
A Student’s-t Distribution

Recall that a k-dimensional Student’s-t distribution St(x|µ, Σ, v) with 1 < v < +∞ degrees of
freedom has the following probability density function:

St(x|µ, Σ, v) =
Γ ((v + k)/2)

(πv)
k/2

Γ(v/2)|Σ|1/2

�
1 + (x − µ)�(vΣ)−1(x − µ)

�−(v+k)/2
. (31)

Here Γ(·) denotes the usual Gamma function. In fact, the Student’s-t distribution is a member of the
t-exponential family. To see this we first set −(v + k)/2 = 1/(1 − t) and

Ψ =

�
Γ ((v + k)/2)

(πv)
k/2

Γ(v/2)|Σ|1/2

�−2/(v+k)

to rewrite (31) as

St(x|µ, Σ, v) =
�
Ψ +Ψ · (x − µ)�(vΣ)−1(x − µ)

�1/(1−t)
. (32)

Next we set φ(x) = [x; xx�], θ = [θ1, θ2], where K = (vΣ)−1 and θ1 = −2ΨKµ/(1 − t) while
θ2 = ΨK/(1 − t). Then we define

�φ(x), θ� =

�
Ψ

1 − t

�
�
x�Kx − 2µ�Kx

�
and

gt(θ) = −

�
Ψ

1 − t

�
�
µ�Kµ + 1

�
+

1

1 − t

to rewrite (32) as

St(x|µ, Σ, v) = (1 + (1 − t) (�φ(x), θ� − gt(θ)))
1/(1−t)

.

Comparing with (11) clearly shows that

St(x|µ, Σ, v) = pt(x; θ) = expt (�φ(x), θ� − gt(θ)) .

Furthermore, using this fact and some simple algebra yields the escort distribution of Student’s-t
distribution:

qt(x; θ) = St(x|µ, vΣ/(v + 2), v + 2)

Interestingly, the mean of the Student’s-t pdf is µ, and its variance is vΣ/(v − 2) while the mean
and variance of the escort are µ and Σ respectively.

B Properties of gt(θ)

Although gt(θ) is not the cumulant function of the t-exponential family, it still preserves convexity.
As the following theorem asserts, its first derivative can still be written as an expectation of φ(x) but
now with respect to the escort distribution. Note that the theorem and proof here is only a special
case of a more general one appeared in Sears [13] and [9].

Theorem 1 The function gt(θ) is convex. Moreover, if the following regularity condition
�

∇θp(x; θ)dx = ∇θ

�

p(x; θ)dx (33)

holds, then

∇θgt(θ) = Eqt(x;θ) [φ(x)] , (34)

where qt(x; θ) is the escort distribution (14).
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Proof To prove convexity, we rely on the elementary arguments. Recall that expt is an increasing
and strictly convex function. Choose θ1 and θ2 such that gt(θi) < ∞ for i = 1, 2, and let α ∈ (0, 1).
Set θα = αθ1 + (1 − α)θ2, and observe that

�

expt (�φ(x), θα� − αgt(θ1) − (1 − α)gt(θ2)) dx

< α

�

expt(�φ(x), θ1� − gt(θ1))dx + (1 − α)

�

expt(�φ(x), θ2� − gt(θ2))dx = 1.

On the other hand, we also have
�

expt (�φ(x), θα� − gt(θα)) dx = 1.

Again, using the fact that expt is an increasing function, we can conclude from the above two
equations that

gt(θα) < αgt(θ1) + (1 − α)gt(θ2).

This shows that gt is a strictly convex function.

To show (34) use (33) and observe that
�

∇θp(x; θ)dx = ∇θ

�

p(x; θ)dx = ∇θ1 = 0.

Combining with the fact that d
dx expt(x) = exptt(x), use (14) and the chain rule to write

�

∇θp(x; θ)dx =

�

∇θ expt (�φ(x), θ� − gt(θ)) dx

=

�

exptt (�φ(x), θ� − gt(θ)) (φ(x) − ∇θgt(θ))dx

∝

�

qt(x; θ)(φ(x) − ∇θgt(θ))dx = 0.

Rearranging terms and using
�
qt(x; θ)dx = 1 directly yields (34).

C Convergence of Convex Multiplicative Programming

In the Convex Multiplicative Programming, we convert the problem:

argmin
θ

P(θ) �

N�

n=1

zn(θ)

into the problem:

argmin
θ,ξ

MP(θ, ξ) �

N�

n=1

ξnzn(θ) s.t.

N�

n=1

ξn = 1 and ξ > 0

by introducing the latent variable ξ. In the kth ξ-step, assuming the current variables are θ(k−1) and

ξ(k−1), we fix θ(k−1), denote z̃ = z(θ(k−1)), and minimize over ξ. It turns out that:

ξ(k)n =
1

z̃n

N�

n=1

z̃
1
N
n

Therefore,

MP(θ(k−1), ξ(k)) = min
ξ

MP(θ(k−1), ξ) = NP(θ(k−1))1/N ≤ MP(θ(k−1), ξ(k−1))
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The θ-step is to fix ξ(k) and minimize θ, the result is

MP(θ(k), ξ(k)) = min
θ

MP(θ, ξ(k)) ≤ MP(θ(k−1), ξ(k)) = NP(θ(k−1))1/N

The above two equalities hold if and only if ξk = ξk−1 and θk = θk−1, which follows the conver-
gence of the algorithm at the kth iteration. Therefore, before convergence we have

MP(θ(k), ξ(k)) < NP(θ(k−1))1/N < MP(θ(k−1), ξ(k−1)).

But since P(θ) > 0, the algorithm must converge at some point.

Next, we want to show that θ̃ after convergence is a stable point of the P(θ). Assume that θ̃ and ξ̃
is the convergence point, then the θ-step is:

0 =
N�

n=1

N�

n=1

zn(θ̃)
1
N

1

zn(θ̃)

dzn(θ)|θ=θ̃

d θ
=

�
N�

n=1

zn(θ̃)
1
N

��
N�

n=1

1

zn(θ̃)

dzn(θ)|θ=θ̃

d θ

�

which implies that,

0 =
N�

n=1

1

zn(θ)|θ=θ̃

dzn(θ)|θ=θ̃

d θ
=

N�

n=1

�N
n=1 zn(θ̃)

zn(θ̃)

dzn(θ)|θ=θ̃

d θ
=

dP(θ)|θ=θ̃

d θ

Therefore, θ̃ is a stable point of P(θ).

D Gradient Based method

It is also possible to directly use the gradient based method such as L-BFGS to solve (23). To do
this, it is convenient to take log of (23).

log P(θ) =

N�

n=1

log zn(θ) =

d�

j=1

log rj(θ) +

m�

i=1

log li(θ) (35)

=

d�

j=1

log
�
1 + (1 − t)(−λ̃θ2j /2 − g̃t)

�
+

m�

i=1

log
�
1 + (1 − t)(

�yi
2
φ(xi), θ

�
− gt(θ | xi))

�

(36)

Take the derivative,

for n = 1, . . . , d ∇θ log zn(θ) = ∇θ log rn(θ) =

�
t − 1

rn(θ)

�

· λ̃θn en (37)

for n = 1, . . . ,m ∇θ log zn+d(θ) = ∇θ log ln(θ)

=

�
1 − t

ln(θ)

�

·
�yn
2
φ(xn) − Eqt(yn| xn;θ)

�yn
2
φ(xn)

��
(38)

where en denotes the d dimensional vector with one at the n-th coordinate and zeros elsewhere
(n-th unit vector). There is an obvious relation of (37) (38), and the previous routine, given that
ξn = 1/zn(θ) here and ξ̃n ∝ 1/z̃n in (29).

We report the performance of the t-logistic regression by directly using L-BFGS as the optimizer
in Table 5. The algorithms use the same parameters as in Table 1. Since L-BFGS is not designed
to optimize non-convex functions, it may fail sometimes, in which case we randomly restart with a
different initialization.

E Higher Label Noise

Our algorithm appears to be more robust than logistic regression (especially when t = 1.9) against
the label noise (10%). A natural question to ask then is how well it performs when the label noise is
larger than 10%. In Figure 6, we compare the t-logistic regression with logistic regression and the
probit in the cases when 20% and 30% label noise is added. We also report the test error in Table 6.
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Figure 6: The test performance with the change of the label noise (left to right, top: Long-Servedio,
Mease-Wyner, Mushroom; bottom: USPS-N, Adult, Web). The magenta dash line with upper-
triangles is the logistic regression; the green line with circles is t = 1.3; the cyan line with squares
is t = 1.6; the red line with diamonds is t = 1.9; and the blue dash line with lower-triangles is the
probit.

F Significance Test

We performed the paired T-test of the test error rates for each dataset obtained by the t-logistic
regression with t = 1.9 and by the other algorithms. To do this, we take the difference of the error
rate for each split in each dataset by any two algorithms. The hypothesis is that the difference of the
two algorithms for each split is drawn from a zero-mean normal distribution with unknown variance
in the same dataset. We report the significance test results in Table 2.

G Selected Results from RampSVM

Unfortunately, we do not obtain good results by using RampSVM [20] on our datasets. We used the
UniverSVM package [23], and performed a grid search of the parameters C and s. It appears that the
optimal parameter C is consistent with that used by the Linear SVM, since the UniverSVM uses the
solution of Linear SVM to initialize. We report the test performance for s = 0,−0.1,−1,−10,−100
in Table 7. Usually the results are significantly worse than the other algorithms, except for the Long-
Servedio dataset where RampSVM performs as well as other non-convex losses with label noise. We
therefore do not report results the RampSVM in the main body of the paper.
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Table 1: Datasets used in our experiments.(λl denotes λ for the logistic regression. λ1.3, λ1.6, λ1.9

are the λ values used for t-logistic regression with t = 1.3, 1.6, and 1.9 respectively. λp is λ for the
probit algorithm. C is the parameter C for the C-SVC which is equivalent to 1/λ. )

Name Noise Dimensions Num. of examples λl λ1.3 λ1.6 λ1.9 λp C

Long-Servedio 0% 21 2000 2−7 2−7 2−7 2−7 2−7 2−5

Mease-Wyner 0% 20 2000 2−7 26 24 23 2−7 27

Mushroom 0% 112 8124 2−7 2−7 2−2 2−5 2−2 2−2

USPS-N 0% 256 11000 24 22 21 20 24 2−5

Adult 0% 123 48842 25 25 24 23 22 2−3

Web 0% 300 64700 2−5 2−7 20 2−1 2−7 27

Long-Servedio 10% 21 2000 2−7 2−7 2−1 20 2−2 23

Mease-Wyner 10% 20 2000 2−2 27 27 26 2−7 23

Mushroom 10% 112 8124 21 23 23 23 21 24

USPS-N 10% 256 11000 27 27 27 26 25 2−3

Adult 10% 123 48842 24 25 24 23 23 2−1

Web 10% 300 64700 2−7 2−7 2−7 2−7 2−7 21

Table 2: Significance Test of the test error rates by the t-logistic regression with t = 1.9 and the
other algorithms. The significance factor α is set as 0.05. ’Y’ means that the difference is significant.
’N’ means the difference is not significant.

Dataset Noise Logistic t=1.3 t=1.6 Probit SVM

Long-Servedio 0% N N N N N
Mease-Wyner 0% Y N N Y Y

Mushroom 0% N N N Y N
USPS-N 0% N N N N N

Adult 0% N N N N N
Web 0% N Y N Y N

Long-Servedio 10% Y N N N Y
Mease-Wyner 10% Y Y N N Y

Mushroom 10% N N N Y N
USPS-N 10% Y Y N N Y

Adult 10% Y N N N Y
Web 10% Y Y N Y Y
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Figure 7: The ξ distribution with 10% label noise added. t = 1.3. Left to right, top: Long-Servedio,
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the ξ assigned to points without (resp. with) label noise.
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Figure 8: The ξ distribution with 10% label noise added. t = 1.6. Left to right, top: Long-Servedio,
Mease-Wyner, Mushroom; bottom: USPS-N, Adult, Web. The red bars (resp. cyan bars) indicate
the ξ assigned to points without (resp. with) label noise.

Dataset Noise Logistic t=1.3 t=1.6 t=1.9 Probit

Long-Servedio 20% 26.14 ± 5.39 25.43 ± 5.23 23.64 ± 5.49 9.93 ± 12.97 0.00 ± 0.00
Mease-Wyner 20% 7.86 ± 2.36 5.86 ± 1.46 4.07 ± 1.91 3.07 ± 1.47 3.00 ± 1.38

Mushroom 20% 0.21 ± 0.27 0.19 ± 0.24 0.19 ± 0.24 0.19 ± 0.24 0.95 ± 0.45
USPS-N 20% 4.82 ± 0.84 4.73 ± 0.82 4.21 ± 0.82 3.77 ± 0.68 3.23 ± 0.79

Adult 20% 15.59 ± 0.49 15.56 ± 0.50 15.51 ± 0.50 15.47 ± 0.45 15.65 ± 0.62
Web 20% 1.77 ± 0.21 1.69 ± 0.21 1.64 ± 0.21 1.59 ± 0.19 3.02 ± 0.23

Long-Servedio 30% 26.71 ± 4.34 26.57 ± 4.43 26.43 ± 4.48 26.07 ± 4.55 2.86 ± 2.54
Mease-Wyner 30% 11.07 ± 2.46 10.50 ± 3.03 6.64 ± 2.48 5.29 ± 2.41 9.50 ± 3.40

Mushroom 30% 0.49 ± 0.40 0.49 ± 0.41 0.44 ± 0.39 0.48 ± 0.29 1.02 ± 0.52
USPS-N 30% 7.27 ± 1.09 7.29 ± 1.19 6.62 ± 0.97 6.01 ± 0.84 4.35 ± 1.97

Adult 30% 15.79 ± 0.49 15.76 ± 0.46 15.72 ± 0.48 15.73 ± 0.47 15.87 ± 0.62
Web 30% 1.98 ± 0.18 1.97 ± 0.18 1.96 ± 0.17 1.95 ± 0.17 3.02 ± 0.23

Table 6: Test Error Rate in % for various algorithms with higher label noise.

Dataset Noise C s=0 s=-0.1 s=-1 s=-10 s=-100

Long-Servedio 0% 2−5 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Mease-Wyner 0% 27 50.5 ± 4.10 50.5 ± 4.10 50.5 ± 4.10 50.5 ± 4.10 50.5 ± 4.10

Mushroom 0% 2−2 0.04 ± 0.08 0.04 ± 0.08 0.04 ± 0.08 0.04 ± 0.08 0.04 ± 0.08

Long-Servedio 10% 23 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 23.29 ± 8.84 23.29 ± 8.84
Mease-Wyner 10% 23 50.5 ± 4.10 50.5 ± 4.10 50.5 ± 4.10 50.5 ± 4.10 50.5 ± 4.10

Mushroom 10% 24 5.25 ± 8.87 5.74 ± 8.68 9.08 ± 10.47 47.19 ± 1.66 47.19 ± 1.66

Table 7: The test error (%) of RampSVM on selected datasets.
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