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A Contraction Proof for Strongly Convex Functions

Lemma 13 (Lemma 7, [6]) Assume that f is convex and moreover that ∇f(x) is Lipschitz contin-
uous with constant H . Finally, denote by x∗ the minimizer of f . In this case

‖∇f(x)‖2 ≤ 2H[f(x)− f(x∗)]. (10)

c is λ-strongly convex if for all x, y ∈ M :

λ

2
(y − x)2 +∇c(x) · (y − x) + c(x) ≤ c(y) (11)

Lemma 14 If c is λ-strongly convex, x∗ is the minimizer of c, then f(x) = c(x) − λ
2 (x − x∗)2 is

convex and x∗ minimizes f .

Proof Note that for x, y ∈ M :

λ

2
(y − x)2 +∇c(x) · (y − x) + c(x) ≤ c(y) (12)

∇f(x) = ∇c(x)− λ(x− x∗) (13)

We can write ∇c and c as functions of f :

∇c(x) = ∇f(x) + λ(x− x∗) (14)

c(x) = f(x) +
λ

2
(x− x∗)2 (15)

Plugging f and ∇f into Equation 12 yields:

λ

2
(y − x)2 +∇f(x) · (y − x) + λ(x− x∗) · (y − x) + f(x) +

λ

2
(x− x∗)2 ≤ f(y) +

λ

2
(y − x∗)2

(16)
−λy · x+∇f(x) · (y − x) + λx · y − λx∗ · y + λx · x∗ + f(x)− λx · x∗ ≤ f(y)− λy · x∗

(17)
∇f(x) · (y − x) + f(x) ≤ f(y) (18)

Thus, f is convex. Moreover, since ∇f(x∗) = ∇c(x∗) − λ(x∗ − x∗) = ∇c(x∗) = 0, then x∗ is
optimal for f as well as c.

Lemma 15 If c is λ-strongly convex, x∗ is the minimizer of c, ∇c is Lipschitz continuous f(x) =

c(x)− λ
2 (x− x∗)2, η <

(
λ+ ‖∇f‖Lip

)−1
, and η < 1, then for all x ∈ M :

d(x− η∇c(x), x∗) ≤ (1− ηλ)d(x, x∗) (19)

Proof
To keep things terse, define H := ‖∇c‖Lip.

First observe that λ+ ‖∇f‖Lip ≥ ‖∇c‖Lip, so η < H−1.

Without loss of generality, assume x∗ = 0. By the definition of Lipschitz continuous,
‖∇c(x)−∇c(x∗)‖ ≤ H ‖x− x∗‖ and therefore ‖∇c(x)‖ ≤ H ‖x‖. Therefore, ∇c(x) · x ≤
H ‖x‖2. In other words:

(x− η∇c(x)) · x = x · x− η∇c(x) · x (20)

(x− η∇c(x)) · x ≥ ‖x‖2 (1− ηH) (21)
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Therefore, at least in the direction of x, if η < H−1, then (x − η∇c(x)) · x ≥ 0. Define H ′ =
‖∇f‖Lip. Since f is convex and x∗ is optimal:

∇f(x) · (0− x) + f(x) ≤ f(x∗) (22)
f(x)− f(x∗) ≤ ∇f(x) · x (23)

(24)

By Lemma 13:

‖∇f(x)‖2

2H ′ ≤ ∇f(x) · x (25)

We break down ∇f(x) into g‖ and g⊥, such that g‖ = ∇f(x)·x
‖x‖2 x, and g⊥ = x − g‖. Therefore,

g⊥ · g‖ = 0, and ‖∇f(x)‖2 =
∥∥g‖

∥∥2+ ‖g⊥‖2, and ∇c(x) ·x = (λx+ g‖) ·x. Thus, since we know
(x− η∇c(x)) · x is positive, we can write:

‖x− η∇c(x)‖2 =
∥∥x− ηλx− ηg‖

∥∥2 + ‖ηg⊥‖2 (26)

Thus, looking at
∥∥(1− ηλ)x− ηg‖

∥∥2:
∥∥(1− ηλ)x− ηg‖

∥∥2 = ((1− ηλ)x− ηg‖) · ((1− ηλ)x− ηg‖) (27)
∥∥(1− ηλ)x− ηg‖

∥∥2 = (1− ηλ)2 ‖x‖2 − 2(1− ηλ)ηg‖ · x+ η2
∥∥g‖

∥∥2 (28)
∥∥(1− ηλ)x− ηg‖

∥∥2 ≤ (1− ηλ)2 ‖x‖2 − 2(1− ηλ)
‖∇f(x)‖2

2H ′ + η2
∥∥g‖

∥∥2 (29)

∥∥(1− ηλ)x− ηg‖
∥∥2 ≤ (1− ηλ)2 ‖x‖2 − 2(1− ηλ)

∥∥g‖
∥∥2 + ‖g⊥‖2

2H ′ + η2
∥∥g‖

∥∥2 (30)

‖x− η∇c‖2 ≤ (1− ηλ)2 ‖x‖2 − 2(1− ηλ)

∥∥g‖
∥∥2 + ‖g⊥‖2

2H ′ + η2
∥∥g‖

∥∥2 + ‖ηg⊥‖2 (31)

‖x− η∇c‖2 ≤ (1− ηλ)2 ‖x‖2 + H ′η2 + ηλ− 1

H ′

(∥∥g‖
∥∥2 + ‖g⊥‖2

)
(32)

Since η < 1, H ′η2 + ηλ− 1 < H ′η + ηλ− 1 < 0. The result follows directly.

Lemma 16 Given a convex function L where ∇L is Lipschitz continuous, define c(x) = λ
2x

2 +

L(x). If η <
(
λ+ ‖∇L‖Lip

)−1
, then for all x ∈ M :

d(x− η∇c(x), x∗) ≤ (1− ηλ)d(x, x∗) (33)

Proof Define x∗ to be the optimal point, and f(x) = c(x)− λ
2 (x− x∗)2. Then:

f(x) = c(x)− λ

2
x2 + λx · x∗ − λ

2
(x∗)2 (34)

f(x) = L(x) + λx · x∗ − λ

2
(x∗)2 (35)

For any x, y ∈ M :

∇f(x)−∇f(y) = (∇L(x) + λx∗)− (∇L(y) + λx∗) (36)
∇f(x)−∇f(y) = (∇L(x)−∇L(y)) (37)

‖∇f(x)−∇f(y)‖ = ‖∇L(x)−∇L(y)‖ (38)

Thus, ‖∇f‖Lip = ‖∇L‖Lip. Thus we can apply Lemma 15.
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Theorem 17 Given a convex function L where ∇L is Lipschitz continuous, define c(x) = λ
2x

2 +

L(x). If η <
(
λ+ ‖∇L‖Lip

)−1
, then for all x, y ∈ M :

d(x− η∇c(x), y − η∇c(y)) ≤ (1− ηλ)d(x, y) (39)

Proof We prove this by using Lemma 16. In particular, we use a trick insipired by Classical
mechanics: instead of studying the dynamics of the update function directly, we change the frame
of reference such that one point is constant. This constant point not only does not move, it is also an
optimal point in the new frame of reference, so we can use Lemma 16.

Define g(w) = c(w)−∇c(x) · (w − x). Note that, for any y, z ∈ M :
d(y − η∇g(y), z − η∇g(z)) = d(y − η∇c(y) + η∇c(x), z − η∇c(z) + η∇c(x)) (40)
d(y − η∇g(y), z − η∇g(z)) = ‖y − η∇c(y) + η∇c(x)− (z − η∇c(z) + η∇c(x))‖ (41)
d(y − η∇g(y), z − η∇g(z)) = ‖y − η∇c(y)− (z − η∇c(z))‖ (42)
d(y − η∇g(y), z − η∇g(z)) = d(y − η∇c(y), z − η∇c(z)) (43)

Therefore, g provides a frame of reference where the relative distances between where everything is
will be the same as it would be with c. Moreover, note that g is convex, and ∇g(x) = 0. Thus x is the
minimizer of g. Moreover, since g(w) = c(w)−∇c(x) · (w−x) = λ

2w
2+L(w)−∇c(x) · (w−x).

If we define C(w) = L(w) − ∇c(x) · (w − x), then C is convex and ‖∇C‖Lip = ‖∇L‖Lip.
Therefore we can apply Lemma 16 with C instead of L, and then we find that d(y − η∇g(y), x) ≤
(1− ηλ)d(y, x). From Equation (43), d(y− η∇c(y), x− η∇c(x)) ≤ (1− ηλ)d(y, x), establishing
the theorem.

B Proof of Lemma 3

Lemma 3 If c∗ =
∥∥∥∂L(y,ŷ)

∂ŷ

∥∥∥
Lip

then, for a fixed i, if η ≤ (
∥∥xi

∥∥2 c∗ + λ)−1, the update rule in

Equation 271 is a contraction mapping for the Euclidean distance with Lipschitz constant 1− ηλ.

Proof First, let us break down Equation 271. By gathering terms:

φi(w) = (1− ηλ)w − ηxi ∂

∂ŷ
L(yi, ŷ)|w·xi (44)

Define u : R → R to be equal to u(z) = ∂
∂zL(y

i, z). Because L(y, ŷ) is convex in ŷ, u(z) is
increasing, and u(z) is Lipschitz continuous with constant c∗.

φi(w) = (1− ηλ)w − ηu(w · xi)xi (45)

We break down w into w‖ and w⊥, where w⊥ · xi = 0 and w‖ + w⊥ = w. Thus:

φi(w)⊥ = (1− ηλ)w⊥ (46)

φi(w)‖ = (1− ηλ)w‖ − ηu(w‖ · xi)xi (47)

Finally, note that d(w, v) =
√
d2(w‖, v‖) + d2(w⊥, v⊥).

Note that given any w⊥, v⊥, d(φi(w)⊥, φi(v)⊥) = (1 − ηλ)d(w⊥, v⊥). For convergence in the
final, “interesting” dimension parallel to xi, first we observe that if we define α(w) = xi ·w, we can
represent the update as:

α(φi(w)) = (1− ηλ)α(w) + ηyiu(α(w))(xi · xi) (48)

Define β =
√
xi · xi. Note that:

α(φi(w)) = (1− ηλ)α(w) + ηu(α(w))β2 (49)

d(w‖, v‖) =
1

β
|α(w)− α(v)| (50)

d(φi(w)‖, φ
i(v)‖) =

1

β

∣∣((1− ηλ)α(w)− ηu(α(w))β2)− ((1− ηλ)α(v)− ηu(α(v))β2)
∣∣ (51)
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Without loss of generality, assume that α(w) ≥ α(v). Since α(w) ≥ α(v), u(α(w)) ≥ u(α(v)).
By Lipschitz continuity:

|u(α(w))− u(α(v))| ≤ c∗|α(w)− α(v)| (52)
u(α(w))− u(α(v)) ≤ c∗(α(w)− α(v)) (53)

Rearranging the terms yields:

((1− ηλ)α(w)− ηu(α(w))β2)− ((1− ηλ)α(v)− ηu(α(v))β2) =

((1− ηλ)(α(w)− α(v))− ηβ2(u(α(w))− u(α(v)) (54)

Note that u(α(w)) ≥ u(α(v)), so ηβ2(u(α(w))− u(α(v)) ≥ 0, so:

((1− ηλ)α(w)− ηu(α(w))β2)− ((1− ηλ)α(v)− ηu(α(v))β2) ≤ (1− ηλ)(α(w)−α(v)) (55)

Finally, since u(α(w))− u(α(v)) ≤ c∗(α(w)− α(v)):

((1− ηλ)α(w)− ηu(α(w))β2)− ((1− ηλ)α(v)− ηu(α(v))β2) ≥
((1− ηλ)(α(w)− α(v))− ηβ2c∗(α(w))− α(v)) =

((1− ηλ− ηβ2c∗)(α(w)− α(v)) (56)

Since we assume in the state of the theorem, η ≤ (β2c∗+λ)−1, it is the case that (1−ηλ−ηβ2c∗) ≥
0, and:

((1− ηλ)α(w)− ηu(α(w))β2)− ((1− ηλ)α(v)− ηu(α(v))β2) ≥ 0 (57)
By Equation (55) and Equation (57), it is the case that:

|((1−ηλ)α(w)−ηu(α(w))β2)− ((1−ηλ)α(v)−ηu(α(v))β2)| ≤ (1−ηλ)(α(w)−α(v)) (58)

This implies:

d(φi(w)‖, φ
i(v)‖) ≤

1

β
(1− ηλ)(α(w)− α(v)) (59)

≤ (1− ηλ)
1

β
|α(w)− α(v)| (60)

≤ (1− ηλ)
1

β
d(w‖, v‖) (61)

This establishes that d(φi(w), φi(v)) ≤ (1− ηλ)d(w, v).

C Wasserstein Metrics and Contraction Mappings

In this section, we prove Lemma 5, Lemma 6, and Corollary 7 from Section 2.2.

Fact 18 x∗ = infx∈X x if and only if:

1. for all x ∈ X , x∗ ≤ x, and

2. for any ε > 0, there exits an x ∈ X such that x∗ + ε >x .

Fact 19 If for all ε > 0, a+ ε ≥ b, then a ≥ b.

Lemma 5 For all i, Given a metric space (M,d) and a contraction mapping φ on (M,d) with
constant c, p is a contraction mapping on (P (M,d),Wi) with constant c.

Proof A contraction mapping is continuous and therefore it is a measurable function on the Radon
space (which is a Borel space).
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Given two distributions X and Y , define z = Wi(X,Y ). By Fact 18, for any ε > 0, there exists
a γ ∈ Γ(X,Y ) such that (Wi(X,Y ))i + ε >

∫
x,y d(x, y)d

iγ(x, y). Define γ′ such that for all
E,E′ ∈ M , γ′(E,E′) = γ(φ−1(E), φ−1(E′)).

Note that γ′(E,M)=γ(φ−1(E),M) = X(φ−1(E)) = p(X)(E), Thus, the marginal distribution
of γ is p(X), and analogously the other marginal distribution of γ is p(Y ). Since φ is a contraction
with constant c, it is the case that cd(φ(x), φ(y)) ≤ d(x, y), and

(Wi(X,Y ))i + ε >

∫

x,y

1

ci
di(φ(x), φ(y))dγ(x, y) (62)

(Wi(X,Y ))i + ε >
1

ci

∫

x,y
di(φ(x), φ(y))dγ(x, y) (63)

By change of variables:

(Wi(X,Y ))i + ε >
1

ci

∫

x,y
di(x, y)dγ′(x, y) (64)

(Wi(X,Y ))i + ε >
1

ci
(Wi(p(X),p(Y )))i (65)

By Fact 19:

(Wi(X,Y ))i ≥ 1

ci
(Wi(p(X),p(Y )))i (66)

Wi(X,Y ) ≥ 1

c
(Wi(p(X),p(Y ))) (67)

Since X and Y are arbitrary, p is a contraction mapping with metric Wi.

Lemma 20 Given X1 . . . Xm, Y 1 . . . Y m that are probability measures over (M,d), a1 . . . am ∈
R, where

∑
i ai = 1 and if for all i, ai ≥ 0, and for all i, Wk(Xi, Y i) is well-defined, then:

Wk

(
∑

i

aiX
i,
∑

i

aiY
i

)
≤

(
∑

i

ai(Wk(X
i, Y i))k

)1/k

(68)

Corollary 21 If for all i, Wk(Xi, Y i) ≤ d,then:

Wk

(
∑

i

aiX
i,
∑

i

aiY
i

)
≤ d (69)

Proof
By Fact 18, for any ε > 0, there exists a γi ∈ Γ(Xi, Y i) such that:

(Wk(X
i, Y i))k + ε >

∫
dk(x, y)dγk(x, y) (70)

Note that
∑

i aiγ
i ∈ Γ(

∑
i aiX

i,
∑

i aiY
i), where we consider addition on functions over mea-

sureable sets in (M,d)× (M,d). If we define γ∗ =
∑

i aiγ
i, then:

∑

i

ai

∫
dk(x, y)dγi(x, y) =

∫
dk(x, y)dγ∗(x, y) (71)
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Therefore:
∑

ai((Wk(X
i, Y i))k + ε) >

∫
dk(x, y)dγ∗(x, y) (72)

ε+
∑

ai(Wk(X
i, Y i))k >

∫
dk(x, y)dγ∗(x, y) (73)

(74)

Because γ∗ ∈ Γ(
∑

i aiX
i,
∑

i aiY
i):

ε+
∑

ai(Wk(X
i, Y i))k > inf

γ∈Γ(
∑

i aiXi,
∑

i aiY i)

∫
dk(x, y)dγ(x, y) (75)

ε+
∑

ai(Wk(X
i, Y i))k > (Wk(

∑

i

aiX
i,
∑

i

aiY
i))k (76)

By Fact 19:
∑

ai(Wk(X
i, Y i))k ≥ (Wk(

∑

i

aiX
i,
∑

i

aiY
i))k (77)

(∑
ai(Wk(X

i, Y i))k
)1/k

≥ Wk(
∑

i

aiX
i,
∑

i

aiY
i) (78)

Lemma 6 Given a Radon space (M,d), if p1 . . .pk are contraction mappings with constants
c1 . . . ck with respect to Wz , and

∑
i ai = 1 where ai ≥ 0, then p =

∑k
i=1 aipi is a contraction

mapping with a constant of no more than (
∑

i ai(ci)
z)1/z .

Corollary 7 If for all i, ci ≤ c, then p is a contraction mapping with a constant of no more than c.

Proof Given an initial measures X,Y , for any i,

Wz(pi(X),pi(Y )) < ciWz(X,Y ) (79)

. Thus, p(X) =
∑k

i=1 aipi(X) and p(Y ) =
∑k

i=1 aipi(Y ), by Lemma 20 it is the case that:

Wz(p(X),p(Y ) ≤
(

k∑

i=1

ai (Wz(pi(X),pi(Y )))z
)1/z

(80)

By Equation 79:

Wz(p(X),p(Y )) ≤
(

k∑

i=1

ai (ciWz(X,Y ))z
)1/z

(81)

≤
(

k∑

i=1

ai (ciWz(X,Y ))z
)1/z

(82)

≤ Wz(X,Y )

(
k∑

i=1

ai (ci)
z

)1/z

(83)
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D More Properties of Wasserstein Metrics

D.1 Kantorovich-Rubinstein Theorem

Define β(P,Q) to be:

β(P,Q) = sup
f,‖f‖Lip≤1

∣∣∣∣
∫

fdP −
∫

fdQ

∣∣∣∣ (84)

Where ‖◦‖Lip is the Lipschitz constant of the function.

Theorem 22 (Kantorovich-Rubinstein) If (M,d) is a separable metric space then for any two dis-
tributions P ,Q, we have W1(P,Q) = β(P,Q).

Corollary 23 If d is Euclidean distance, d(µP , µQ) ≤ W1(P,Q).

The following extends one half of Kantorovich-Rubinstein beyond W1.

Theorem 24 For any i ≥ 1, for any f where ‖f‖Lipi
is bounded, for distributions X,Y :

Ex∈X [f(x)]−Ey∈Y [f(y)] ≤ ‖f‖Lipi
(Wi(X,Y ))i . (85)

Corollary 25 Given two distributions X,Y , given any Lipschitz continuous function c : M → R:

|Ex∈X [c(x)]−Ex∈Y [c(x)]| ≤‖ c‖Lip W1(X,Y ) (86)

Proof Choose an arbitrary i ≥ 1. Choose an f where ‖f‖Lipi
is bounded, and arbitrary distributions

X,Y . Choose a joint distribution γ ∈ (M,d) × (M,d) such that the first marginal of γ is X , and
the second marginal of γ is Y . Therefore:

Ex∈X [f(x)] =

∫
f(x)dγ(x, y) (87)

Ey∈Y [f(y)] =

∫
f(y)dγ(x, y) (88)

Ex∈X [f(x)]−Ey∈Y [f(y)] =

∫
f(x)dγ(x, y)−

∫
f(y)dγ(x, y) (89)

Ex∈X [f(x)]−Ey∈Y [f(y)] =

∫
(f(x)− f(y))dγ(x, y) (90)

By the definition of ‖f‖Lipi
, f(x)− f(y) ≤ ‖f‖Lipi

di(x, y):

Ex∈X [f(x)]−Ey∈Y [f(y)] ≤
∫

‖f‖Lipi
di(x, y)dγ(x, y) (91)

Ex∈X [f(x)]−Ey∈Y [f(y)] ≤ ‖f‖Lipi

∫
di(x, y)dγ(x, y) (92)

For any ε > 0, there exists a γ such that (Wi(x, y))i + ε >
∫
di(x, y)dγ(x, y). Therefore, for any

ε > 0:

Ex∈X [f(x)]−Ey∈Y [f(y)] ≤ ‖f‖Lipi
(Wi(x, y))

i + ε (93)

Therefore, if we allow ε to approach zero, we prove the theorem.
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D.2 Wasserstein Distance and Relative Standard Deviation

Before we introduce relative standard deviation, we want to make a few observations about Wasser-
stein distances and point masses. Given x ∈ M , define Ix ∈ P (M,d) such that Ix(E) = 1 if
x ∈ E, and Ix(E) = 0 if x /∈ E. Given x ∈ M and Y ∈ P (M,d), define Wz(x, Y ) = Wz(Ix, Y ).
It is the case that:

Wz(x, Y ) = (Ey∈Y [d
z(x, y)])1/i (94)

Lemma 26 Given Y ∈ (M,d), x ∈ M , if Pr[d(x, y) ≤ L] = 1, then Wz(x, Y ) ≤ L.

Corollary 27 For x, y ∈ M , Wz(x, y) = d(x, y).

Proof Since Γ(Ix, Y ) is a singleton:

Wz(x, Y ) =

(∫
dz(x, y)dY (y)

)1/z

. (95)

Therefore, we can bound dz(x, y) by Lz , so:

Wz(x, Y ) ≤
(∫

LzdY (y)

)1/z

(96)

Wz(x, Y ) ≤ (Lz)1/z (97)
Wz(x, Y ) ≤ L (98)

Let us define the relative standard deviation of X with respect to c to be:

σc
X =

√
E[(X − c)2]. (99)

Define µX to be the mean of X . Observe that σX = σµX

X .

Fact 28 If σc
X is finite, then σc

X = W2(Ic, X).

Lemma 29
|σc

X − σc′

X | ≤ d(c, c′) (100)

Proof By the triangle inequality, W2(Ic, X) ≤ W2(Ic′ , X) + W2(Ic, Ic′). By Fact 28,
σc
X ≤ σc′

X + W2(Ic, Ic′). By Corollary 27, σc
X ≤ σc′

X + d(c, c′). Similarly, one can show
σc′

X ≤ σc
X + d(c, c′).

Lemma 30
σc
Y ≤ σc

X +W2(X,Y ) (101)

Proof By the triangle inequality, W2(Ic, Y ) ≤ W2(Ic, X) + W2(X,Y ). The result follows from
Fact 28.

Theorem 31
σX ≤ σc

X (102)

Proof We prove this by considering σc
X a function of c, and finding the minimum by checking

where the gradient is zero.
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Theorem 32
σY ≤ σX +W2(X,Y ) (103)

Proof Note that σX = σµX

X . By Lemma 30:

σµX

Y ≤ σµX

X +W2(X,Y ) (104)

By Theorem 31, σµY

Y ≤ σµX

Y , proving the result.

Theorem 33 For any d, for any P,Q, if Wi exists, then:

Wi(P,Q) ≥ W1(P,Q) (105)

Proof For any ε > 0, there exists a γ ∈ Γ(P,Q) such that:

(Wi(P,Q))i + ε ≥
∫

di(x, y)dγ(x, y) (106)

By Jensen’s inequality:
∫

di(x, y)dγ(x, y) ≥
(∫

d(x, y)dγ(x, y)

)i

(107)

Therefore:

(Wi(P,Q))i + ε ≥
(∫

d(x, y)dγ(x, y)

)i

(108)

By definition, W1(P,Q) ≤
∫
d(x, y)dγ(x, y), so:

(Wi(P,Q))i + ε ≥ (W1(P,Q))i (109)

Since for any ε > 0, this holds, by Fact 19:

(Wi(P,Q))i ≥ (W1(P,Q))i (110)

Since i ≥ 1, the result follows.

Theorem 34 Suppose that X1 . . . Xk are independent and identically distributed random variables
over Rn. Then, if A = 1

k

∑k
i=1 X

i, it is the case that:1

µA = µX1 (111)

σA ≤ σX1√
k
. (112)

Proof
The first is a well known theorem; µA = µX1 by linearity of expectation. The second part is one of
many direct results of the fact that the variance of two independent variables X and Y is the sum of
the variance of the independent variables.

1Here we mean to indicate the average of the random variables, not the average of their distributions.
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D.3 Wasserstein Distance and Cesaro Summability

Theorem 35 For any Lipschitz continuous function c, for any sequence of distributions
{D1, D2 . . .} in the Wasserstein metric, if limt→∞ Dt = D∗, then:

lim
t→∞

Ex∈Dt [c(x)] = Ex∈D∗ [c(x)] (113)

Proof Assume that the Lipschitz constant for c is c∗. By Corollary 25, it is the case that:

|Ex∈Dt [c(x)]−Ex∈D∗ [c(x)]| ≤ c∗W1(Dt, D
∗) (114)

We can prove that:

lim
t→∞

|Ex∈Dt [c(x)]−Ex∈D∗ [c(x)]| ≤ lim
t→∞

c∗W1(Dt, D
∗) (115)

≤ c∗ lim
t→∞

W1(Dt, D
∗) (116)

≤ c∗ × 0 = 0 (117)

So, if the distance between the sequence {Ex∈Dt [c(x)]}t and the point Ex∈D∗ [c(x)] approaches
zero, the limit of the sequence is Ex∈D∗ [c(x)].

Theorem 36 (Cesàro Sum) Given a sequence {a1, a2 . . .} where limt→∞ at = a∗, it is the case
that:

lim
T→∞

1

T

T∑

t=1

at = a∗ (118)

Proof
For a given ε > 0, there exists an t such that for all t′ > t, |at′ − a∗| < ε

2 . Define abegin =∑t
t′=1 at′ . Then, we know that, for T > t:

1

T

T∑

t′=1

at =
1

T

(
t∑

t′=1

at′ +
T∑

t′=t+1

at′

)
(119)

1

T

T∑

t′=1

at =
1

T

(
abegin +

T∑

t′=t+1

at′

)
(120)

1

T

T∑

t′=1

at ≤
1

T

(
abegin +

T∑

t′=t+1

(
a∗ +

ε

2

))
(121)

1

T

T∑

t′=1

at ≤
1

T

(
abegin + (T − t)

(
a∗ +

ε

2

))
(122)

Note that as T → ∞:

lim
T→∞

1

T

(
abegin + (T − t)

(
a∗ +

ε

2

))
= lim

T→∞

t

T
abegin +

T − t

T

(
a∗ +

ε

2

)
(123)

= 0× abegin + 1×
(
a∗ +

ε

2

)
(124)

= a∗ +
ε

2
(125)

Therefore, since the upper bound on the limit approaches a∗ + ε
2 , there must exist a T such that for

all T ′ > T :

1

T ′ + 1

T ′∑

t=1

at < a∗ + ε (126)
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Similarly, one can prove that there exists a T ′′ such that for all T ′ > T ′′, 1
T ′+1

∑T ′

t=1 at > a∗ − ε.
Therefore, the series converges.

Theorem 37 For any Lipschitz continuous function c, for any sequence of distributions
{D1, D2 . . .} in the Wasserstein metric, if limt→∞ Dt = D∗, then:

lim
T→∞

1

T

T∑

t=1

Ex∈Dt [c(x)] = Ex∈D∗ [c(x)] (127)

Proof This is a direct result of Theorem 35 and Theorem 36.

E Basic Properties of Stochastic Gradient Descent on SVMs

∇ci(w) = λw +
∂

∂ŷ
L(yi, ŷ)|wi·xixi (128)

Define f such that:

f i(w) = L(yi, wi · xi) (129)

We assume that for all i, for all w,
∥∥∇f i(w)

∥∥ ≤ G. Also, define:

f(w) =
1

m

m∑

i=1

f i(w) (130)

In order to understand the stochastic process, we need to understand the batch update. The expected
stochastic update is the batch update. Define gw to be the expected gradient at w, and c(w) to be the
expected cost at w.

c(w) =
λ

2
w2 + f(w) (131)

Theorem 38 The expected gradient is the gradient of the expected cost.

Proof This follows directly from the linearity of the gradient operator and the linearity of
expectation.

The following well-known theorem establishes that c is a strongly convex function.

Theorem 39 For any w,w′:

c(w′) ≥ λ

2
(w′ − w)2 + gw · (w′ − w) + c(w) (132)

Proof
λ
2w

2 is a λ- strongly convex function, and f i(w) is a convex function, so therefore c(w) is a λ-
strongly convex function. Or, to be more thorough, because f is convex:

f(w′)− f(w) ≥ ∇f(w) · (w′ − w). (133)
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Define h(w) = λ
2w

2. Observe that:

h(w′)− h(w) =
λ

2
(w′)2 − λ

2
w2 (134)

h(w′)− h(w) =
λ

2
(w′)2 − λ

2
w2 − λw · (w′ − w) + λw · (w′ − w) (135)

h(w′)− h(w) =
λ

2
(w′)2 − λ

2
w2 − λw · w′ + λw2 + λw · (w′ − w) (136)

h(w′)− h(w) =
λ

2
(w′)2 +

λ

2
w2 − λw · w′ + λw · (w′ − w) (137)

h(w′)− h(w) =
λ

2
(w′)2 +

λ

2
w2 − λw · w′ +∇h(w) · (w′ − w) (138)

h(w′)− h(w) =
λ

2
(w′ − w)2 +∇h(w) · (w′ − w) (139)

Since c(w) = h(w) + f(w):

c(w′)− c(w) ≥ λ

2
(w′ − w)2 +∇h(w) · (w′ − w) +∇f(w) · (w′ − w) (140)

c(w′)− c(w) ≥ λ

2
(w′ − w)2 +∇c(w) · (w′ − w) (141)

Theorem 40
‖w∗‖ ≤ G

λ
.

Proof Note that ∇c(w∗) = 0. So:

0 = ∇c(w∗) (142)

0 = ∇
(
λ

2
(w∗)2 + f(w∗)

)
(143)

0 = λw∗ +∇f(w∗)− λw∗ (144)
= ∇f(w∗) (145)

Since ‖∇f(w∗)‖ ≤ G, it is the case that:

‖−λw∗‖ ≤ G (146)
λ ‖w∗‖ ≤ G (147)

‖w∗‖ ≤ G

λ
(148)

Theorem 41 For any w, if w∗ is the optimal point:

λ(w∗ − w)2 ≤ gw · (w − w∗) (149)

Proof By Theorem 39:

c(w∗) ≥ λ

2
(w∗ − w)2 + gw · (w∗ − w) + c(w) (150)

c(w∗)− c(w) ≥ λ

2
(w∗ − w)2 + gw · (w∗ − w) (151)

c(w)− c(w∗) ≤ −λ

2
(w∗ − w)2 + gw · (w − w∗) (152)
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Since w∗ is optimal, ∇c(w∗) = 0, implying:

c(w) ≥ λ

2
(w∗ − w)2 + 0 · (w − w∗) + c(w∗) (153)

c(w)− c(w∗) ≥ λ

2
(w∗ − w)2 (154)

Combining Equation 152 and Equation 154:

λ

2
(w∗ − w)2 ≤ −λ

2
(w∗ − w)2 + gw · (w − w∗) (155)

λ(w∗ − w)2 ≤ gw · (w − w∗) (156)

Theorem 42 For any w:
∥∥∇ci − λ(w − w∗)

∥∥ ≤ 2G (157)

Proof First, observe that:

∇ci(w) = λw +∇f i(w) (158)

∇ci(w)− λw ≤ ∇f i(w) (159)
∥∥∇ci(w)− λw

∥∥ ≤ G (160)

Also, ‖w∗‖ ≤ G
λ , implying ‖λw∗‖ ≤ G. Thus, the triangle inequality yields:

∥∥(∇ci(w)− λw) + (λw∗)
∥∥ ≤ 2G (161)

∥∥∇ci(w)− λ(w − w∗)
∥∥ ≤ 2G (162)

Thus, minus a contraction ratio, the magnitude of the gradient is bounded. Moreover, in expectation
it is not moving away from the optimal point. These two facts will help us to bound the expected
mean and expected squared distance from optimal.

Theorem 43 For any w, if w∗ is the optimal point, and η ∈ (0, 1):

((w − ηgw)− w∗) · (w − w∗) ≤ (1− ηλ)(w − w∗)2 (163)

Proof
From Theorem 41,

λ(w∗ − w)2 ≤ gw · (w − w∗). (164)

Multiplying both sides by η:

ηλ(w∗ − w)2 ≤ ηgw · (w − w∗) (165)

−ηgw · (w − w∗) ≤ −ηλ(w∗ − w)2 (166)

Adding (w − w∗) · (w − w∗) to both sides yields the result.

Theorem 44 If wt is a state of the stochastic gradient descent algorithm, w0 = 0, λ ≤ 1, and
0 ≤ η ≤ 1

λ , then:

‖wt‖ ≤ G

λ
(167)

22



Corollary 45
∥∥∇ci(wt)

∥∥ ≤ 2G (168)

Proof First, observe that ‖w0‖ ≤ G
λ . We prove the theorem via induction on t. Assume that the

condition holds for t− 1, i.e.that ‖wt−1‖ ≤ G
λ . Then, wt is, for some i:

wt ≤ wt−1(1− ηλ)− η∇f i(wt) (169)

‖wt‖ ≤ |1− ηλ| ‖wt−1‖+ |η|
∥∥∇f i(wt)

∥∥ (170)

Since ‖wt−1‖ ≤ G
λ and

∥∥∇f i(wt)
∥∥ ≤ G, then:

‖wt‖ ≤ |1− ηλ|G
λ

+ |η|G (171)

Since η ≥ 0 and 1− ηλ ≥ 0:

‖wt‖ ≤ (1− ηλ)
G

λ
+ ηG (172)

‖wt‖ ≤ G

λ
(173)

F Proof of Theorem 8: SGD is a Contraction Mapping

Theorem 8 For any positive integer z, if η ≤ η∗, then p∗ is a contraction mapping on (M,Wz)
with contraction rate (1 − ηλ). Therefore, there exists a unique D∗

η such that p∗(D∗
η) = D∗

η .
Moreover, if w0 = 0 with probability 1, then Wz(D0

η, D
∗
η) =

G
λ , and Wz(DT

η , D
∗
η) ≤ G

λ (1− ηλ)T .

Proof The contraction rate (1 − ηλ) can be proven by applying Lemma 3, Lemma 5, and
Corollary 6. By Theorem 44, ‖wt‖ ≤ G

λ . Therefore, for any w ∈ D∗
η , ‖w‖ ≤ G

λ . Since D0
η = Iw0 ,

it is the case that Wz(D0
η, D

∗
η) = Wz(0, D∗

η). By Lemma 26, Wz(D0
η, D

∗
η) ≤ G

λ . By applying the
first half of the theorem and Corollary 2, Wz(DT

η , D
∗
η) ≤ G

λ (1− ηλ)T .

G Proof of Theorem 9: Bounding the Error of the Mean

Define D
2 to be a bound on the distance the gradient descent algorithm can be from the origin.

Therefore, we can use the algorithm and analysis from [11], where we say D is the diameter of the
space, and M is the maximum gradient in that space. However, we will use a constant learning rate.

Theorem 46 Given a sequence {ct} of convex cost functions, a domain F that contains all vectors
of the stochastic gradient descent algorithm, a bound M on the norm of the gradients of ct in F .
The regret of stochastic gradient descent algorithm after T time steps is:

RT = argmax
w∗∈F

T∑

t=1

(ct(wt)− ct(w
∗)) ≤ TηM2

2
+

D2

2η
(174)

Proof
We prove this via a potential Φt =

1
2η (wt+1 − w∗)2. First observe that, because ct is convex:

ct(w
∗) ≥ (w∗ − wt)∇ct(wt) + ct(wt) (175)

ct(wt)− ct(w
∗) ≤ (wt − w∗)∇ct(wt) (176)

Rt −Rt−1 ≤ (wt − w∗)∇ct(wt) (177)
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Also, note that:

Φt − Φt−1 =
1

2η
(wt − η∇ct(wt)− w∗)2 − 1

2η
(wt − w∗)2 (178)

Φt − Φt−1 = −(wt − w∗)∇ct(wt) +
η

2
(∇ct(wt))

2 (179)

Adding Equation (177) and Equation (179) then cancelling the (wt − w∗)∇ct(wt) terms yields:

(Rt −Rt−1) + (Φt − Φt−1) ≤
η

2
(∇ct(wt))

2 (180)

Summing over all t:
T∑

t=1

((Rt −Rt−1) + (Φt − Φt−1)) ≤
T∑

t=1

η

2
(∇ct(wt))

2 (181)

RT −R0 ≤
T∑

t=1

η

2
(∇ct(wt))

2 +Φ0 − ΦT (182)

By definition, R0 = 0, and ΦT > 0, so:

RT ≤
T∑

t=1

η

2
(∇ct(wt))

2 +Φ0 (183)

RT ≤
T∑

t=1

η

2
(∇ct(wt))

2 +
1

2η
(w1 − w∗)2 (184)

The distance is bounded by D, and the gradient is bounded by M , so:

RT ≤ TηM2

2
+

D2

2η
(185)

Theorem 47 Given c1 . . . cm, if for every t ∈ {1 . . . T}, it is chosen uniformly at random from 1 to
m, then:

min
w∈F

E

[
T∑

t=1

cit(w)

]
≥ E

[
min
w∈F

T∑

t=1

cit(w)

]
(186)

Proof Observe that, by definition:

E

[
min
w∈F

T∑

t=1

cit(w)

]
=

1

mT

∑

i1...iT∈{1...m}

min
w∈F

T∑

t=1

cit(w) (187)

≤ min
w∈F

1

mT

∑

i1...iT∈{1...m}

T∑

t=1

cit(w) (188)

≤ min
w∈F

E

[
T∑

t=1

cit(w)

]
(189)

Theorem 48

lim
T→∞

1

T
E[RT ] ≥ Ew∈D∗

η
[c(w)]− min

w∈F
c(w). (190)
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Proof
This proof follows the technique of many reductions establishing that batch learning can be reduced
to online learning [5, 4], but taken to the asymptotic limit. First, observe that

min
w∈F

E

[
T∑

t=1

cit(w)

]
≥ E

[
min
w∈F

T∑

t=1

cit(w)

]
, (191)

because it is easier to minimize the utility after the costs are selected. Applying this, the linearity of
expectation, and the definitions of c and Dt

η one obtains:

E[RT ] ≥
T∑

t=1

Ew∈Dt
η
[c(w)]− T min

w∈F
c(w). (192)

Taking the Cesàro limit of both sides yields:

lim
T→∞

1

T
E[RT ] ≥ lim

T→∞

1

T

(
T∑

t=1

Ew∈Dt
η
[c(w)]− T min

w∈F
c(w)

)
. (193)

The result follows from Theorem 8 and Theorem 37:

Theorem 49 If D∗
η is the stationary distribution of the stochastic update with learning rate η, then:

ηM2

2
≥ Ew∈D∗

η
[c(w)]− min

w∈F
c(w) (194)

Proof From Theorem 48, we know:

lim
T→∞

1

T
E[RT ] ≥ Ew∈D∗

η
[c(w)]− min

w∈F
c(w). (195)

Applying Theorem 46:

lim
T→∞

1

T

(
TηM2

2
+

D2

2η

)
≥ Ew∈D∗

η
[c(w)]− min

w∈F
c(w). (196)

Taking the limit on the left-hand side yields the result.

Theorem 50 c(Ew∈D∗
η
[w])−minw∈F c(w) ≤ ηM2

2 .

Proof By Theorem 49, ηM2

2 ≥ Ew∈D∗
η
[c(w)] − minw∈F c(w). Since c is convex, by

Jensen’s inequality, the cost of the mean is less than or equal to the mean of the cost, formally
Ew∈D∗

η
[c(w)] ≥ c(Ew∈D∗

η
[w]), and the result follows by substitution.

Theorem 9 c(Ew∈D∗
η
[w])−minw∈Rn c(w) ≤ 2ηG2.

This is obtained by applying Theorem 45, and substituting 2G for M .
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H Generalizing Reinforcement Learning

In order to make this theorem work, we have to push the limits of reinforcement learning. In par-
ticular, we have to show that some (but not all) of reinforcement learning works if actions can be
any subset of the discrete distributions over the next state. In general, the distribution over the next
action is rarely restricted in reinforcement learning. In particular, the theory of discounted reinforce-
ment learning works well on almost any space of policies, but we only show infinite horizon average
reward reinforcement learning works when the function is a contraction.

If (M,d) is a Radon space, a probability measure ρ ∈ P (M,d) is discrete if there exists a countable
set C ⊆ S such that ρ(C) = 1. Importantly, if a function R : M → R is a bounded (not
necessarily continuous) function, then Ex∈ρ[R(x)] is well-defined. We will denote the set of discrete
distributions as D(M,d) ⊆ P (M,d).

Given a Radon space (S, d), define S to be the set of states. Define the actions A = D(S, d) to
be the set of discrete distributions over S. For every w ∈ S, define A(w) ⊆ A to be the actions
available in state w.

We define a policy as a function σ : S → A where σ(w) ∈ A(w). Then, we can write a transforma-
tion Tσ : D(S, d) → D(S, d) such that for any measureable set E, Tσ(ρ)(E) is the probability that
w′ ∈ E, given w′ is drawn from σ(w) where w is drawn from ρ. Therefore:

Tσ(ρ)(E) = Ew∈ρ[σ(w)(E)] (197)

Define r0(w, σ) = R(w), and for t ≥ 1:

rt(w, σ) = Ew′∈T t
σ(w)[R(w′)] (198)

Importantly, rt(w, σ) ∈ [a, b]. Now, we can define the discounted utility:

V T
σ,γ(w) =

T∑

t=0

γtrt(w, σ) (199)

Theorem 51 The sequence V 1
σ,γ(w), V

2
σ,γ(w), V

3
σ,γ(w) converges.

Proof Since rt ∈ [a, b], then for any t, γtrt(w, σ) ≤ γtb. For any T, T ′ where T ′ > T :

V T ′

σ,γ(w)− V T
σ,γ(w) =

T ′∑

t=T+1

γtrt(w, σ) (200)

≤ b
γT+1 − γT ′+1

1− γ
(201)

≤ b
γT+1

1− γ
(202)

Similarly, V T
σ,γ(w)− V T ′

σ,γ(w) ≤ −aγT+1

1−γ

Thus, for a given T , for all T ′, T ′′ > T , |V T ′′

σ,γ (w)− V T ′

σ,γ(w)| < max(−a, b)γ
T+1

1−γ .

Therefore, for any ε > 0, there exists a T such that for all T ′, T ′′ > T where
|V T ′′

σ,γ (w) − V T ′

σ,γ(w)| < ε. Therefore, the sequence is a Cauchy sequence, and has a limit
since the real numbers are complete.

Therefore, we can define:

Vσ,γ(w) =
∞∑

t=0

γtrt(w, σ) (203)
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Note that the limit is well-defined, because R is bounded over S. Also, we can define:

V̄σ,T (w) =
1

T + 1

T∑

t=0

rt(σ,w) (204)

Consider W1 to be the Wasserstein metric on P (S, d).

Theorem 52 If Tσ is a contraction operator on (P (S, d),W1), and R is Lipshitz continuous on S,
then r0(σ,w), r1(σ,w), r2(σ,w) . . . converges.

Proof By Theorem 1, there exists a D∗ such that for all w, limt→∞ T t
σ(w) = D∗. Since

rt(σ,w) = Ew′∈T t
σ(w)[R(w)], by Theorem 35, this sequence must have a limit.

Theorem 53 If Tσ is a contraction operator, and R is Lipschitz continuous, then
V̄σ,1(w), V̄σ,2(w), . . . converges to limt→∞ rt(σ,w).

Proof From Theorem 52, we know there exists an r∗ such that limt→∞ rt(σ,w) = r∗. The result
follows from Theorem 36.

If Tσ is a contraction mapping, and R is Lipschitz continuous, we can define:

V̄σ(w) = lim
T→∞

V̄σ,T (w) (205)

Theorem 54 If Tσ is a contraction mapping, and R is Lipschitz continuous, then:

V̄σ(w) = lim
γ→1−

(1− γ)Vσ,γ(w) (206)

Proof From Theorem 52, we know there exists an r∗ such that V̄σ(w) = limt→∞ rt(σ,w) = r∗.
We can also show that limγ→1−(1− γ)Vσ,γ(w) = r∗.

We will prove that for a given ε > 0, there exists a γ such that |(1 − γ)Vσ,γ(w) − r∗| < ε. For ε
2 ,

there exists a t such that for all t′ > t, |rt′(σ,w)− r∗| < ε
2 . Thus,

(1− γ)Vσ,γ(w) = (1− γ)
∞∑

t′=0

γt′rt′(σ,w) (207)

(1− γ)Vσ,γ(w) = (1− γ)
t∑

t′=0

γt′rt′(σ,w) + (1− γ)
∞∑

t′=t+1

γt′rt′(σ,w) (208)

(1− γ)Vσ,γ(w) ≥ (1− γ)
t∑

t′=0

γt′a+ (1− γ)
∞∑

t′=t+1

(r∗ − ε

2
) (209)

(210)

Since r∗ = (1− γ)
∑∞

t′=0 γ
t′r∗:

r∗ − (1− γ)Vσ,γ(w) ≤ (1− γ)
t∑

t′=0

γt′(r∗ − a) + (1− γ)
∞∑

t′=t+1

ε

2
(211)

r∗ − (1− γ)Vσ,γ(w) ≤ (1− γ)
1− γt+1

1− γ
(r∗ − a) + (1− γ)

γt+1

1− γ

ε

2
(212)

r∗ − (1− γ)Vσ,γ(w)(1− γt+1)(r∗ − a) + γt+1 ε

2
(213)

(214)
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Note that limγ→1−(1− γt+1) = 0, and limγ→1− γt+1 = 1, so:

lim
γ→1−

(1− γt+1)(r∗ − a) + γt+1 ε

2
=

ε

2
(215)

Therefore, there exists a γ < 1 such that for all γ′ ∈ (γ, 1), r∗ − (1 − γ′)Vσ,γ′(w) < ε. Similarly,
one can prove there exists a γ′′ < 1 such that for all γ′ ∈ (γ′′, 1), (1 − γ′)Vσ,γ′(w) − r∗ < ε.
Thus,limγ→1−(1− γ)Vσ,γ(w) = r∗.

So, the general view is that for σ which result in T being a contraction mapping and R being a reward
function, all the natural aspects of value functions hold. However, for any σ and for any bounded
reward R, the discounted reward is well-defined. What we will do is now bound the discounted
reward using an equation very similar to the Bellman equation.

Theorem 55 For all w ∈ S:
Vσ,γ(w) = R(w) + γEw′∈Tσ(w) [Vσ,γ(w

′)] (216)

Proof By definition,

Vσ,γ(w) =
∞∑

t=0

γtEw′∈T t
σ(w)[R(w′)] (217)

Vσ,γ(w) = R(w) +
∞∑

t=1

γtEw′∈T t
σ(w)[R(w′)] (218)

Note that for any t ≥ 1, T t
σ(w) = T t−1

σ (Tσ(w)), so:
Ew′∈T t

σ(w)[R(w′)] = Ew′∈Tσ(w)[Ew′′∈T t−1(w′)[R(w′′)]] (219)
Ew′∈T t

σ(w)[R(w′)] = Ew′∈Tσ(w)[rt−1(σ,w
′)] (220)

Applying this to the equation above:

Vσ,γ(w) = R(w) +
∞∑

t=1

γtEw′∈Tσ(w)[rt−1(σ,w
′)] (221)

Vσ,γ(w) = R(w) + γ
∞∑

t=1

γt−1Ew′∈Tσ(w)[rt−1(σ,w
′)] (222)

Vσ,γ(w) = R(w) + γ
∞∑

t=0

γtEw′∈Tσ(w)[rt(σ,w
′)] (223)

By linearity of expectation:

Vσ,γ(w) = R(w) + γEw′∈Tσ(w)[
∞∑

t=0

γtrt(σ,w
′)] (224)

Vσ,γ(w) = R(w) + γEw′∈Tσ(w)[Vσ,γ(w)] (225)

The space of value functions for the discount factor γ is V = [ a
1−γ ,

b
1−γ ]

S . For V ∈ V, for a ∈ A,
we define V (a) = Ex∈a[V (a)]. We define the supremum Bellman operator Vsup : V → V such
that for all V ∈ V, for all w ∈ S:

Vsup(V )(w) = R(w) + γ sup
a∈A(w)

V (a) (226)
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Define Vt
sup to be t operations of Vsup.

Define the metric dV : V× V → R such that dV(V, V ′) = supw∈S |V (w)− V ′(w)|.

Fact 56 For any discrete distribution X ∈ D(S, d), for any V, V ′ ∈ V, Ex∈X [V ′(x)] ≥
Ex∈X [V (x)]− dV(V, V ′).

Theorem 57 Vsup is a contraction mapping under the metric dV.

Proof Given any V, V ′ ∈ V, for a particular w ∈ S, since Vsup(V )(w) = R(w)+supa∈A(w) V (a):

|Vsup(V )(w)−Vsup(V
′)(w)| =

∣∣∣∣∣ sup
a∈A(w)

V (a)− sup
a′∈A(w)

V ′(a′)

∣∣∣∣∣ (227)

Without loss of generality, supa∈A(w) V (a) ≥ supa∈A(w) V
′(a). Therefore, for any ε > 0, there

exists a a′ ∈ A(w) such that V (a′) > supa∈A(w) V (a)−ε. By Fact 56,V ′(a′) ≥ V (a′)−dV(V, V ′),
and V (a′) − dV(V, V ′) > supa∈A(w) V (a) − ε − dV(V, V ′). This implies supa∈A(w) V

′(a) ≥
V (a) − dV(V, V ′). Therefore, Vsup(V )(w) − V′

sup(V )(w) ≤ γdV(V, V ′), and Vsup(V )(w) −
Vsup(V ′)(w) ≥ 0. Therefore, for all w:

|Vsup(V )(w)−Vsup(V
′)(w)| ≤ γdV(V, V

′), (228)

which establishes that Vsup is a contraction mapping.

Under the supremum norm, V is a complete space, implying that Vsup as a contraction mapping has
a unique fixed point by Banach’s fixed point theorem. We call the fixed point V ∗.

For V, V ′ ∈ V, we say V - V ′ if for all w ∈ S, V (w) ≥ V ′(w).

Theorem 58 If V - V ′, then Vsup(V ) - Vsup(V ′).

Proof We prove this by contradiction. In particular we assume that there exists a w ∈ S where
Vsup(V )(w) < Vsup(V ′)(w). This would imply:

sup
a∈A(w)

Ex∈a[V (x)] < sup
a∈A(w)

Ex∈a[V
′(x)] (229)

This would imply that there exists an a such that Ex∈a[V ′(x)] > supa′∈A(w) Ex∈a′ [V (x)] ≥
Ex∈a[V (x)]. However, since a ∈ A(w) is a discrete distribution, if V (a) < V ′(a), there must be a
point where V (w′) < V ′(w′), a contradiction.

Lemma 59 If Vsup(V ) - V , then for all t, Vt
sup(V ) - Vt−1

sup (V ).

Proof We prove this by induction on t. It holds for t = 1, based on the assumptions in the
lemma. If we assume it holds for t, then we need to prove it holds for t + 1. By Theorem 58,
since Vt−1

sup (V ) - Vt−2
sup (V ), then Vsup(Vt−1

sup (V )) - Vsup(Vt−2
sup (V )). Of course, this proves our

inductive hypothesis.

Lemma 60 If Vsup(V ) - V , then for all t, Vt
sup(V ) - V , and therefore V ∗ - V .

Proof Again we prove this by induction on t, and the base case where t = 1 is given in the
lemma. Assume that this holds for t − 1, in other words, Vt−1

sup (V ) - V . By Lemma 59,
Vt

sup(V ) - Vt−1
sup (V ), so by transitivity, Vt

sup(V ) - V .
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Theorem 61 For any σ: For any V such that, for all w ∈ S:

V ∗ - Vσ,γ . (230)

Proof
We know that for all w ∈ S:

Vσ,γ(w) = R(w) + γEw′∈Tσ(w)[Vσ,γ(w
′)] (231)

Applying Vsup yields:

Vsup(Vσ,γ)(w) = R(w) + γ sup
a∈A(w)

Ew′∈a[R(w′)] (232)

Because Tσ(w) is a particular a ∈ A(w):

Vsup(Vσ,γ)(w) ≥ R(w) + γEw′∈Tσ(w)[Vσ,γ(w
′)] (233)

Vsup(Vσ,γ)(w) ≥ Vσ,γ(w) (234)

Thus, Vsup(Vσ,γ) - Vσ,γ . By Lemma 60, V ∗ - Vσ,γ .

Theorem 62 If V ∗
γ is the fixed point of Vsup for γ, R is Lipschitz continuous, then for any σ where

Tσ is a contraction mapping, if limγ→1−(1− γ)V ∗
γ exists, then

lim
γ→1−

(1− γ)V ∗
γ - V̄σ. (235)

Proof By Theorem 54, for all w, limγ→1−(1− γ)Vσ,γ(w) = V̄σ(w). By Theorem 61, V ∗
γ - Vσ,γ .

Finally, we use the fact that if, for all x, f(x) ≥ g(x), then limx→c− f(x) ≥ limx→c− g(x).

Theorem 63 If V ∗
γ is the fixed point of Vsup for γ, R is Lipschitz continuous, if limγ→1−(1−γ)V ∗

γ

exists, then for any σ where Tσ is a contraction mapping, if f : P (S, d) → P (M,d) is an extension
of Tσ which is a contraction mapping, then there exists a D∗ ∈ P (S, d) where f(D∗) = D∗, and:

lim
γ→1−

(1− γ)V ∗
γ (w) ≥ Ew∈D∗ [R(w)] (236)

Proof By Theorem 62:

lim
γ→1−

(1− γ)V ∗
γ - V̄σ. (237)

Also by Theorem 53, V̄σ = limt→∞ rt(σ,w). By definition, limt→∞ Ew∈T t
σ
[R(w)]. By Theo-

rem 35, limt→∞ Ew∈T t
σ
[R(w)] = Ew∈D∗ [R(w)]. The result follows by combining these bounds.

I Limiting the Squared Difference From Optimal

We want to bound the expected squared distance of the stationary distribution D∗
η from the optimal

point. Without loss of generality, assume w∗ = 0. If we define R(w) = w2, then Ew∈D∗
η
[R(w)] is

the value we want to bound. Next, we define A(w) such that p(w) ∈ A(w).

Instead of tying the proof too tightly to gradient descent, we consider arbitrary real-valued parame-
ters M , K, r ∈ [0, 1). We define S = {w ∈ Rn : ‖w‖ ≤ K}. For all w, define A(w) to be the set
of all discrete distributions X ∈ D(S, d) such that:
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1. E[X · w] ≤ (1− r)w · w, and
2. ‖X − (1− r)w‖ ≤ M .

We wish to calculate the maximum expected squared value of this process. In particular, this can be
represented as an infinite horizon average reward MDP, where the reward at a state is w2. We know
that zero is a state reached in the optimal solution. Thus, we are concerned with bounding V ∗(0).

Define A(w) to be the set of random variables such that for all random variables a ∈ A(w):

|a| ≤ M (238)
Ex∈a[x · w] ≤ 0 (239)

The Bellman equation, given a discount factor γ, is:

V ∗
γ (w) = w2 + γ sup

a∈A(w)
E[V ∗

γ (a)] (240)

We can relate this bound on the value to any stationary distribution.

Theorem 64 If p : P (S, d) → P (S, d) is a contraction mapping such that for all w ∈ S, p(Iw) ∈
A(w),

then there exists a unique D∗ ∈ P (S, d) where p(D∗) = D∗, and:

lim
γ→1−

(1− γ)V ∗
γ (w) ≥ Ew∈D∗ [w2] (241)

This follows directly from Theorem 63.

Theorem 65 The solution to the Bellman equation (Equation 240) is:

V ∗
γ (w) =

1

1− γ(1− r)2

(
w2 +

γ

1− γ
M2

)
(242)

Proof In order to distinguish between the question and the answer, we write the candidate from
Equation 242:

Vγ =
1

1− γ(1− r)2

(
w2 +

γ

1− γ
M2

)
(243)

Therefore, we are interested in discovering what the Bellman operator does to Vγ . First of all, define
B(w) to be the set of random variables such that for all random variables b ∈ B(w):

|b| ≤ M (244)
Ex∈b[x · w] ≤ 0 (245)

Thus, for every a ∈ A(w), there exists a b ∈ B(w) such that a = (1 − r)w + b, and for every
b ∈ B(w), there exists an a ∈ A(w) such that a = (1− r)w + b. Therefore,

sup
a∈A(w)

E[Vγ(a)] = sup
a∈B(w)

E[Vγ((1− r)w + a)] (246)

=
1

1− γ(1− r)2
γ

1− γ
M2 +

1

1− γ(1− r)2
sup

a∈B(w)
E[((1− r)w + a)2] (247)

Expanding the last part:

sup
a∈B(w)

E[((1− r)w + a)2] = sup
a∈B(w)

(1− r)2w2 + 2(1− r)E[w · a] +E[a2] (248)

By Equation (238):

sup
a∈B(w)

E[((1− r)w + a)2] ≤ sup
a∈B(w)

(1− r)2w2 + 2(1− r)E[w · a] +M2 (249)
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By Equation (239):

sup
a∈B(w)

E[((1− r)w + a)2] ≤ sup
a∈B(w)

(1− r)2w2 +M2 (250)

sup
a∈B(w)

E[((1− r)w + a)2] ≤ (1− r)2w2 +M2 (251)

Also, note that if Pr[a = M
‖w‖w] = Pr[a = − M

‖w‖w] = 0.5, then

E[((1− r)w + a)2] = ((1− r)w +M)2 + ((1− r)w −M)2 (252)

= (1− r)2w2 +M2. (253)

Thus, supa∈A(w) E[((1− r)w + a)2] = (1− r)2w2 +M2. Plugging this into Equation (247):

sup
a∈A(w)

E[Vγ(a)] =
1

1− γ(1− r)2
γ

1− γ
M2 +

1

1− γ(1− r)2
(
(1− r)2w2 +M2

)
(254)

=
1

1− γ(1− r)2
1

1− γ
M2 +

1

1− γ(1− r)2
(1− r)2w2 (255)

Plugging this into the recursion yields:

w2 + γ sup
a∈A(w)

E[Vγ(a)] = w2 + γ

(
1

1− γ(1− r)2
1

1− γ
M2 +

1

1− γ(1− r)2
(1− r)2w2

)

(256)

w2 + γ sup
a∈A(w)

E[Vγ(a)] =
1

1− γ(1− r)2
w2 +

1

1− γ(1− r)2
γ

1− γ
M2 (257)

w2 + γ sup
a∈A(w)

E[Vγ(a)] = Vγ(w) (258)

Therefore, Vγ satisfies the supremum Bellman equation.

Theorem 66 If p : P (S, d) → P (S, d) is a contraction mapping such that for all w ∈ S, p(Iw) ∈
A(w),

then there exists a unique D∗ ∈ P (S, d) where p(D∗) = D∗, and:

Ew∈D∗ [w2] ≤ M2

(2− r)r
(259)

Proof By Theorem 64:

Ew∈D∗ [w2] ≤ lim
γ→1−

(1− γ)V ∗
γ (w) (260)

By Theorem 65, for any w:

Ew∈D∗ [w2] ≤ lim
γ→1−

(1− γ)
1

1− γ(1− r)2

(
w2 +

γ

1− γ
M2

)
(261)

Ew∈D∗ [w2] ≤ lim
γ→1−

1

1− γ(1− r)2
(
(1− γ)w2 + γM2

)
(262)

Ew∈D∗ [w2] ≤ 1

1− (1)(1− r)2
(
0(w2) + 1(M2)

)
(263)

Ew∈D∗ [w2] ≤ M2

1− (1− r)2
(264)

Ew∈D∗ [w2] ≤ M2

(2− r)r
(265)
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Theorem 10 The average squared distance of the stationary distance from the optimal point is
bounded by:

4ηG2

(2− ηλ)λ
.

In other words, the squared distance is bounded by O(ηG2/λ).

Proof
By Theorem 42 and Theorem 43, the stationary distribution of the stochastic process satisfies the
constraints of Theorem 66 with r = ηλ and M = 2ηG. Thus, substituting into Theorem 66 yields
the result.

J Application to Stochastic Gradient Descent

An SVM has a cost function consisting of regularization and loss:

c(w) =
λ

2
w2 +

1

m

m∑

i=1

L(yi, wi · xi) (266)

In this section, we assume that we are trying to find the optimal weight vector given an SVM:

argmin
w

c(w) (267)

In the following, we assume yi ∈ {−1,+1}, xi · xi = 1, and L(y, ŷ) = 1
2 (max(1 − yŷ, 0))2 is

convex in ŷ, and ∂L(y,ŷ)
∂ŷ is Lipschitz continuous. At each time step, we select an i uniformly at

random between 1 and m and take a gradient step with respect to:

ci(w) =
λ

2
w2 + L(yi, w · xi) (268)

Define f i(w) = L(yi, w · xi). In other words:

∇ci(w) = λw +∇f i(w) (269)

This results in the update:
wt+1 = wt − η(λwt +∇f i(w)) (270)

In our case, ∇f i(w) = xi ∂
∂ŷL(y

i, ŷ). Define φi such that:

φi(w) = w − η(λw +∇f i(w)) (271)

In what will follow, we assume that
∥∥∇f i(w)

∥∥ and
∥∥∇f i(w)

∥∥
Lip

are both bounded. This will
require bounds on

∥∥xi
∥∥.

In the first section, we analyze how stochastic gradient descent is a contraction mapping. In the
second section, we analyze the implications of this result.

K Putting it all Together

Theorem 67

σD∗
η
≤

2
√
ηG

√
(2− ηλ)λ

(272)
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Corollary 68 If η ≤ η∗, then (1− ηλ) ≥ 0, and:

σD∗
η
≤

2
√
ηG

√
λ

(273)

Proof By Theorem 31, σw∗

D∗
η
≥ σD∗

η
. The result follows from Theorem 10.

Define Dt
η to be the distribution of the stochastic gradient descent update after t iterations, and D0

η
to be the initial distribution.

Theorem 69 If w0 = 0, then W2(D0
η, D

∗
η) ≤ G

λ , and W1(D0
η, D

∗
η) ≤ G

λ .

Proof By Theorem 44, ‖wt‖ ≤ G
λ . Therefore, for any w ∈ D∗

η , ‖w‖ ≤ G
λ . The result follows

directly.

Theorem 70 If Dt
η is the distribution of the stochastic gradient descent update after t iterations,

and η ≤ η∗, then:

d(µDt
η
, µD∗

η
) ≤ G

λ
(1− ηλ)t (274)

σDt
η
≤ σD∗

η
+

G

λ
(1− ηλ)t (275)

Corollary 71 If w0 = 0, then by Theorem 69 and Corollary 68:

d(µDt
η
, µD∗

η
) ≤ G

λ
(1− ηλ)t (276)

σDt
η
≤

2
√
ηG

√
λ

+
G

λ
(1− ηλ)t (277)

Proof
Note that by Theorem 8:

W1(D
t
η, D

∗
η) ≤

G

λ
(1− ηλ)t. (278)

Equation 274 follows from Corollary 23.

Similarly by Theorem 8:

W2(D
t
η, D

∗
η) ≤ W2(D

0
η, D

∗
η)(1− ηλ)t. (279)

Equation 275 follows from Theorem 32.

Theorem 11 Given a cost function c such that ‖c‖Lip and ‖∇c‖Lip are bounded, a distribution D
such that σD and is bounded, then, for any v:

Ew∈D[c(w)]−min
w

c(w) ≤(σv
D)

√
2 ‖∇c‖Lip (c(v)−min

w
c(w))

+
‖∇c‖Lip

2
(σv

D)2 + (c(v)−min
w

c(w)) (280)

Proof First, we observe that, for any w′, since ∇c is Lipschitz continuous:

c(w′)− c(v) =

∫

a∈[0,1]
∇c(a(w′ − v)) + v) · (w′ − v)da (281)
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For any w′′, by definition of Lipschitz continuity ‖∇c(w′′)−∇c(v)‖ ≤ ‖∇c‖Lip ‖w′′ − v‖, so by
the triangle inequality:

‖∇c(w′′)‖ − ‖∇c(v)‖ ≤ ‖∇c‖Lip ‖w
′′ − v‖ (282)

Applying this to a(w′ − v) + v for a ∈ [0, 1] yields:

‖∇c(a(w′ − v) + v)‖ − ‖∇c(v)‖ ≤ ‖∇c‖Lip ‖a(w
′ − v)‖ (283)

‖∇c(a(w′ − v) + v)‖ − ‖∇c(v)‖ ≤ ‖∇c‖Lip a ‖(w
′ − v)‖ (284)

Thus, by the Cauchy-Schwartz inequality:

∇c(a(w′ − v) + v) · (w′ − v) ≤ (‖∇c‖Lip a ‖w
′ − v‖+ ‖∇c(v)‖) ‖w′ − v‖ . (285)

If f, g are integrable, real valued functions, and if f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a f(x)dx ≤

∫ b
a g(x)dx. Therefore:

c(w′)− c(v) ≤
∫

a∈[0,1]
(‖∇c‖Lip a ‖w

′ − v‖+ ‖∇c(v)‖) ‖w′ − v‖ da (286)

c(w′)− c(v) ≤ (
1

2
‖∇c‖Lip ‖w

′ − v‖+ ‖∇c(v)‖) ‖w′ − v‖ (287)

c(w′)− c(v) ≤ 1

2
‖∇c‖Lip (‖w

′ − v‖)2 + ‖∇c(v)‖) ‖w′ − v‖ (288)

We break this down into three pieces: c2(w′) = 1
2 ‖∇c‖Lip (‖w′ − v‖)2, c1(w′) =

‖∇c(v)‖ ‖w′ − v‖, and c0(w′) = c(v) (i.e.c0 is constant). Therefore:

c(w′) ≤ c0(w
′) + c1(w

′) + c2(w
′) (289)

By Corollary 25 and ‖c1‖Lip = ‖∇c(v)‖:

Ew′∈D[c1(w
′)]− c1(v) ≤ ‖c1‖Lip W1(D, v) (290)

Note that ‖c2‖L2
= 1

2 ‖∇c‖Lip Using the extension of Kantorovich-Rubinstein:

Ew′∈D[c2(w
′)]− c2(v) ≤ ‖c2‖L2

(W2(D, v))2 (291)

Because c0 is a constant function:

Ew′∈D[c0(w
′)]− c0(v) = 0 (292)

Thus, putting it together:

Ew′∈D[c(w′)]− c(v) ≤ ‖c2‖L2
(W2(D, v))2 + ‖c1‖Lip W1(D, v) (293)

Ew′∈D[c(w′)]− c(v) ≤ 1

2
‖∇c‖Lip (W2(D, v))2 + ‖∇c(v)‖W1(D, v) (294)

Since by Fact 28, W2(D, v) = σv
D, and by Theorem 33, W2(D, v) ≥ W1(D, v), so:

Ew′∈D[c(w′)]− c(v) ≤ 1

2
‖∇c‖Lip (σ

v
D)2 + ‖∇c(v)‖σv

D (295)

By Theorem 13:

‖∇c(v)‖ ≤
√
2 ‖∇c‖Lip [c(v)−min

w
c(w)]. (296)

Ew′∈D[c(w′)]− c(v) ≤ 1

2
‖∇c‖Lip (σ

v
D)2 + σv

D

√
2 ‖∇c‖Lip [c(v)−min

w
c(w)] (297)

Adding c(v)−minw c(w) to both sides yields the result.
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Theorem 72 If η ≤ η∗ and T = ln k−(ln η+lnλ)
2ηλ :

Ew∈DT,k
η

[c(w)]−min
w

c(w) ≤8ηG2

√
kλ

√
‖∇c‖Lip

+
8ηG2 ‖∇c‖Lip

kλ
+ (2ηG2). (298)

Proof Define DT,k
η to be the average of k draws from DT

η . By Theorem 34:

µDT,k
η

= µDT
η

(299)

σDT,k
η

=
1√
k
σDT

η
(300)

Applying Corollary 71:

d(µDT,k
η

, µD∗
η
) ≤ G

λ
(1− ηλ)T (301)

σDT,k
η

≤ 1√
k

(
2
√
ηG

√
λ

+
G

λ
(1− ηλ)T

)
(302)

Since 1− ηλ ∈ [0, 1], exp(−ηλ) ≤ 1− ηλ, so:

d(µDT,k
η

, µD∗
η
) ≤ G

λ
exp(−ηλT ) (303)

σDT,k
η

≤ 1√
k

(
2
√
ηG

√
λ

+
G

λ
exp(−ηλT )

)
(304)

Note that σ
µD∗

η

DT,k
η

≤ σDT,k
η

+ d(µDT,k
η ,µD∗

η
). So:

σ
µD∗

η

DT,k
η

≤ 1√
k

(
2
√
ηG

√
λ

+
G

λ
exp(−ηλT )

)
+

G

λ
exp(−ηλT ) (305)

σ
µD∗

η

DT,k
η

≤
2
√
ηG

√
kλ

+
2G

λ
exp(−ηλT ) (306)

Setting T = ln k−(ln η+lnλ)
2ηλ yields:

σ
µD∗

η

DT,k
η

≤
4
√
ηG

√
kλ

(307)

By Theorem 11:

Ew∈DT,k
η

[c(w)]−min
w

c(w) ≤(σ
µD∗

η

DT,k
η

)
√

2 ‖∇c‖Lip (c(µD∗
η
)−min

w
c(w))

+
‖∇c‖Lip

2
(σ

µD∗
η

DT,k
η

)2 + (c(µD∗
η
)−min

w
c(w)) (308)

≤
4
√
ηG

√
kλ

√
2 ‖∇c‖Lip (c(µD∗

η
)−min

w
c(w))

+
‖∇c‖Lip

2

16ηG2

kλ
+ (c(µD∗

η
)−min

w
c(w)). (309)

By Theorem 9, c(µD∗
η
)−minw c(w) ≤ 2ηG2:

Ew∈DT,k
η

[c(w)]−min
w

c(w) ≤
4
√
ηG

√
kλ

√
2 ‖∇c‖Lip (2ηG2) +

‖∇c‖Lip
2

16ηG2

kλ
+ (2ηG2) (310)

≤8ηG2

√
kλ

√
‖∇c‖Lip +

8ηG2 ‖∇c‖Lip
kλ

+ (2ηG2). (311)
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