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Abstract

We apply the framework of kernel dimension reduction, orédly designed for
supervised problems, to unsupervised dimensionalityatsalu In this frame-
work, kernel-based measures of independence are usedve ldevr-dimensional
representations that maximally capture information inac@tes in order to pre-
dict responses. We extend this idea and develop similarlijivated measures
for unsupervised problems where covariates and respomsehea same. Our
empirical studies show that the resulting compact reptesien yields meaning-
ful and appealing visualization and clustering of data. tlif@nmore, when used
in conjunction with supervised learners for classificationr methods lead to
lower classification errors than state-of-the-art methedpecially when embed-
ding data in spaces of very few dimensions.

1 Introduction

Dimensionality reduction is an important aspect of manyisttaal learning tasks. In unsupervised
dimensionality reduction, the primary interest is to presesignificant properties of the data in a
low-dimensional representation. Well-known exampleshaf theme include principal component
analysis, manifold learning algorithms and their manyasais [1-4].

In supervised dimensionality reduction, side informai®available to influence the choice of the
low-dimensional space. For instance, in regression pnaglee are interested in jointly discovering
a low-dimensional representatighof the covariatesy and predicting well the response variable
Y givenZ. A classical example is Fisher discriminant analysis foy response variables, which
projectsX to a one-dimensional line. For more complicated cases, Yexnvene needs to specify
a suitable regression functioB,[Y | X |, in order to identifyZ. This is often a challenging task in
itself, especially for high-dimensional covariates. Rarmore, one can even argue that this task is
cyclically dependent on identifying, as one of the motivations for identifying is that we would
hope that the low-dimensional representation can guide selecting a good regression function.

To address this dilemma, there has been a growing interssfficient dimension reduction (SDR)
and related techniquels [5-8]. SDR seeks a low-dimensiénahich captures all the dependency
betweenX andY. This is ensured by requiring conditional independencerajrtbe three vari-
ables;i.e.X I Y |Z. Several classical approaches exist to identify such nandectorsZ [6,(9].
Recently, kernel methods have been adapted to this purpogarticular,kernel dimensional re-
duction(KDR) develops a kernel-based contrast function that nreashe degree of conditional in-
dependence[7]. Compared to classical techniques, KDRhleasignificant advantage that it avoids
making strong assumptions about the distributioXofTherefore, KDR has been found especially
suitable for high-dimensional problems in machine leagrind computer vision [8, 10, 111].

In this paper we show how the KDR framework can be used in ttimgef unsupervised learning.
Our idea is similar in spirit to a classical idea from the rauretwork literature: we construct



an “autoencoder” or “information bottleneck” where thepesse variables are the same as the
covariates([12, 13]. The key difference is that autoencodethe neural network literature were
based on a specific parametric regression function. By é@kpgdhe SDR and KDR frameworks,
on the other hand, we can cast the unsupervised learnindepmnokithin a general nonparametric
framework involving conditional independence, and in jgatar as one of optimizing kernel-based
measures of independence.

We refer to this approach as “unsupervised kernel dimeastgrreduction” (UKDR). As we will
show in an empirical investigation, the UKDR approach warkd in practice, comparing favorably
to other techniques for unsupervised dimension reduciiémassess this via visualization and via
building classifiers on the compact representations deli/éy these methods. We also provide
some interesting analytical links of the UKDR approach tickastic neighbor embedding (SNE)
andt-distributed SNE#-SNE) [14/15].

The paper is organized as follows. In Secfidn 2, we review3D& framework and discuss how
kernels can be used to solve the SDR problem. Additionalky,describe two specific kernel-
based measures of independences, elucidating a relapoostween these measures. We show
how the kernel-based approach can be used for unsupeniimedsionality reduction in Sectidnh 3.
We report empirical studies in Sectibh 4. Finally, we codel@and comment on possible future
directions in Sectiof]5.

Notation Random variables are denoted with upper-case characiisaslX andY. To refer to
their specific values, if vectorial, we use bold lower-casehsasx andx,,. x; stands for the-th
element ofe. Matrices are in bold upper-case suchids

2 Sufficient dimension reduction and measures of independee with kernels

Discovering statistical (in)dependencies among randaiabkes is a classical problem in statistics;
examples of standard measures include Spearmakisndall'sT and Pearson’s? tests. Recently,
there have been a growing interest in computing measureglependence in Reproducing Kernel
Hilbert spaces (RKHSs)|[7, 116]. Kernel-based (and othepacametric) methods detect nonlinear
dependence in random variables without assuming spedditaeships among them. In particular,
the resulting independence measures attain minimum valbhes random variables are indepen-
dent. These methods were originally developed in the comieidependent component analy-
sis [17] and have found applications in a variety of otherbfgms, including clustering, feature
selection, and dimensionality reductioh([7| 8, [18-21].

We will be applying these approaches to unsupervised dimeality reduction. Our proposed
techniques aim to yield low-dimensional representationctvlis “maximally” dependent on the
original high-dimensional inputs—this will be made precis a later section. To this end, we first
describe briefly kernel-based measures of (conditionagpendence, focusing on how they are
applied to supervised dimensionality reduction.

2.1 Kernel dimension reduction for supervised learning

In supervised dimensionality reduction for classificatéonl regression, the response variables
Y, provides side information about the covariat®sc X'. In a basic version of this problem we
seek a linear projectiol € R”*M to projectX from D-dimensional space to & -dimensional
subspace. We would like the low-dimensional coordindfes: B'X to be as predictive about
Y asX is;i.e,E[Y|B'X] = E[Y |X]. Intuitively, knowing Z is sufficient for the purpose of
regressing’.

This problem is referred to aufficient dimension reductidi$DR) in statistics, where it has been
the subject of a large literaturie [22]. In particular, SDRlsea projectiorB such that,

X 1LY|B'X, subjecttoB'B=1. (1)

wherel is theM x M identity matrix. Several methods have been proposed tmastB [6,[d]. Of
special interest is the technique of kernel dimensionalcgdn (KDR) that is based on assessing
conditional independence in RKHS spadés [7]. Concretetynvap the two variableX andY
to the RKHS space& andg induced by two positive semidefinite kernélsy : X x X — R



andKy : Y x Y — R. For any functiorny € G, there exists a conditional covariance operator
Cyy|x : G — G such that

<gchY|X g)g =E [VarY|X[g(Y)|XH (2

calculates the residual errors of predictif(d@”) with X [7, Proposition 3]. Similarly, we can define
the conditional covariance opera@fy‘x for predicting withB "X .

The conditional covariance operator has an important ptppéor any projectionB, C{?Y'X >

Cyy|x where the (partial) order is defined in terms of the trace atper Moreover, the equality
holds if and only if eq.[(l1) is satisfied. This gives rise to gussibility of using the trace of the
operators as a contrast function to estim@te

Concretely, withNV samples drawn fron® (X, Y’), we compute the corresponding kernel matrices
Ky andKy. We centralize them with a projection matd = I — 1/N 11, wherel € RY

be the vector whose elements are all ones. The trace of tinea¢stl conditional variance operator
CPy|x is then defined as follows:

Jyy|x(B'X,Y) = Trace [Gy (Gprx + NexIn) '], ()

whereGy = HKyH andGgty = HKpgryH. ey is a regularizer, smoothing the kernel

matrix. It should be chosen such that wh¥n— +o0, ey — 0 andv/Ney — 400 to ensure con-
sistency|[7]. The minimizer of the conditional independenteasure yields the optimal projection
B for kernel dimensionality reduction:

Byy|x = argmingrp_; Jyy|x(B'X,Y). (4)

We defer discussion on choosing kernels as well as numeidtahization to later sections. When
itis clear from context, we uséyy | x as a shorthand fdyy‘x(BTX, Y).

The optimization functional in eq[}(3) is not the only way toglement the KDR idea. Indeed,
another kernel-based measure of independence that cantibezep in the KDR context is the
Hilbert-Schmidt Independence CriterigHSIC) [16]. This is built as the Hilbert-Schmidt norm of
thecross-covariance operatdtxy, defined agj — F:

cov(f,g) = (f,Cxvg)r = Exy {[f/(X) = Ex f(X)][9(Y) — Eyg(Y)]}, ®)

where the expectations are taken with respect to the jogtitilolition and the two marginals respec-
tively. It has been shown that for universal kernels such agsGian kernels the Hilbert-Schmidt
norm ofCyy is zero if and only ifX andY” are independerit[16]. GiveN samples fronP(X,Y),
the empirical estimate of HSIC is given by (up to a multipliea constant):

Jxy(X,Y) =Trace HK x HKy], (6)

where Ky and Ky areR™V*"N kernel matrices computed ovéf andY respectively. To apply
this independence measure to dimensionality reductiorseg& a projectioB which maximizes

ij(BTX, Y), such that the low-dimensional coordinatés= B "X are maximally correlated
with X,

Bxy = argmaxgrg_;Jxy(B'X,Y) = argmaxgrp_; Trac HK grx HKy].  (7)

It is interesting to note that the independence measures.if@¢ and eq.[{(6) are similar. In fact,
we have been able to find conditions under which they are atgnt, as stated in the following
proposition.

Proposition 1. Let N — +oc andey — 0. Additionally, assume that the samples are distributed
uniformly on the unit sphere. #y < €%, then up to a constant,

Jyy|x(B'X,Y) ~ —coN?e} Jxy(B'X,Y). (8)

Therefore, under these conditions it is equivalent to Miztiarrfwa(BTX,Y) or to maximize
Jxy(BTX,Y). Thus,Bxy ~ Byy|x.



Proof The proof is sketched in the supplementary material. Naeadksuming the norm of is
equal to one is not overly restrictive; in practice, one mfieeds to normalize data points to control
the overall scale.

We note that while the two measures are asymptotically edgriv, they have different computa-
tional complexity—computing xy does not involve matrix inversion. Furthermayg:y is slightly
easier to use in practice as it does not depend on reguiarizsirameters to smooth the kernel ma-
trices.

The HSIC measuréyy is also closely related to the technique of kernel alignmdrith minimizes
the angles between (vectorized) kernel matrikes and Ky [23]. This is equivalent to maximizing
Tracé K x Ky |/(| Kx|||r|| Ky ). The alignment technique has been used for clusteringXata
by assigning cluster labelg so that the two kernel matrices are maximally aligned. ThéCHS
measure has also been used for similar tasks [18]. While ﬁpmx and.Jxy have been used
for supervised dimensionality reduction with known valoéd”, they have not yet been applied to
unsupervised dimensionality reduction, which is the dicgcthat we pursue here.

3 Unsupervised kernel dimension reduction

In unsupervised dimensionality reduction, the low-dimenal representatio can be viewed as
a compression oK. The goal is to identify theZ that captures as much of the informationXn
as possible. This desideratum has been pursued in the metwnadrk literature where autoencoders
learn a pair of encoding and decoding functiois= f(X) andX = ¢(Z). A drawback of this
approach is thaf andg need to be specified a priori, in terms of number of layers andans in
neural nets.

Can we leverage the advantages of SDR and KDR to ide#tifyithout specifyingf (X) or g(Z)?

In this section, we describe how this can be done, viewingpewised dimensionality reduction as
a special type of supervised regression problem. We starbbgidering the simplest case whefe
is a linear projection of. We then consider nonlinear approaches.

3.1 Linear unsupervised kernel dimension reduction

Given a random variabl& e R”, we consider the regression probleth= f(BTX) where X
is a copy ofX andZ = B'X < RM is the low-dimensional representation¥f Following the
framework of SDR and KDR in sectidn 2, we seBksuch thatX I X | B'X. SuchB'X thus
captures all information itk in order to construct itself (i.eX).

With a set of N samples fromP(X), the linear projectioB can be identified as the minimizer of
the following kernel-based measure of independence

min jXX|BTX = Trace I:GX(GBTX +N6NI)_1] ) (9)
BT'B=I
whereGx andGpgrx are centralized kernel matrices &f x and K gy respectively. We can
alternatively maximize the corresponding HSIC measurespeddence betweds "X and X

max jBTXX = Trace[GXGBTx]. (10)
B™B=I

We refer collectively to this kernel-based dimension reiduncmethod as linear unsupervised KDR

(UKDR) and we usef(BTX, X) as a shorthand for the independence measure to be either mini
mized or maximized.

3.2 Nonlinear unsupervised kernel dimension reduction

For data with complicated multimodal distributions, linansformation of the input¥ is unlikely
to be sufficiently flexible to reveal useful structures. Feample, linear projections can result in
overlapping clusters in low-dimensional spaces. For thipgae of better data visualization and
exploratory data analysis, we describe several simple fiettave nonlinear extensions to linear
UKDR. The main idea is to find a linear subspace embedding ofimearly transformedX. Let



h(X) € R denote the nonlinear transformation. The projecti®s then computed to optimize
J(BTh(X), X).
Radial Basis Network (RBN).In the spirit of neural network autoencoder, one obviousashof

h(X) is to use a network of radial basis functions (RBFs). In tisecH = N, the number of
samples fromX. For a samplez;, then-th component ofi(x;) is given by

hyPN () = exp{—||@; — @, /o7 }, (11)
wherez,, is the center of the-th RBF ands,, is the corresponding bandwidth.

Random Sparse Feature (RSF)In this approach we draw x H elements ofl/ from a multi-
variate Gaussian distribution with zero mean and identiyaciance matrix. We construct tieth
element of(X) as

RS (X) = Heavisidgw;, ' X — b), (12)
wherewy, is thek-th row of W andb is an adjustable offset term. Heavisjtleis the step function
that takes the value of 1 wher> 0 and the value of 0 otherwise. Note tltedontrols the sparsity
of hRSF(X), a property that can be computationally advantageous.

Our choice of random matril is motivated by earlier work in neural networks with infinitem-
ber of hidden units, and recent work in large-scale kernahimes and deep learning kernels [24—
[26]. In particular, in the limit off — +oo0, the transformed induces an RKHS space with the
arccos kernel: kRS (1) ThRSF (v) = 1 — 1 /7 cos™(u v /||ul|||v]]) [2€].

Nonparametric. We have also experimented with a setup wh&rs not constrained to any para-

metric form. In particular, we optimizé(Z,X) over all possible valueg € RM. While more
powerful in principle than either linear KDR or the RBF or R&ffiants of nonlinear KDR, we have
found that empirically that the optimization can get stutloical optima. However, when initialized
with the solutions from the other nonlinear methods, thd Bpéution is generally better.

3.3 Choice of kernels

The independence measuré6B X, X) are defined via kernels ovdB "X and X. A natural
choice is a universal kernel, in particular the Gaussian&elk gy (z;, x;) = exp{—| B z; —

B'z;||?/0%}, and similarly forX with a different bandwidtlr x . We have also experimented with
other types of kernels; in particular we have found the feitm kernels to be of particular interest.

Random walk kernel over X. Given N observations{x;, x>, ...,xy}, we note that the RBN
transformedr; in eq. [11), when properly normalized, can be seen as theapility of random
walk froma; to x;,

pij = P(x; = @) = exp{—|a; —a;]|*/a7} | Y exp{—|@; — x;|*/o7}. (13)
J#i
The matrix P with elements op;; is clearly not symmetric and not positive semidefinite. Neve
theless, a simple transformatidty = PP "turns it into a positive semidefinite kernel. Intuitively,

the values op;; describe local structures aroumd[@]. ThusKx (i, z;) = >, pikPjx Measures
the similarity betweem; andz; in terms of these local structures.
Cauchy kernel for B'X. A Cauchy kernel is a positive semidefinite kernel and is glwgn

Cu,v) =1/ (1 + ||u— ’UHQ) = exp {—log(l + ||u— v||2)} . (14)
We defineK grx (zi, x;) = C(B'z;, B'z;). Intuitively, the Cauchy kernel can be viewed as a
Gaussian kernel in the transformed spatB "X ) such thais(z;) "é(z;) = C(z;, x;) [27].

These two types of kernels are closely related-thstributed stochastic neighbor embedding (
SNE), a state-of-the-art technique for dimensionalityuatibn [15]. We discuss the link in the
Supplementary Material.

3.4 Numerical optimization

We apply gradient-based techniques (with line search) timige either independence mea-
sure. The techniques constrain the projection maRBixo lie on the Grassman-Stiefel manifold
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Figure 1: Experiments with synthetic 2D data. (a). Origirta) 1D embedding by-SNE. (c) and
(d) are 1D embeddings by UKDR. They differ in terms of how the&beddings are constrained (see
text for details). Vertical axes are the coordinates of 1eduings:-SNE failed to separate data.
UKDR makes fewer mistakes in (¢) and no mistakes in (d).

B'B = I [24]. While the optimization is nonconvex, our optimizatialgorithm works quite well
in practice.

The complexity of computing gradients is quadratic in thenber of data points as the kernel ma-
trix needs to be computed. Standard tricks—such as chunkioghandling large kernel matrices
apply, though our empirical work has not used them. In ordeptimize on the Stiefel manifold,
computing the search direction from the gradient needs a €Rrdposition which depends cu-
bicly on D, the original dimensionality. More efficient implementatican bring the complexity to
qguadratic onD and linearly onM, the dimensionality of the low-dimensional space. One &mp
strategy is to use PCA as a preprocessing step to obtain aratede

4 Experiments

We compare the performance of our proposed methods for enggpd kernel dimension reduction
(UKDR) to a state-of-the-art method, specificalbglistributed stochastic neighbor embedding (
SNE) [15]. t-SNE has been shown to excel in many tasks of data visualizatid clustering. In
addition to visual examination of 2D embedding quality, wsoanvestigate the performance of the
resulting low-dimensional representations in classifcatin all of the experiments reported in this

section, we have used the independence meaksire x(BTX, X) of eq. [10).

4.1 Synthetic example

Our synthetic example contains 300 data points randomliyildised on two rings, shown in
Fig.[I(a). We use-SNE and our proposed method to yield 1D embeddings of thatepmbints,
plotted in Fig[I(B)EL(d). The horizontal axis indexes tlaadpoints where the first 100 indices
correspond to the inner ring.

Fig.[I(b) plots a typical embedding lySNE where we see that there is significant overlap be-
tween the clusters. On the other hand, UKDR is able to gemérss overlapped or non-overlapped
clusters. In Fig[ 1(¢), the embedding is computed as thatipeojection of the RBN-transformed
original data. In Figl ZI(d), the embedding is unconstraiaed free to take any value on 1D axis,
corresponding to the “nonparametric embedding” presentsdctior 3.

4.2 Images of handwritten digits

Our second data set is a set of 2007 images of USPS handwditiés [20]. Each image has 256
pixels and is thus represented as a poi#°. We refer to this data set as “USPS-2007.” We also
sampled a subset of 500 images, 100 each from the digits 142ar8d 5. Note that images of digit
3 and 5 are often indistinguishable from each other. We teftéris dataset as “USPS-500."

USPS-500.Fig.[2 displays a 2D embedding of the 500 images. The colarsdmdigit categories
(which are used only for visualization). The first row was geted with kernel PCA, Laplacian
eigenmaps antt$SNE.t-SNE clearly outperforms the other two in yielding well-aegted clusters.



The second row was generated with our UKDR method with Gandsérnels for both the low-
dimensional coordinate8 and X. The difference between the three embeddings is whether
constrained as a linear projection of the origiallinear UKDR), an RBN-transformed (RBN
UKDR), or a Random Sparse Feature transformXo{RSF UKDR). The Gaussian kernel band-
widths overZ were 0.1, 0.02 and 0.5, respectively. For the RBN transfionaf X, we selected
the bandwidth of each RBF function in e.{11) with the “perily trick” used in SNE and-
SNE [15]. The bandwidth for the Gaussian kernel a¥ewas 0.5 for all three plots. While linear
UKDR vyields reasonably good clusters of the data, RBN UKDRRBF UKDR yield significantly
improved clusterings. Indeed, the quality of the embedsliag@n par with that of-SNE.

In the third row of the figure, the embedditgis constrained to be RSF UKDR. However, instead
of using Gaussian kernels (as in the second row), we haveG@meachy kernels. The kernels ovgr
are Gaussian, Random Walk, and Diffusion Map kerriels [28Jpectively. In general, contrasting
to embeddings in the second row, using a Cauchy kernel fagrtifeedding spacg leads to tighter
clusters. Additionally, the embeddings by the diffusionmhk@rnel is the most visually appealing
one, outperforming-SNE by significantly increasing the gap of digit 1 and 4 frdma dthers.
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Figure 2: 2D embedding results for the USPS-500 datasetibtirexapproaches, shown in the first
row. Embeddings by UKDR are shown in the bottom two panels.

Effect of sparsity. For RSF features computed with elg.](12), the offset constaah be used to
obtain control over the sparsity of the feature vectors. Westigated the effect of the sparsity
level on embeddings. We found that a sparsity level as higB246 still generates reasonable
embeddings. Details are reported in the SupplementaryrihteThus RSF features are viable
options for handling high-dimensional data for nonline&mR.

USPS-2007: visualization and classificationn Fig.[3, we compare the embeddings«3NE and
unsupervised KDR on the full USPS 2007 data set. The dataasatniany easily confusable pairs
of images. Botht-SNE and unsupervised KDR lead to visually appealing ctirgjeof data. In the
UKDR framework, using an RBN transformation to parametetie embedding performs slightly
better than using the RSF transformation.



M 2 3 5 10 20 | 50
UKDR | 11.1| 116 | 9.6 95 | 88| 7.8
t-SNE | 19.8| 16.8| 19.3| 84 | 82| 8.1

PCA | 49.3| 42.2| 215] 10.03| 6.7 | 6.6

Table 1: Classification errors on the USPS-2007 data setdifittrent dimensionality reduction
techniques.

Finally, as another way to assess the quality of the low-dsimnal embeddings discovered by these
methods, we used these embeddings as inputs to supendssifiers. The classifier we used was
the large-margin nearest-neighbor classifier_of [30]. We 8 2007 images into 70% for training
and 30% for testing and reporting classification errors. ®¥yeated the random split 50 times and
report averaged errors. The results are displayed inffableete PCA acts as a baseline. There are
several notable findings. First, with very few dimensiorstuand including 5), our UKDR method
outperforms both-SNE and PCA significantly. As the dimensionality goes tfSNE starts to
perform better than our method but only marginally. PCA igepted to perform well with very high
dimensionality as it recovers pairwise distances the déwst.superior classification performance by
our method is highly desirable when the target dimensitnalivery much constrained.
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Figure 3: Embeddings of the USPS-2007 data set by our n@mlld&DR approach and biSNE.
Both methods separate all classes reasonably well. Hoygsieg these embeddings as inputs to
classifiers suggests that the embedding by nonlinear UKRhgyher quality.

5 Conclusions

We propose a novel technique for unsupervised dimenstgmatiuction. Our approach is based on
kernel dimension reduction. The algorithm identifies loimensional representations of input data
by optimizing independence measures computed in a repiragikernel Hilbert space. We study

empirically and contrast the performance of our method &b ¢t state-of-the-art approaches. We
show that our method yield meaningful and appealing clusigratterns of data. When used for
classification, it also leads to significantly lower missléisation.
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