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In this supplement, we present the calculations that lead to Equation (12) in the main article as well
as the formulas that underlie Figure 4.

1 The simplecase u =z =1

For starters we derive the expression for the simple case of v and z being constant and equal to one.
The firing rates are given by
z; = C; + &; cos(w;it + ;) (1)
for the pre- and postsynaptic neuron, 7 = pre, post. To simplify further, both baseline firing rates
are equal, as well as the perturbations and modulation frequencies:
Cpre = Cpost =T
Epre = Epost =€ )
Wpre = Wpost —W
The only difference between the two firing rates is the phase ;. For both traces y; the differential
equation now reads
yi:—%—l—xl——?—i—xo—&—acos(wt—&—apl) 3)

Looking only at the solution for long times, neglecting the transients and using the initial condition
yilto) = 0, we get

yi(t) = 1 + (cos(wt + ;) + Tiw sin(wt + gpz)) +Txo . 4)
’L
For the weight change, we consider ¥, and Jpst:

o Tpre€ .

Ypre = 102 o2 cos(wt + Ypre) + Tprew sin(wt + @post) | + TpreZo
pre

. 7—postwg . (5)
Upost = W (Tpostw cos(wt + Ypost) — sin(wt + @post))

The calculations now are straightforward, but rather lengthy. The product of the two functions is
52W7pre7_post
1 + T]?TSWQ) (1 + T;?ostuﬂ)

— cos(wt + Ppre) sin(wt + Ypost) + szmepost sin(wt + @pre) cos(wt + @post)

ypreypost ( {Tpostw COS(Wt + (Ppre) COS(Wt + Wpost)

— Tprew SIN(wt + @pre) sin(wt + Sppost)}
TOWETpreT, i
# (Tpostw cos(wt + @post) — sin(wt + (ppost))
(6)
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We now use trigonometric product identities to get rid of the products of sin and cos. Also, we make
use of the fact that in an integration over one period an expression like cos(nwt + 1) vanishes for
integers n. We calculate AW = 1/(T€?) [ YpreUpostdt:

1
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T
1
/ ypreyp()stdt = 3 wTZQM‘eTpost 5 -
’ 2 (1 + Tprew )(1 + Tpostw ) (7)

: (w(Tpost - Tp’re) COs AQO + (1 + W2Tpre7'post) sin A(p)

where we introduced the phase difference Ay = @pre — Ppost

Last, we use the addition of two sines to get our Equation (12)

1 WTpreTpost \/W2 (Tpost - Tpre)2 + (]- + w27—pre7—post)2
2 (14 72..w?2) (1 + 72, 0w?)
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2 The contributions of v and z

In the following section, we are only interested in small perturbations. So, any € popping up is
considered small against the background rate, ¢ < . This will allow us to discard terms of higher
orders of ¢.

2.1 The postsynaptic activation z

Consider the equation of the postsynaptic activation
: 2
Z=—a(z — 20)° + CactTpost? 9)

If the postsynaptic rate is constant, Tp.s: = o, We expect the value of z to reach a constant equilib-
rium value, z¢?. This is given by

eq __ o 2
21 = 5 + 1 z5 (10)
with h = 2z + cqeeo/. 29 is the solution of a quadratic equation. The minus sign is dis-
carded, because it would lead to values of z°? less than z(, which are unstable and lead to a negative
divergence of z. Also, in any case these values can not be reached.

Now we introduce a small perturbation for xpost = 2o + 0 = 29 + €exp (z’(wt + gopost)). For
ease of computation, we write the perturbation in a complex way and switch to real functions when
appropriate. We expect z to behave linear around the equilibrium and write it as z = 27 4 z. We
now linearize the differential equation for z:

0% 0%
=0t = — 1) — 1) 11
i i 0z z€4 S Ox z€4 v ( )
The derivatives are
Py
a—z = —20(2% — 2z9) + Caeto = —k
0% - m (12)
huded — eq _ °
8ZE z¢4, 0 Cact?
This gives us the differential equation
5= —koz+ Dow (13)
€
which is solved by
Sz = Lei(wtﬁ-apwst—arctan w/k) (14)
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2.2 The attenuation u

For the general case

. 1—wu
U; =

— — ci(ui — uf)w; (15)
i

we do again a linearization for small perturbations: x; = z¢ + dz = z¢ + cexp (i(wt + gpi))
w; = u;? + du. First, with constant background rate, the equilibrium value of u; is u;":

T—lec + ciuémo
=t (16)
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Tree + CiT0
i

The derivatives are

01, ( 1 . )
T =— | Zpec tGi%o ) = —pi
3 i lusx rec
e K (17
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Which leads us to the differential equation for the variation of w;:
. 4q;
ou; + pidu; = — =6z (18)
€
And the solution is given by
5%‘ _ —dq; ei(wt+appost—arctan w/pi) (19)

2.3 The weight change

Now, we want to calculate the weight change for the given firing rate © = xo+dx. The perturbations
Sz, 6z and du; are all in the order of e. For the calculations, we discard terms of the order of 2 or
higher. This yields

Ypre = —M—F(u;‘f.e—kduwe)(azo—&—(h) = —M+uzﬂexo+x05upre+uzgeéx+0 (82) , (20)
Tpre Tpre
and similarly for the postsynaptic trace
Upost = — ipOSt + uf,gstxozeq + uf,gstxoéz + u;'f)stzeq&c + 202 0Upost + O (52) . 2D
post

The task is now to solve these equations, take the temporal derivative of ., take the real
parts of both functions, use trigonometric product identities and then finally integrate AW =
/T fT YpreUpostdt. Since the calculations do not get shorter and more instructive than in the first
section, we just present the result.
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=3 [ — A3 By sin(Wy — @) — Ay Bssin(¥3 — $y) + A By sin(Uy — Oo) (22)

+ A3B2 Sin(\I/Q - (I)g) + A3B3 Sin(\I/g - (I)g) - A3B4 Sil’l(\I/4 — (I>3)
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