
A Detail of the Greedy Partitioning Algorithm

In this section, we provide detail for the greedy partitioning algorithm.

In our greedy Go-CART procedure, we start from the coarsest partition X = [0, 1]d and then com-
pute the decrease of the held-out risk by dyadically splitting each hyperrectangle A along the di-
mension k ∈ {1, . . . d}. We select the k∗ which leads to the maximum drop of the held-out risk.
More precisely, let slk(A) be the side length of A on the dimension k. If slk(A) > 2−K , where
K = log2 N , we dyadically split A along the dimension k. In this case, let A(k)

L and A(k)
R be the

two resulted sub-hyperrectangles. The drop of the held-out risk takes the form:

∆R̂
(k)
out(A, µ̂A, Ω̂A)

= R̂out(A, µ̂A, Ω̂A) − R̂out(A(k)
L , µ̂A(k)

L

, Ω̂A(k)
L

) − R̂out(A(k)
R , µ̂A(k)

R

, Ω̂A(k)
R

). (8)

Note that if splitting any dimension k of A leads to an increase of the risk, we set a boolean vari-
able S(A) = FALSE which indicates that the partition element A should no longer be split and
hence A should be an partition element of Π(T). The greedy Go-CART as presented in Algorithm
1 recursively applies the previous procedure to split each partition element until all the partition
elements cannot be further split. Note that we also record the dyadic partition tree structure in the
implementations.

Algorithm 1 Greedy Dyadic Partitioning Tree Learning Algorithm
Input: training data {xi, yi}n1

i=1, held-out data validation {x′
i, y

′
i}n2

i=1, and an integer K

Start from the X = [0, 1]d. Set the boolean variable S(X) = TRUE and estimate bµX , bΩX
while exists a hyperrectangle A such that S(A) = TRUE do

for all dimension k ∈ {1, . . . d} do
if slk(A) ≥ 2−K+1 then

Calculate ∆ bR
(k)
out(A, bµA, bΩA) according to (8)

else
Set ∆ bR

(k)
out(A, bµA, bΩA) = −∞

end if
end for
Determine the best splitting dimension k∗ = arg maxk∈{1,...,d} ∆ bR

(k)
out(A, bµA, bΩA)

if ∆ bR
(k∗)
out (A, bµA, bΩA) > 0 then

Dyadically split A along the dimension k∗ which leads to two new hyperrectangles A(k∗)
L and A(k∗)

R .

Estimate bµA(k∗)
L

, bΩA(k∗)
L

, bµA(k∗)
R

, bΩA(k∗)
R

and set S(A(k∗)
L) = S(A(k∗)

R) = TRUE

else
Set S(A) = FALSE and put A into the final partition set

end if
end while

Output: the obtained partition set Π(bT) = {Xj}m bT
j=1 and the corresponding DPT bT with the estimated bµXj ,

bΩXj for each partition element Xj .

B Proofs of Technical Results

Proof of Theorem 1. For any T ∈ TN , we denote

Sj,n =
1
n

n∑
i=1

(yi − µXj
)(yi − µXj

)T · I(xi ∈ Xj) (9)

S̄j = E(Y − µXj
)(Y − µXj

)T · I(X ∈ Xj). (10)

10

We then have∣∣∣R(T, µT ,ΩT) − R̂(T, µT ,ΩT)
∣∣∣

≤
∣∣∣∣ m∑
j=1

tr
[
ΩXj

(
Sj,n − S̄j

)]∣∣∣∣+ ∣∣∣∣ m∑
j=1

log |ΩXj
| ·
[1
n

n∑
i=1

I(xi ∈ Xj) − EI(X ∈ Xj)
]∣∣∣∣ (11)

≤
m∑

j=1

‖ΩXj
‖1 ·
∥∥Sj,n − S̄j

∥∥
∞︸ ︷︷ ︸

A1

+
m∑

j=1

∣∣∣log |ΩXj
|
∣∣∣ · ∣∣∣∣ 1n

n∑
i=1

I(xi ∈ Xj) − EI(X ∈ Xj)
∣∣∣∣︸ ︷︷ ︸

A2

.(12)

We now analyze the terms A1 and A2 separately.

For A2, using the Hoeffding’s inequality, for ε > 0, we get

P

(∣∣∣∣ 1n
n∑

i=1

I(xi ∈ Xj) − EI(X ∈ Xj)
∣∣∣∣ > ε

)
≤ 2 exp

(
−2nε2

)
, (13)

which implies that,

P

(
sup

T∈TN

∣∣∣∣ 1n
n∑

i=1

I(xi ∈ Xj) − EI(X ∈ Xj)
∣∣∣∣/εT > 1

)
≤ 2

∑
T∈TN

exp
(
−2nε2T

)
, (14)

where εT means ε is a function of T . For any δ ∈ (0, 1), we have, with probability at least 1 − δ/4,

∀T ∈ TN ,

∣∣∣∣ 1n
n∑

i=1

I(xi ∈ Xj) − EI(X ∈ Xj)
∣∣∣∣ ≤
√

[[T]] log 2 + log(8/δ)
2n

(15)

where [[T]] > 0 is the prefix code of T given in (4).

From Assumption 1, since ΩXj
∈ Λj , we have that

max
1≤j≤mT

log
∣∣ΩXj

∣∣ ≤ Ln (16)

Therefore, with probability at least 1 − δ/4,

A2 ≤ LnmT

√
[[T]] log 2 + log(8/δ)

2n
. (17)

Next, we analyze the term A1. It’s obvious that

max
1≤j≤mT

‖ΩXj
‖1 ≤ Ln. (18)

We only need to bound the term
∥∥Sj,n − S̄j

∥∥
∞. By Assumption 2 and the union bound, we have,

for any ε > 0,

P
(∥∥Sj,n − S̄j

∥∥
∞ > ε

)
≤ P

(∥∥∥ 1
n

n∑
i=1

yiy
T
i I(xi ∈ Xj) − E

[
Y Y T I(X ∈ Xj)

]∥∥∥
∞

>
ε

4

)
(19)

+P

(∥∥∥ 1
n

n∑
i=1

yiµ
T
Xj

I(xi ∈ Xj) − E
[
Y µT

Xj
I(X ∈ Xj)

]∥∥∥
∞

>
ε

4

)
(20)

+P

(∥∥∥ 1
n

n∑
i=1

µXj
yT

i I(xi ∈ Xj) − E
[
µXj

Y T I(X ∈ Xj)
]∥∥∥

∞
>

ε

4

)
(21)

+P

(∥∥∥ 1
n

n∑
i=1

µXj
µT
Xj

I(xi ∈ Xj) − E
[
µXj

µT
Xj

I(X ∈ Xj)
]∥∥∥

∞
>

ε

4

)
. (22)

11

Using the fact that ‖µ‖∞ ≤ B and the Assumption 2, we can apply Bernstein’s exponential inequal-
ity on (19), (20), and (21). Also, since the indicator function is bounded, we can apply Hoeffding’s
inequality on (22). We then obtain:

P
(∥∥Sj,n − S̄j

∥∥
∞ > ε

)
(23)

≤ 2p2 exp
(
− 1

32

(
nε2

v2 + M2ε

))
+ 4p2 exp

(
− 1

32B2

(
nε2

v1 + M1ε

))
+ 2p2 exp

(
−2nε2

B4

)
.

Therefore, for any δ ∈ (0, 1/4), we have, for any ε → 0 as n goes to infinity, with probability at
least 1 − δ/4:

∀T ∈ TN ,
∥∥Sj,n − S̄j

∥∥
∞ ≤ (8

√
v2) ·

√
[[T]] log 2 + 2 log p + log(24/δ)

n
(24)

+ (8B
√

v1) ·
√

[[T]] log 2 + 2 log p + log(48/δ)
n

(25)

+ B2 ·
√

[[T]] log 2 + 2 log p + log(24/δ)
2n

(26)

Combined with (18), we get that

A1 ≤ C1LnmT

√
[[T]] log 2 + 2 log p + log(48/δ)

n
. (27)

where C1 = 8
√

v2 + 8B
√

v1 + B2.

Since the above analysis holds uniformly over the whole space of TN , when choosing

pen(T) = (C1 + 1)LnmT

√
[[T]] log 2 + 2 log p + log(48/δ)

n
, (28)

we then get, with probability at least 1 − δ/2,

sup
T∈TN ,µj∈Mj ,Ωj∈Λj

∣∣∣R(T, µT ,ΩT) − R̂(T, µT ,ΩT)
∣∣∣ ≤ pen(T) (29)

for large enough n.

Given the uniform deviation inequality in (29), we have, for large enough n: for any δ ∈ (0, 1), with
probability at least 1 − δ,

R(T̂ , µ̂ bT , Ω̂ bT) ≤ R̂(T̂ , µ̂ bT , Ω̂ bT) + pen(T̂) (30)

= inf
T∈TN ,µXj

∈Mj ,ΩXj
∈Λj

{
R̂(T, µT ,ΩT) + pen(T)

}
(31)

≤ inf
T∈TN

{
R̂(T, µ∗

T ,Ω∗
T) + pen(T)

}
(32)

≤ inf
T∈TN

{R(T, µ∗
T ,Ω∗

T) + 2pen(T)} (33)

= inf
T∈TN

{
inf

µXj
∈Mj ,ΩXj

∈Λj

(R(T, µT ,ΩT) + 2pen(T)

}
. (34)

The desired result of the theorem follows by subtracting R∗ from both sides.

Proof of Theorem 2. From (29), we have, for large enough n, on the dataset D1, with probability at
least 1 − δ/4

sup
T∈TN ,µj∈Mj ,Ωj∈Λj

∣∣∣R(T, µT ,ΩT) − R̂(T, µT ,ΩT)
∣∣∣ ≤ φn(T). (35)

Follow the same line of analysis, we can also get, on the validation dataset D2, with probability at
least 1 − δ

4 .

sup
T∈TN

∣∣∣R(T, µ̂T , Ω̂T) − R̂out(T, µ̂T , Ω̂T)
∣∣∣ ≤ φn(T) (36)

12

for large enough n. Where µ̂T , Ω̂T are as defined in (7).

Using the fact that

T̂ = argminT∈TN
R̂out(T, µ̂T , Ω̂T), (37)

we have, for large enough n: for any δ ∈ (0, 1), with probability at least 1 − δ,

R(T̂ , µ̂ bT , Ω̂ bT) ≤ R̂out(T̂ , µ̂ bT , Ω̂ bT) + φn(T̂) (38)

= inf
T∈TN

R̂out(T, µ̂ bT , Ω̂ bT) + φn(T̂) (39)

≤ inf
T∈TN

{
R(T, µ̂ bT , Ω̂ bT) + φn(T)

}
+ φn(T̂) (40)

≤ inf
T∈TN

{
R̂(T, µ̂ bT , Ω̂ bT) + φn(T) + φn(T)

}
+ φn(T̂) (41)

= inf
T∈TN

{
3φn(T) + inf

µXj
∈Mj ,ΩXj

∈Λj

R(T, µT ,ΩT)

}
+ φn(T̂).

The result follows by subtracting R∗ on both sides.

Proof of Theorem 3. For any T ∈ TN , Π(T ∗) � Π(T), there must exists a subregion X ′ ∈ Π(T)
such that there does not exist any A ∈ Π(T ∗) which makes X ′ ⊂ A. In this case, we can find a
minimal class of disjoint subregions {X̃1, . . . , X̃k′} ∈ Π(T ∗), such that

X ′ ⊂ ∪k′
i=1X̃i, (42)

where k′ ≥ 2. We define X ∗
i = X̃i ∩ X ′ for i = 1, . . . , k′. Then we have

X ′ = ∪k′
i=1X ∗

i . (43)

Let {µ∗
X∗

j
,Ω∗

X∗
j
}k′

j=1 be the corresponding true parameters on X̃1, . . . , X̃k′ . We denote

R(X ′, µ∗
T∗ ,Ω∗

T∗) to be the risk of µ∗
T∗ and Ω∗

T∗ on the subregion X ′, then

R(X ′, µ∗
T∗ ,Ω∗

T∗) =
k′∑

j=1

E

[(
tr
[
Ω∗

X∗
j

(
(Y − µ∗

X∗
j
)(Y − µ∗

X∗
j
)T
)]

− log |Ω∗
X∗

j
|
)
· I(X ∈ X ∗

j)
]

= pP (X ∈ X ′) −
k′∑

j=1

P
(
X ∈ X ∗

j

)
log |Ω∗

X∗
j
|. (44)

Since the DPT T does not further partition X ′, we have, for any µT ,ΩT ∈ MT :

R(X ′, µT ,ΩT) =
k′∑

j=1

E

[(
tr
[
ΩT

(
(Y − µT)(Y − µT)T

)]
− log |ΩT |

)
· I(X ∈ X ∗

j)
]

=
k′∑

j=1

E

[(
tr
[
ΩT

(
(Y − µT)(Y − µT)T

)])
· I(X ∈ X ∗

j)
]
− P(X ∈ X ′) log |ΩT |.

Since

(Y − µT)(Y − µT)T = (Y − µ∗
X∗

j
)(Y − µ∗

X∗
j
)T + (Y − µ∗

X∗
j
)(µ∗

X∗
j
− µT)T

+ (µ∗
X∗

j
− µT)(Y − µ∗

X∗
j
)T + (µ∗

X∗
j
− µT)(µ∗

X∗
j
− µT)T . (45)

This implies that

k′∑
j=1

E

[(
tr
[
ΩT

(
(Y − µT)(Y − µT)T

)])
· I(X ∈ X ∗

j)
]

=
k′∑

j=1

P
(
X ∈ X ∗

j

) [
tr(ΩT (Ω∗

j)
−1) + tr(ΩT (µ∗

X∗
j
− µT)(µ∗

X∗
j
− µT)T)

]
. (46)

13

Using the fact that

R(X ′, µT ,ΩT) ≥ max{R(X ′, µ∗
T∗ ,ΩT), R(X ′, µT ,Ω∗

T∗)}, (47)

We consider the two cases on the R.H.S. separately.

Case 1: The µ’s are different.

we know that

inf
µT ,ΩT ∈MT

R(X ′, µT ,ΩT) − R(X ′, µ∗
T∗ ,Ω∗

T∗) (48)

≥ inf
µT

R(X ′, µT ,Ω∗
T∗) − R(X ′, µ∗

T∗ ,Ω∗
T∗)

= inf
µT

k′∑
j=1

P
(
X ∈ X ∗

j

)
(µ∗

X∗
j
− µT)T Ω∗

X∗
j
(µ∗

X∗
j
− µT)

≥ c1c2 inf
µT

k′∑
j=1

‖µ∗
X∗

j
− µT ‖2

2

where the last inequality follows from that fact that ρmin(Ω∗
X∗

j
) ≥ c1, P

(
X ∈ X ∗

j

)
≥ c2. It’s easy

to see that a lower bound of the last term is achieved at µ̄T ,

µ̄T =
1
k′

k′∑
j=1

µ∗
X∗

j
. (49)

Furthermore, for any two DPTs T and T ′, if Π(T) ⊂ Π(T ′). it’s obvious that

inf
µT ,ΩT ∈MT

R(T, µT ,ΩT) ≥ inf
µT ′ ,ΩT ′∈MT ′

R(T ′, µT ′ ,ΩT ′). (50)

Therefore, in the sequel, without loss of generality, we only need to consider the case k′ = 2.

The result of this case then follows from the fact that
2∑

j=1

‖µ∗
X∗

j
− µ̄T ‖2

2 =
1
2
‖µX∗

1
− µX∗

2
‖2
2 ≥ c3

2
. (51)

Case 2: The Ω’s are different.

In this case, we have

inf
µT ,ΩT ∈MT

R(X ′, µT ,ΩT) − R(X ′, µ∗
T∗ ,Ω∗

T∗) ≥ inf
ΩT

R(X ′, µ∗
T∗ ,ΩT) − R(X ′, µ∗

T∗ ,Ω∗
T∗)

= inf
ΩT

k′∑
j=1

P
(
X ∈ X ∗

j

) (
tr
[
Ω−1

X∗
j
(ΩT − Ω∗

X∗
j
)
]
−
(
log |ΩT | − log |Ω∗

X∗
j
|
))

(52)

≥ c2 inf
ΩT

k′∑
j=1

(
tr
[
Ω−1

X∗
j
(ΩT − Ω∗

X∗
j
)
]
−
(
log |ΩT | − log |Ω∗

X∗
j
|
))

(53)

≥ c2 inf
ΣT

k′∑
j=1

(
tr
[
Σ∗

X∗
j
(Σ−1

T − Ω∗
X∗

j
)
]

+ log
|ΣT |
|Σ∗

X∗
j
|

)
(54)

= c2 inf
ΣT

k′∑
j=1

(
tr
(
Σ∗

X∗
j
Σ−1

T

)
+ log

|ΣT |
|Σ∗

X∗
j
| − p

)
(55)

where ΣT = Ω−1
T

As discussed before, we only need to consider the case k′ = 2, a lower bound of the last term is
achieved at

Σ̄T =
ΣX∗

1
+ ΣX∗

2

2
(56)

14

Plug-in Σ̄T , we get

inf
ΣT

2∑
j=1

(
tr
(
Σ∗

X∗
j
Σ−1

T

)
+ log

|ΣT |
|Σ∗

X∗
j
| − p

)
≥

2∑
j=1

(
tr
(
Σ∗

X∗
j
Σ̄−1

T

)
+ log

|Σ̄T |
|Σ∗

X∗
j
| − p

)

= tr
(
(2Σ̄T − ΣX∗

2
)Σ̄−1

T

)
+ log

|Σ̄T |
|ΣX∗

1
| − p + tr

(
ΣX∗

2
Σ̄−1

T

)
+ log

|Σ̄T |
|ΣX∗

2
| − p (57)

= log
|Σ̄T |
|ΣX∗

1
| + log

|Σ̄T |
|ΣX∗

2
| (58)

= 2 log
∣∣∣∣ΣX∗

1
+ ΣX∗

2

2

∣∣∣∣− log |ΣX∗
1
| − log |ΣX∗

2
| (59)

≥ c4. (60)

where the last inequality follows from the given assumption.

Therefore, we have

inf
µT ,ΩT ∈MT

R(X ′, µT ,ΩT) − R(X ′, µ∗
T∗ ,Ω∗

T∗) ≥ c2c4. (61)

The desired result of theorem is obtained by combining the above discussed two cases.

C More Simulations

To further demonstrate the recovery quality of our method, in this section we simulate data where
the ground true conditional covariance matrix is continuous in X . We compare the graphs estimated
by our method to the single graph obtained by applying the glasso directly to the entire dataset.

C.1 Chain Structure

 1

 2

 3

 4

 5

 6 7

 8 9

 10

 11 12 13 14

 15 16

 17

 18 19 20 21 22 23 24 25 26 27

 X1<
 0.5

 X1>
 0.5

 X1<
 0.25

 X1>
 0.25

 X1<
 0.75

 X1>
 0.75

 X1<
 0.125

 X1>
 0.125

 X1<
 0.375

 X1>
 0.375

 X1<
 0.625

 X1>
 0.625

 X1<
 0.875

 X1>
 0.875

 X1<
 0.3125

 X1>
 0.3125

 X1<
 0.4375

 X1>
 0.4375

 X1<
 0.5625

 X1>
 0.5625

 X1<
 0.6875

 X1>
 0.6875

 X1<
 0.8125

 X1>
 0.8125

 X1<
 0.34375

 X1>
 0.34375

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

X
(a) (b)

Figure 3: (a) Learned tree structure; (b) Corresponding partitions

In this subsection, we consider the case where X lies on a one dimensional chain. More precisely,
we generate n equally spaced points x1, . . . , xn ∈ R with n = 10, 000 on [0, 1]. We generate an
Erdös-Rényi random graph G1 = (V 1, E1) with the number of vertices p = 20, the number of
edges |E| = 10 and the maximum node degree to be 4 as the basis. Then we simulate the output
y1, . . . , yn] ∈ Rp as follows:

1. From t = 2 to T , we construct the graph Gt = (V t, Et) as follows: (a) with probability
0.05, remove one edge from Gt−1 and (b) with probability 0.05, add one edge to the graph
generated in (a). We make sure that the total number of edges is between 5 and 15; and
maximum node degree is still 4.

2. For each graph Gt, generate the inverse covariance matrix Ωt:

Ωt(i, j) =


1 if i = j,

0.245 if (i, j) ∈ Et,

0 otherwise,

15

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

P
re

ci
si

on

GO−CART
glasso

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

R
ec

al
l

GO−CART
glasso

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

X

F
1−

S
co

re

GO−CART
glasso

1 2
3

4

5

6

7

8

9
101112

13

14

15

16

17

18

19

20

(c) (d)

Figure 4: Comparison of our algorithm with glasso (a) Precision; (b) Recall; (c) F1-score; (d)
Estimated graph by applying glasso on the entire dataset

where 0.245 guarantees the positive definiteness of Ωt when the maximum degree is 4.

3. For each t, we sample yt from a multivariate Gaussian distribution with mean µ =
(0, . . . , 0) ∈ Rp and covariance matrix Σt = (Ωt)−1:

yt ∼ N(µ,Σt),

In addition, we generate an equal-sized held-out dataset in the same manner as described above,
using the same µ and Σt. We apply our greedy algorithm to learn the dyadic tree structure and
corresponding inverse covariance matrices. These are presented in Figure 3.

To examine the recovery quality of the underlying graph structure, we compare our estimated graphs
to the one estimated by directly applying glasso to the entire dataset. We present the comparison of
precision, recall and F1-score in Figure 4 (a), (b) and (c) respectively. As we can see, out method
achieves much higher precision and F1-Score. As for recall, glasso is even slightly better than us
because the graphs estimated by glasso on the entire data is very dense as shown in 4 (d). The dense
graphs lead to to fewer false negatives (thus large recall values) but many false positives (thus small
precision values).

C.2 Two-way Grid Structure

In this section, we apply Go-CART to a two dimensional design X . The underlying graph structures
and Y are generated in manner similar to that used in the previous section. In particular, we generate
equally spaced x1, . . . , xn ∈ R2 with n = 10, 000 on a unit two-way grid [0, 1]2. We generate an
Erdös-Rényi random graph G1,1 = (V 1,1, E1,1) with the number of vertices p = 20, the number of
edges |E| = 10 and the maximum node degree to be 4 then construct the graphs for each x along
diagonals. More precisely, for each pair of i, j, where 1 ≤ i ≤ 100 and 1 ≤ j ≤ 100, we randomly
select either Gi−1,j (if it exists) or Gi,j−1 (if it exists) with equal probability as the basis graph.
Then, we construct the graph Gi,j = (V i,j , Ei,j) by removing one edge and adding one edge with
probability 0.05 based on the selected basis graph and taking care that the number of edge is between
5 and 15 and the maximum degree is still 4. With the underlying graph structures, we generate the
covariance matrix and output Y in the same way as in the last section.

16

 1

 2 3

 4

 5 6

 7

 8

 9

 10 11 12 13 14

 15

 16 17 18 19

 X1<
 0.5

 X1>
 0.5

 X2<
 0.5

 X2>
 0.5

 X2<
 0.5

 X2>
 0.5

 X2<
 0.25

 X2>
 0.25

 X2<
 0.75

 X2>
 0.75

 X2<
 0.25

 X2>
 0.25

 X1<
 0.75

 X1>
 0.75

 X1<
 0.25

 X1>
 0.25

 X2<
 0.75

 X2>
 0.75

8

10

11

12

13

14

16 17

18

19

(a) (b)

Figure 5: (a) Learned tree structure; (b) Learned partitions where the labels correspond to the index
of the leaf node in (a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Figure 6: (a) Color map of F1-score via applying glasso on the entire dataset; (b) Color map of
F1-score learned by our method. Red pixels indicate large values (approaching 1) and blue pixels
indicate small values (approaching 0) as shown in the color bar.

We apply the greedy algorithm to learn the dyadic tree structure and corresponding inverse covari-
ance matrices, which are presented in Figure 5. We plot the F1-score obtained by glasso on the
entire data as compared to our method in Figure 6. As we can see, for most x, our method achieves
significantly higher F1-score than directly applying glasso. Note that since the graphs around the
middle part of the diagonal (line connecting [0, 1] and [1, 0]) have the most variability, the F1-scores
for both methods are relatively low in this region.

17

