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In this supplement, we present the calculations that lead to Equation (12) in the main article as well
as the formulas that underlie Figure 4.

1 The simple case u = z = 1

For starters we derive the expression for the simple case of u and z being constant and equal to one.
The firing rates are given by

xi = Ci + εi cos(ωit+ ϕi) (1)
for the pre- and postsynaptic neuron, i = pre, post. To simplify further, both baseline firing rates
are equal, as well as the perturbations and modulation frequencies:

Cpre = Cpost =x0

εpre = εpost =ε

ωpre = ωpost =ω

(2)

The only difference between the two firing rates is the phase ϕi. For both traces yi the differential
equation now reads

ẏi = −yi
τi

+ xi = −yi
τi

+ x0 + ε cos(ωt+ ϕi) (3)

Looking only at the solution for long times, neglecting the transients and using the initial condition
yi(t0) = 0, we get

yi(t) =
τiε

1 + τiω

(
cos(ωt+ ϕi) + τiω sin(ωt+ ϕi)

)
+ τix0 . (4)

For the weight change, we consider ypre and ẏpost:

ypre =
τpreε

1 + τ2preω
2

(
cos(ωt+ ϕpre) + τpreω sin(ωt+ ϕpost)

)
+ τprex0

ẏpost =
τpostωε

1 + τ2postω
2

(
τpostω cos(ωt+ ϕpost)− sin(ωt+ ϕpost)

) (5)

The calculations now are straightforward, but rather lengthy. The product of the two functions is

ypreẏpost =
ε2ωτpreτpost

(1 + τ2preω
2)(1 + τ2postω

2)

[
τpostω cos(ωt+ ϕpre) cos(ωt+ ϕpost)

− cos(ωt+ ϕpre) sin(ωt+ ϕpost) + ω2τpreτpost sin(ωt+ ϕpre) cos(ωt+ ϕpost)

− τpreω sin(ωt+ ϕpre) sin(ωt+ ϕpost)
]

+
x0ωετpreτpost
1 + τ2postω

2

(
τpostω cos(ωt+ ϕpost)− sin(ωt+ ϕpost)

)
(6)
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We now use trigonometric product identities to get rid of the products of sin and cos. Also, we make
use of the fact that in an integration over one period an expression like cos(nωt + ψ) vanishes for
integers n. We calculate ∆W = 1/(Tε2)

∫
T
ypreẏpostdt:

1

Tε2

∫ T

0

ypreẏpostdt =
1

2

ωτpreτpost
(1 + τ2preω

2)(1 + τ2postω
2)

·
(
ω(τpost − τpre) cos ∆ϕ+ (1 + ω2τpreτpost) sin ∆ϕ

) (7)

where we introduced the phase difference ∆ϕ = ϕpre − ϕpost
Last, we use the addition of two sines to get our Equation (12)

∆W =
1

2

ωτpreτpost
√
ω2(τpost − τpre)2 + (1 + ω2τpreτpost)2

(1 + τ2preω
2)(1 + τ2postω

2)

· sin
(

∆ϕ+ arctan
ω(τpost − τpre)
1 + ω2τpreτpost

) (8)

2 The contributions of u and z

In the following section, we are only interested in small perturbations. So, any ε popping up is
considered small against the background rate, ε� x0. This will allow us to discard terms of higher
orders of ε.

2.1 The postsynaptic activation z

Consider the equation of the postsynaptic activation

ż = −α(z − z0)2 + cactxpostz (9)

If the postsynaptic rate is constant, xpost = x0, we expect the value of z to reach a constant equilib-
rium value, zeq . This is given by

zeq =
h

2
+

√
h2

4
− z20 (10)

with h = 2z0 + cactx0/α. zeq is the solution of a quadratic equation. The minus sign is dis-
carded, because it would lead to values of zeq less than z0, which are unstable and lead to a negative
divergence of z. Also, in any case these values can not be reached.

Now we introduce a small perturbation for xpost = x0 + δx = x0 + ε exp
(
i(ωt + ϕpost)

)
. For

ease of computation, we write the perturbation in a complex way and switch to real functions when
appropriate. We expect z to behave linear around the equilibrium and write it as z = zeq + δz. We
now linearize the differential equation for z:

ż = δż =
∂ż

∂z

∣∣∣
zeq,x0

δz +
∂ż

∂x

∣∣∣
zeq,x0

δx (11)

The derivatives are
∂ż

∂z

∣∣∣
zeq,x0

= −2α(zeq − z0) + cactx0 = −k

∂ż

∂x

∣∣∣
zeq,x0

= cactz
eq =

m

ε

(12)

This gives us the differential equation

δż = −kδz +
m

ε
δx (13)

which is solved by
δz =

m√
k2 + ω2

ei(ωt+ϕpost−arctanω/k) (14)
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2.2 The attenuation u

For the general case

u̇i =
1− ui
τ reci

− ci(ui − ui0)xi (15)

we do again a linearization for small perturbations: xi = x0 + δx = x0 + ε exp
(
i(ωt + ϕi)

)
,

ui = ueqi + δu. First, with constant background rate, the equilibrium value of ui is ueqi :

ueqi =

1
τrec
i

+ ciu
i
0x0

1
τrec
i

+ cix0
(16)

The derivatives are

∂u̇i
∂ui

∣∣∣
ueq
i ,x0

= −
(

1

τ reci

+ cix0

)
= −pi

∂u̇i
∂xi

∣∣∣
ueq
i ,x0

= −ci(ueqi − u0) = −qi
ε

(17)

Which leads us to the differential equation for the variation of ui:

δu̇i + piδui = −qi
ε
δx (18)

And the solution is given by

δui =
−qi√
p2i + ω2

ei(ωt+ϕpost−arctanω/pi) (19)

2.3 The weight change

Now, we want to calculate the weight change for the given firing rate x = x0+δx. The perturbations
δx, δz and δui are all in the order of ε. For the calculations, we discard terms of the order of ε2 or
higher. This yields

ẏpre = −ypre
τpre

+(ueqpre+δupre)(x0+δx) = −ypre
τpre

+ueqprex0+x0δupre+ueqpreδx+O
(
ε2
)

, (20)

and similarly for the postsynaptic trace

ẏpost = −ypost
τpost

+ ueqpostx0z
eq + ueqpostx0δz + ueqpostz

eqδx+ x0z
eqδupost +O

(
ε2
)

. (21)

The task is now to solve these equations, take the temporal derivative of ypost, take the real
parts of both functions, use trigonometric product identities and then finally integrate ∆W =
1/T

∫
T
ypreẏpostdt. Since the calculations do not get shorter and more instructive than in the first

section, we just present the result.

∆W =
1

T

∫ T

0

ypreẏpostdt

=
1

2

[
−A2B2 sin(Ψ2 − Φ2)−A2B3 sin(Ψ3 − Φ2) +A2B4 sin(Ψ4 − Φ2)

+A3B2 sin(Ψ2 − Φ3) +A3B3 sin(Ψ3 − Φ3)−A3B4 sin(Ψ4 − Φ3)
] (22)

3



with

A1 =τpreu
eq
prex0

A2 =
x0qpre√

1
τ2
pre

+ ω2
√
p2pre + ω2

, Φ2 = ϕpre − arctan
ω

ppre
− arctanωτpre

A3 =
ueqpreε√
1

τ2
pre

+ ω2
, Φ3 = ϕpre − arctanωτpre

B1 =τpostu
eq
postx0z

eq

B2 =
ωueqpostx0m√

1
τ2
post

+ ω2
√
k2 + ω2

, Ψ2 = ϕpost − arctan
ω

k
− arctanωτpost

B3 =
ωueqpostz

eqε√
1

τ2
post

+ ω2
, Ψ3 = ϕpost − arctanωτpost

B4 =
ωx0z

eqqpost√
1

τ2
post

+ ω2
√
p2post + ω2

, Ψ4 = ϕpost − arctan
ω

ppost
− arctanωτpost

(23)
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