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Abstract

We present a novel algorithm, Random Conic Pursuit, that solves semidefinite pro-
grams (SDPs) via repeated optimization over randomly selected two-dimensional
subcones of the PSD cone. This scheme is simple, easily implemented, applica-
ble to very general SDPs, scalable, and theoretically interesting. Its advantages
are realized at the expense of an ability to readily compute highly exact solutions,
though useful approximate solutions are easily obtained. This property renders
Random Conic Pursuit of particular interest for machine learning applications, in
which the relevant SDPs are generally based upon random data and so exact min-
ima are often not a priority. Indeed, we present empirical results to this effect for
various SDPs encountered in machine learning; these experiments demonstrate
the potential practical usefulness of Random Conic Pursuit. We also provide a
preliminary analysis that yields insight into the theoretical properties and conver-
gence of the algorithm.

1 Introduction

Many difficult problems have been shown to admit elegant and tractably computable representations
via optimization over the set of positive semidefinite (PSD) matrices. As a result, semidefinite
programs (SDPs) have appeared as the basis for many procedures in machine learning, such as
sparse PCA [8], distance metric learning [24], nonlinear dimensionality reduction [23], multiple
kernel learning [14], multitask learning [19], and matrix completion [2].

While SDPs can be solved in polynomial time, they remain computationally challenging. General-
purpose solvers, often based on interior point methods, do exist and readily provide high-accuracy
solutions. However, their memory requirements do not scale well with problem size, and they typi-
cally do not allow a fine-grained tradeoff between optimization accuracy and speed, which is often a
desirable tradeoff in machine learning problems that are based on random data. Furthermore, SDPs
in machine learning frequently arise as convex relaxations of problems that are originally compu-
tationally intractable, in which case even an exact solution to the SDP yields only an approximate
solution to the original problem, and an approximate SDP solution can once again be quite useful.
Although some SDPs do admit tailored solvers which are fast and scalable (e.g., [17, 3, 7]), deriv-
ing and implementing these methods is often challenging, and an easily usable solver that alleviates
these issues has been elusive. This is partly the case because generic first-order methods do not
apply readily to general SDPs.

In this work, we present Random Conic Pursuit, a randomized solver for general SDPs that is simple,
easily implemented, scalable, and of inherent interest due to its novel construction. We consider
general SDPs over Rd×d of the form

min
X�0

f(X) s.t. gj(X) ≤ 0, j = 1 . . . k, (1)
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where f and the gj are convex real-valued functions, and � denotes the ordering induced by the
PSD cone. Random Conic Pursuit minimizes the objective function iteratively, repeatedly randomly
sampling a PSD matrix and optimizing over the random two-dimensional subcone given by this
matrix and the current iterate. This construction maintains feasibility while avoiding the compu-
tational expense of deterministically finding feasible directions or of projecting into the feasible
set. Furthermore, each iteration is computationally inexpensive, though in exchange we generally
require a relatively large number of iterations. In this regard, Random Conic Pursuit is similar in
spirit to algorithms such as online gradient descent and sequential minimal optimization [20] which
have illustrated that in the machine learning setting, algorithms that take a large number of simple,
inexpensive steps can be surprisingly successful.

The resulting algorithm, despite its simplicity and randomized nature, converges fairly quickly to
useful approximate solutions. Unlike interior point methods, Random Conic Pursuit does not excel
in producing highly exact solutions. However, it is more scalable and provides the ability to trade
off computation for more approximate solutions. In what follows, we present our algorithm in full
detail and demonstrate its empirical behavior and efficacy on various SDPs that arise in machine
learning; we also provide early analytical results that yield insight into its behavior and convergence
properties.

2 Random Conic Pursuit

Random Conic Pursuit (Algorithm 1) solves SDPs of the general form (1) via a sequence of sim-
ple two-variable optimizations (2). At each iteration, the algorithm considers the two-dimensional
cone spanned by the current iterate, Xt, and a random rank one PSD matrix, Yt. It selects as its
next iterate, Xt+1, the point in this cone that minimizes the objective f subject to the constraints
gj(Xt+1) ≤ 0 in (1). The distribution of the random matrices is periodically updated based on the
current iterate (e.g., to match the current iterate in expectation); these updates yield random matrices
that are better matched to the optimum of the SDP at hand.

The two-variable optimization (2) can be solved quickly in general via a two-dimensional bisection
search. As a further speedup, for many of the problems that we considered, the two-variable opti-
mization can be altogether short-circuited with a simple check that determines whether the solution
Xt+1 =Xt, with β̂ = 1 and α̂= 0, is optimal. Additionally, SDPs with a trace constraint trX = 1
force α+ β = 1 and therefore require only a one-dimensional optimization.

Two simple guarantees for Random Conic Pursuit are immediate. First, its iterates are feasible for (1)
because each iterate is a positive sum of two PSD matrices, and because the constraints gj of (2)
are also those of (1). Second, the objective values decrease monotonically because β = 1, α = 0
is a feasible solution to (2). We must also note two limitations of Random Conic Pursuit: it does
not admit general equality constraints, and it requires a feasible starting point. Nonetheless, for
many of the SDPs that appear in machine learning, feasible points are easy to identify, and equality
constraints are either absent or fortuitously pose no difficulty.

We can gain further intuition by observing that Random Conic Pursuit’s iterates, Xt, are positive
weighted sums of random rank one matrices and so lie in the random polyhedral cones

Fxt :=

{
t∑
i=1

γixtx
′
t : γi ≥ 0

}
⊂ {X : X � 0}. (3)

Thus, Random Conic Pursuit optimizes the SDP (1) by greedily optimizing f w.r.t. the gj constraints
within an expanding sequence of random cones {Fxt }. These cones yield successively better inner
approximations of the PSD cone (a basis for which is the set of all rank one matrices) while allowing
us to easily ensure that the iterates remain PSD.

In light of this discussion, one might consider approximating the original SDP by sampling a random
cone Fxn in one shot and replacing the constraint X � 0 in (1) with the simpler linear constraints
X ∈ Fxn . For sufficiently large n,Fxn would approximate the PSD cone well (see Theorem 2 below),
yielding an inner approximation that upper bounds the original SDP; the resulting problem would be
easier than the original (e.g., it would become a linear program if the gj were linear). However, we
have found empirically that a very large n is required to obtain good approximations, thus negating
any potential performance improvements (e.g., over interior point methods). Random Conic Pursuit
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Algorithm 1: Random Conic Pursuit
[brackets contain a particular, generally effective, sampling scheme]

Input: A problem of the form (1)
X0: a feasible initial iterate

n ∈ N: number of iterations
[κ ∈ (0, 1): numerical stability parameter]

Output: An approximate solution Xn to (1)

p← a distribution over Rd [p← N (0,Σ) with Σ = (1− κ)X0 + κId]
for t← 1 to n do

Sample xt from p and set Yt ← xtx
′
t

Set α̂, β̂ to the optimizer of

min
α,β∈R

f(αYt + βXt−1)

s.t. gj(αYt + βXt−1) ≤ 0, j = 1 . . . k

α, β ≥ 0

(2)

Set Xt ← α̂Yt + β̂Xt−1

if α̂ > 0 then Update p based on Xt [p← N (0,Σ) with Σ = (1− κ)Xt + κId]
end
return Xn

successfully resolves this issue by iteratively expanding the random cone Fxt . As a result, we are
able to much more efficiently access large values of n, though we compute a greedy solution within
Fxn rather than a global optimum over the entire cone. This tradeoff is ultimately quite advantageous.

3 Applications and Experiments

We assess the practical convergence and scaling properties of Random Conic Pursuit by applying it
to three different machine learning tasks that rely on SDPs: distance metric learning, sparse PCA,
and maximum variance unfolding. For each, we compare the performance of Random Conic Pursuit
(implemented in MATLAB) to that of a standard and widely used interior point solver, SeDuMi [21]
(via cvx [9]), and to the best available solver which has been customized for each problem.

To evaluate convergence, we first compute a ground-truth solution X∗ for each problem instance
by running the interior point solver with extremely low tolerance. Then, for each algorithm, we
plot the normalized objective value errors [f(Xt)− f(X∗)]/|f(X∗)| of its iterates Xt as a function
of the amount of time required to generate each iterate. Additionally, for each problem, we plot
the value of an application-specific metric for each iterate. These metrics provide a measure of
the practical implications of obtaining SDP solutions which are suboptimal to varying degrees. We
evaluate scaling with problem dimensionality by running the various solvers on problems of different
dimensionalities and computing various metrics on the solver runs as described below for each
experiment. Unless otherwise noted, we use the bracketed sampling scheme given in Algorithm 1
with κ = 10−4 for all runs of Random Conic Pursuit.

3.1 Metric Learning

Given a set of datapoints in Rd and a pairwise similarity relation over them, metric learning extracts
a Mahalanobis distance dA(x, y) =

√
(x− y)′A(x− y) under which similar points are nearby and

dissimilar points are far apart [24]. Let S be the set of similar pairs of datapoints, and let S̄ be its
complement. The metric learning SDP, for A ∈ Rd×d and C =

∑
(i,j)∈S(xi − xj)(xi − xj)′, is

min
A�0

tr(CA) s.t.
∑

(i,j)∈S̄

dA(xi, xj) ≥ 1. (4)

To apply Random Conic Pursuit, X0 is set to a feasible scaled identity matrix. We solve the two-
variable optimization (2) via a double bisection search: at each iteration, α is optimized out with
a one-variable bisection search over α given fixed β, yielding a function of β only. This resulting
function is itself then optimized using a bisection search over β.

3



0 734 1468 2202 2936
0

0.02

0.04

0.06

0.08

0.1

time (sec)

n
o

rm
a

liz
e
d

 o
b
je

c
ti
v
e

 v
a

lu
e

 e
rr

o
r

 

 

Interior Point

Random Pursuit

Projected Gradient

0 734 1468 2202 2936
0.4

0.6

0.8

1

time (sec)

p
a
ir
w

is
e
 d

is
ta

n
c
e
 q

u
a
lit

y
 (

Q
)

 

 

Interior Point
Random Pursuit
Projected Gradient

d alg f after 2 hrs∗ time toQ > 0.99

100 IP 3.7e-9 636.3
100 RCP 2.8e-7, 3.0e-7 142.7, 148.4
100 PG 1.1e-5 42.3
200 RCP 5.1e-8, 6.1e-8 529.1, 714.8
200 PG 1.6e-5 207.7
300 RCP 5.4e-8, 6.5e-8 729.1, 1774.7
300 PG 2.0e-5 1095.8
400 RCP 7.2e-8, 1.0e-8 2128.4, 2227.2
400 PG 2.4e-5 1143.3

Figure 1: Results for metric learning. (plots) Trajectories of objective value error (left) andQ (right)
on UCI ionosphere data. (table) Scaling experiments on synthetic data (IP = interior point, RCP =
Random Conic Pursuit, PG = projected gradient), with two trials per d for RCP and times in seconds.
∗For d = 100, third column shows f after 20 minutes.

As the application-specific metric for this problem, we measure the extent to which the metric
learning goal has been achieved: similar datapoints should be near each other, and dissimilar
datapoints should be farther away. We adopt the following metric of quality of a solution ma-
trix X , where ζ =

∑
i |{j : (i, j) ∈ S}| · |{l : (i, l) ∈ S̄}| and 1[·] is the indicator function:

Q(X) = 1
ζ

∑
i

∑
j:(i,j)∈S

∑
l:(i,l)∈S̄ 1[dij(X) < dil(X)].

To examine convergence behavior, we first apply the metric learning SDP to the UCI ionosphere
dataset, which has d = 34 and 351 datapoints with two distinct labels (S contains pairs with identical
labels). We selected this dataset from among those used in [24] because it is among the datasets
which have the largest dimensionality and experience the greatest impact from metric learning in
that work’s clustering application. Because the interior point solver scales prohibitively badly in the
number of datapoints, we subsampled the dataset to yield 4× 34 = 136 datapoints.

To evaluate scaling, we use synthetic data in order to allow variation of d. To generate a d-
dimensional data set, we first generate mixture centers by applying a random rotation to the elements
of C1 = {(−1, 1), (−1,−1)} and C2 = {(1, 1), (1,−1)}. We then sample each datapoint xi ∈ Rd
from N (0, Id) and assign it uniformly at random to one of two clusters. Finally, we set the first two
components of xi to a random element of Ck if xi was assigned to cluster k ∈ {1, 2}; these two
components are perturbed by adding a sample from N (0, 0.25I2).

The best known customized solver for the metric learning SDP is a projected gradient algorithm [24],
for which we used code available from the author’s website.

Figure 1 shows the results of our experiments. The two trajectory plots, for an ionosphere data
problem instance, show that Random Conic Pursuit converges to a very high-quality solution (with
high Q and negligible objective value error) significantly faster than interior point. Additionally,
our performance is comparable to that of the projected gradient method which has been customized
for this task. The table in Figure 1 illustrates scaling for increasing d. Interior point scales badly
in part because parsing the SDP becomes impracticably slow for d significantly larger than 100.
Nonetheless, Random Conic Pursuit scales well beyond that point, continuing to return solutions
with high Q in reasonable time. On this synthetic data, projected gradient appears to reach high
Q somewhat more quickly, though Random Conic Pursuit consistently yields significantly better
objective values, indicating better-quality solutions.

3.2 Sparse PCA

Sparse PCA seeks to find a sparse unit length vector that maximizes x′Ax for a given data covariance
matrix A. This problem can be relaxed to the following SDP [8], for X,A ∈ Rd×d:

min
X�0

ρ1′|X|1− tr(AX) s.t. tr(X) = 1, (5)

where the scalar ρ > 0 controls the solution’s sparsity. A subsequent rounding step returns the
dominant eigenvector of the SDP’s solution, yielding a sparse principal component.

We use the colon cancer dataset [1] that has been used frequently in past studies of sparse PCA
and contains 2,000 microarray readings for 62 subjects. The goal is to identify a small number of
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Interior Point

Random Pursuit

DSPCA

d alg f after 4 hrs sparsity after 4 hrs

120 IP -10.25 0.55
120 RCP -9.98, -10.02 0.47, 0.45
120 DSPCA -10.24 0.55

200 IP failed failed
200 RCP -10.30, -10.27 0.51, 0.50
200 DSPCA -11.07 0.64

300 IP failed failed
300 RCP -9.39, -9.29 0.51, 0.51
300 DSPCA -11.52 0.69

500 IP failed failed
500 RCP -6.95, -6.54 0.53, 0.50
500 DSPCA -11.61 0.78

Figure 2: Results for sparse PCA. All solvers quickly yield similar captured variance (not shown
here). (plots) Trajectories of objective value error (left) and sparsity (right), for a problem with
d = 100. (table) Scaling experiments (IP = interior point, RCP = Random Conic Pursuit), with two
trials per d for RCP.

microarray cells that capture the greatest variance in the dataset. We vary d by subsampling the
readings and use ρ = 0.2 (large enough to yield sparse solutions) for all experiments.

To apply Random Conic Pursuit, we set X0 = A/ tr(A). The trace constraint (5) implies that
tr(Xt−1) = 1 and so tr(αYt + βXt−1) = α tr(Yt) + β = 1 in (2). Thus, we can simplify the
two-variable optimization (2) to a one-variable optimization, which we solve by bisection search.

The fastest available customized solver for the sparse PCA SDP is an adaptation of Nesterov’s
smooth optimization procedure [8] (denoted by DSPCA), for which we used a MATLAB imple-
mentation with heavy MEX optimizations that is downloadable from the author’s web site.

We compute two application-specific metrics which capture the two goals of sparse PCA: high
captured variance and high sparsity. Given the top eigenvector u of a solution matrix X , its captured
variance is u′Au, and its sparsity is given by 1

d

∑
j 1[|uj | < τ ]; we take τ = 10−3 based on

qualitative inspection of the raw microarray data covariance matrix A.

The results of our experiments are shown in Figure 2. As seen in the two plots, on a problem instance
with d = 100, Random Conic Pursuit quickly achieves an objective value within 4% of optimal and
thereafter continues to converge, albeit more slowly; we also quickly achieve fairly high sparsity
(compared to that of the exact SDP optimum). In contrast, interior point is able to achieve lower
objective value and even higher sparsity within the timeframe shown, but, unlike Random Conic
Pursuit, it does not provide the option of spending less time to achieve a solution which is still
relatively sparse. All of the solvers quickly achieve very similar captured variances, which are not
shown. DSPCA is extremely efficient, requiring much less time than its counterparts to find nearly
exact solutions. However, that procedure is highly customized (via several pages of derivation and an
optimized implementation), whereas Random Conic Pursuit and interior point are general-purpose.

The table in Figure 2 illustrates scaling by reporting achieved objecive values and sparsities after
the solvers have each run for 4 hours. Interior point fails due to memory requirements for d > 130,
whereas Random Conic Pursuit continues to function and provide useful solutions, as seen from the
achieved sparsity values, which are much larger than those of the raw data covariance matrix. Again,
DSPCA continues to be extremely efficient.

3.3 Maximum Variance Unfolding (MVU)

MVU searches for a kernel matrix that embeds high-dimensional input data into a lower-dimensional
manifold [23]. Given m data points and a neighborhood relation i ∼ j between them, it forms
their centered and normalized Gram matrix G ∈ Rm×m and the squared Euclidean distances d2

ij =

Gii+Gjj−2Gij . The desired kernel matrix is the solution of the following SDP, whereX ∈ Rm×m
and the scalar ν > 0 controls the dimensionality of the resulting embedding:

max
X�0

tr(X)− ν
∑
i∼j

(Xii +Xjj − 2Xij − d2
ij)

2 s.t. 1′X1 = 0. (6)

To apply Random Conic Pursuit, we set X0 = G and use the general sampling formulation in Algo-
rithm 1 by setting p = N (0,Π(∇f(Xt))) in the initialization (i.e., t = 0) and update steps, where
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Random Pursuit

m alg f after convergence seconds to f >0.99f̂

40 IP 23.4 0.4
40 RCP 22.83 (0.03) 0.5 (0.03)
40 GD 23.2 5.4
200 IP 2972.6 12.4
200 RCP 2921.3 (1.4) 6.6 (0.8)
200 GD 2943.3 965.4
400 IP 12255.6 97.1
400 RCP 12207.96 (36.58) 26.3 (9.8)
800 IP failed failed
800 RCP 71231.1 (2185.7) 115.4 (29.2)

Figure 3: Results for MVU. (plots) Trajectories of objective value for m = 200 (left) and m = 800
(right). (table) Scaling experiments showing convergence as a function of m (IP = interior point,
RCP = Random Conic Pursuit, GD = gradient descent).

Π truncates negative eigenvalues of its argument to zero. This scheme empirically yields improved
performance for the MVU problem as compared to the bracketed sampling scheme in Algorithm 1.
To handle the equality constraint, each Yt is first transformed to Y̆t = (I − 11′/m)Yt(I − 11′/m),
which preserves PSDness and ensures feasibility. The two-variable optimization (2) proceeds as
before on Y̆t and becomes a two-variable quadratic program, which can be solved analytically.

MVU also admits a gradient descent algorithm, which serves as a straw-man large-scale solver for
the MVU SDP. At each iteration, the step size is picked by a line search, and the spectrum of the
iterate is truncated to maintain PSDness. We use G as the initial iterate.

To generate data, we randomly sample m points from the surface of a synthetic swiss roll [23]; we
set ν = 1. To quantify the amount of time it takes a solver to converge, we run it until its objective
curve appears qualitatively flat and declare the convergence point to be the earliest iterate whose
objective is within 1% of the best objective value seen so far (which we denote by f̂ ).

Figure 3 illustrates that Random Conic Pursuit’s objective values converge quickly, and on problems
where the interior point solver achieves the optimum, Random Conic Pursuit nearly achieves that
optimum. The interior point solver runs out of memory when m > 400 and also fails on smaller
problems if its tolerance parameter is not tuned. Random Conic Pursuit easily runs on larger prob-
lems for which interior point fails, and for smaller problems its running time is within a small factor
of that of the interior point solver; Random Conic Pursuit typically converges within 1000 itera-
tions. The gradient descent solver is orders of magnitude slower than the other solvers and failed to
converge to a meaningful solution for m ≥ 400 even after 2000 iterations (which took 8 hours).

4 Analysis

Analysis of Random Conic Pursuit is complicated by the procedure’s use of randomness and its
handling of the constraints gj ≤ 0 explicitly in the sub-problem (2), rather than via penalty functions
or projections. Nonetheless, we are able to obtain useful insights by first analyzing a simpler setting
having only a PSD constraint. We thus obtain a bound on the rate at which the objective values
of Random Conic Pursuit’s iterates converge to the SDP’s optimal value when the problem has no
constraints of the form gj ≤ 0:
Theorem 1 (Convergence rate of Random Conic Pursuit when f is weakly convex and k = 0). Let
f : Rd×d → R be a convex differentiable function with L-Lipschitz gradients such that the minimum
of the following optimization problem is attained at some X∗:

min
X�0

f(X). (7)

Let X1 . . . Xt be the iterates of Algorithm 1 when applied to this problem starting at iterate X0

(using the bracketed sampling scheme given in the algorithm specification), and suppose ‖Xt−X∗‖
is bounded. Then

Ef(Xt)− f(X∗) ≤ 1

t
·max(ΓL, f(X0)− f(X∗)), (8)

for some constant Γ that does not depend on t.
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Proof. We prove that equation (8) holds in general for any X∗, and thus for the optimizer of f in
particular. The convexity of f implies the following linear lower bound on f(X) for any X and Y :

f(X) ≥ f(Y ) + 〈∂f(Y ), X − Y 〉. (9)
The Lipschitz assumption on the gradient of f implies the following quadratic upper bound on f(X)
for any X and Y [18]:

f(X) ≤ f(Y ) + 〈∂f(Y ), X − Y 〉+ L
2 ‖X − Y ‖

2. (10)

Define the random variable Ỹt := γt(Yt)Yt with γt a positive function that ensures EỸt = X∗. It
suffices to set γt = q(Y )/p̆(Y ), where p̆ is the distribution of Yt and q is any distribution with mean
X∗. In particular, the choice Ỹt := γt(xt)xtx

′
t with γt(x) = N (x|0, X∗)/N (x|0,Σt) satisfies this.

At iteration t, Algorithm 1 produces αt and βt so that Xt+1 := αtYt + βtXt minimizes f(Xt+1).
We will bound the defect f(Xt+1) − f(X∗) at each iteration by sub-optimally picking α̂t = 1/t,
β̂t = 1− 1/t, and X̂t+1 = β̂tXt + α̂tγt(Yt)Yt = β̂tXt + α̂tỸt. Conditioned on Xt, we have

Ef(Xt+1)− f(X∗) ≤ Ef(β̂tXt + α̂tỸt)− f(X∗) = Ef
(
Xt − 1

t (Xt − Ỹt)
)
− f(X∗) (11)

≤ f(Xt)− f(X∗) + E
〈
∂f(Xt),

1
t (Ỹt −Xt)

〉
+ L

2t2E‖Xt − Ỹt‖2 (12)

= f(Xt)− f(X∗) + 1
t 〈∂f(Xt), X

∗ −Xt〉+ L
2t2E‖Xt − Ỹt‖2 (13)

≤ f(Xt)− f(X∗) + 1
t (f(X∗)− f(Xt)) + L

2t2E‖Xt − Ỹt‖2 (14)

=
(
1− 1

t

) (
f(Xt)− f(X∗)

)
+ L

2t2E‖Xt − Ỹt‖2. (15)

The first inequality follows by the suboptimality of α̂t and β̂t, the second by Equation (10), and the
third by (9).

Define et := Ef(Xt)−f(X∗). The term E‖Ỹt−Xt‖2 is bounded above by some absolute constant
Γ because E‖Ỹt−Xt‖2 = E‖Ỹt−X∗‖2 + ‖Xt−X∗‖2. The first term is bounded because it is the
variance of Ỹt, and the second term is bounded by assumption. Taking expectation overXt gives the
bound et+1 ≤

(
1− 1

t

)
et + LΓ

2t2 , which is solved by et = 1
t ·max(ΓL, f(X0)− f(X∗)) [16].

Despite the extremely simple and randomized nature of Random Conic Pursuit, the theorem guar-
antees that its objective values converge at the rate O(1/t) on an important subclass of SDPs. We
omit here some readily available extensions: for example, the probability that a trajectory of iterates
violates the above rate can be bounded by noting that the iterates’ objective values behave as a finite
difference sub-martingale. Additionally, the theorem and proof could be generalized to hold for a
broader class of sampling schemes.

Directly characterizing the convergence of Random Conic Pursuit on problems with constraints ap-
pears to be significantly more difficult and seems to require introduction of new quantities depending
on the constraint set (e.g., condition number of the constraint set and its overlap with the PSD cone)
whose implications for the algorithm are difficult to explicitly characterize with respect to d and
the properties of the gj , X∗, and the Yt sampling distribution. Indeed, it would be useful to better
understand the limitations of Random Conic Pursuit. As noted above, the procedure cannot readily
accommodate general equality constraints; furthermore, for some constraint sets, sampling only a
rank one Yt at each iteration could conceivably cause the iterates to become trapped at a sub-optimal
boundary point (this could be alleviated by sampling higher rank Yt). A more general analysis is
the subject of continuing work, though our experiments confirm empirically that we realize usefully
fast convergence of Random Conic Pursuit even when it is applied to a variety of constrained SDPs.

We obtain a different analytical perspective by recalling that Random Conic Pursuit computes a
solution within the random polyhedral cone Fxn , defined in (3) above. The distance between this
cone and the optimal matrix X∗ is closely related to the quality of solutions produced by Random
Conic Pursuit. The following theorem characterizes the distance between a sampled cone Fxn and
any fixed X∗ in the PSD cone:
Theorem 2. Let X∗ � 0 be a fixed positive definite matrix, and let x1, . . . , xn ∈ Rd be drawn i.i.d.
from N (0,Σ) with Σ � X∗. Then, for any δ > 0, with probability at least 1− δ,

min
X∈Fx

n

‖X −X∗‖ ≤
1 +
√

2 log 1
δ√

n
· 2

e

√∣∣ΣX∗−1
∣∣ ∥∥∥∥(X∗−1 − Σ−1

)−1
∥∥∥∥

2
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See supplementary materials for proof. As expected, Fxn provides a progressively better approxima-
tion to the PSD cone (with high probability) as n grows. Furthermore, the rate at which this occurs
depends on X∗ and its relationship to Σ; as the latter becomes better matched to the former, smaller
values of n are required to achieve an approximation of given quality.

The constant Γ in Theorem 1 can hide a dependence on the dimensionality of the problem d, though
the proof of Theorem 2 helps to elucidate the dependence of Γ on d and X∗ for the particular case
when Σ does not vary over time (the constants in Theorem 2 arise from bounding ‖γt(xt)xtx′t‖).
A potential concern regarding both of the above theorems is the possibility of extremely adverse
dependence of their constants on the dimensionality d and the properties (e.g., condition number)
of X∗. However, our empirical results in Section 3 show that Random Conic Pursuit does indeed
decrease the objective function usefully quickly on real problems with relatively large d and solution
matrices X∗ which are rank one, a case predicted by the analysis to be among the most difficult.

5 Related Work

Random Conic Pursuit and the analyses above are related to a number of existing optimization and
sampling algorithms.

Our procedure is closely related to feasible direction methods [22], which move along descent direc-
tions in the feasible set defined by the constraints at the current iterate. Cutting plane methods [11],
when applied to some SDPs, solve a linear program obtained by replacing the PSD constraint with
a polyhedral constraint. Random Conic Pursuit overcomes the difficulty of finding feasible descent
directions or cutting planes, respectively, by sampling directions randomly and also allowing the
current iterate to be rescaled.

Pursuit-based optimization methods [6, 13] return a solution within the convex hull of an a priori-
specified convenient set of pointsM. At each iteration, they refine their solution to a point between
the current iterate and a point inM. The main burden in these methods is to select a near-optimal
point inM at each iteration. For SDPs having only a trace equality constraint and withM the set
of rank one PSD matrices, Hazan [10] shows that such points inM can be found via an eigenvalue
computation, thereby obtaining a convergence rate of O(1/t). In contrast, our method selects steps
randomly and still obtains a rate of O(1/t) in the unconstrained case.

The Hit-and-Run algorithm for sampling from convex bodies can be combined with simulated an-
nealing to solve SDPs [15]. In this configuration, similarly to Random Conic Pursuit, it conducts a
search along random directions whose distribution is adapted over time.

Finally, whereas Random Conic Pursuit utilizes a randomized polyhedral inner approximation of
the PSD cone, the work of Calafiore and Campi [5] yields a randomized outer approximation to the
PSD cone obtained by replacing the PSD constraint X � 0 with a set of sampled linear inequality
constraints. It can be shown that for linear SDPs, the dual of the interior LP relaxation is identical
to the exterior LP relaxation of the dual of the SDP. Empirically, however, this outer relaxation
requires impractically many sampled constraints to ensure that the problem remains bounded and
yields a good-quality solution.

6 Conclusion

We have presented Random Conic Pursuit, a simple, easily implemented randomized solver for
general SDPs. Unlike interior point methods, our procedure does not excel at producing highly exact
solutions. However, it is more scalable and provides useful approximate solutions fairly quickly,
characteristics that are often desirable in machine learning applications. This fact is illustrated by
our experiments on three different machine learning tasks based on SDPs; we have also provided a
preliminary analysis yielding further insight into Random Conic Pursuit.
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