2
3
4
5

(c) t-SNE

−0.4 −0.2 0 0.2 0.4 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

1
2
3
4
5

(d) Linear UKDR

−1 0 1 2 3
−0.5

0

0.5

1

1.5

2

 

 

1
2
3
4
5

(e) RBN UKDR

−1 0 1 2 3 4
−0.5

0

0.5

1

1.5

2

2.5

 

 

1
2
3
4
5

(f) RSF UKDR

−4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

 

 

1
2
3
4
5

(g) Gaussian+Cauchy

−2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 

 

1
2
3
4
5

(h) Random Walk+Cauchy

−2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 

 

1
2
3
4
5

(i) Diffusion+Cauchy

Figure 2: 2D embedding results for the USPS-500 dataset by existing approaches, shown in the first
row. Embeddings by UKDR are shown in the bottom two panels.

Effect of sparsity. For RSF features computed with eq. (12), the offset constantb can be used to
obtain control over the sparsity of the feature vectors. We investigated the effect of the sparsity
level on embeddings. We found that a sparsity level as high as82% still generates reasonable
embeddings. Details are reported in the Supplementary Material. Thus RSF features are viable
options for handling high-dimensional data for nonlinear UKDR.

USPS-2007: visualization and classification.In Fig. 3, we compare the embeddings oft-SNE and
unsupervised KDR on the full USPS 2007 data set. The data set has many easily confusable pairs
of images. Botht-SNE and unsupervised KDR lead to visually appealing clustering of data. In the
UKDR framework, using an RBN transformation to parameterize the embedding performs slightly
better than using the RSF transformation.
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M 2 3 5 10 20 50
UKDR 11.1 11.6 9.6 9.5 8.8 7.8
t-SNE 19.8 16.8 19.3 8.4 8.2 8.1
PCA 49.3 42.2 21.5 10.03 6.7 6.6

Table 1: Classification errors on the USPS-2007 data set withdifferent dimensionality reduction
techniques.

Finally, as another way to assess the quality of the low-dimensional embeddings discovered by these
methods, we used these embeddings as inputs to supervised classifiers. The classifier we used was
the large-margin nearest-neighbor classifier of [30]. We split the 2007 images into 70% for training
and 30% for testing and reporting classification errors. We repeated the random split 50 times and
report averaged errors. The results are displayed in table 1where PCA acts as a baseline. There are
several notable findings. First, with very few dimensions (up to and including 5), our UKDR method
outperforms botht-SNE and PCA significantly. As the dimensionality goes up,t-SNE starts to
perform better than our method but only marginally. PCA is expected to perform well with very high
dimensionality as it recovers pairwise distances the best.The superior classification performance by
our method is highly desirable when the target dimensionality is very much constrained.
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Figure 3: Embeddings of the USPS-2007 data set by our nonlinear UKDR approach and byt-SNE.
Both methods separate all classes reasonably well. However, using these embeddings as inputs to
classifiers suggests that the embedding by nonlinear UKDR isof higher quality.

5 Conclusions

We propose a novel technique for unsupervised dimensionality reduction. Our approach is based on
kernel dimension reduction. The algorithm identifies low-dimensional representations of input data
by optimizing independence measures computed in a reproducing kernel Hilbert space. We study
empirically and contrast the performance of our method to that of state-of-the-art approaches. We
show that our method yield meaningful and appealing clustering patterns of data. When used for
classification, it also leads to significantly lower misclassification.
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