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Abstract

A standard approach to learning object category detectors is to provide strong su-
pervision in the form of a region of interest (ROI) specifying each instance of
the object in the training images [17]. In this work are goal is to learn from het-
erogeneous labels, in which some images are only weakly supervised, specifying
only the presence or absence of the object or a weak indication of object location,
whilst others are fully annotated.

To this end we develop a discriminative learning approach and make two contribu-
tions: (i) we propose a structured output formulation for weakly annotated images
where full annotations are treated as latent variables; and (ii) we propose to op-
timize a ranking objective function, allowing our method to more effectively use
negatively labeled images to improve detection average precision performance.

The method is demonstrated on the benchmark INRIA pedestrian detection dataset
of Dalal and Triggs [14] and the PASCAL VOC dataset [17], and it is shown that
for a significant proportion of weakly supervised images the performance achieved
is very similar to the fully supervised (state of the art) results.

1 Introduction

Learning from weakly annotated data is a long standing goal for the practical application of ma-
chine learning techniques to real world data. Expensive manual labeling steps should be avoided if
possible, while weakly labeled and unlabeled data sources should be exploited in order to improve
performance with little to no additional cost. In this work, we propose a unified framework for
learning to detect objects in images from data with heterogeneous labels. In particular, we consider
the case of image collections for which we would like to predict bounding box localizations, but that
(for a significant proportion of the training data) only image level binary annotations are provided
indicating the presence or absence of an object, or that weak indications of object location are given
without a precise bounding box annotation.

We approach this task from the perspective of structured output learning [3, 35, 36], building on the
approach of Blaschko and Lampert [8], in which a structured output support vector machine formu-
lation [36] is used to directly learn a regressor from images to object localizations parameterized
by the coordinates of a bounding box. We extend this framework here to weakly annotated images
by treating missing information in a latent variable fashion following [2, 40]. Available annotation,
such as the presence or absence of an object in an image, constrains the set of values the latent vari-
able can take. In the case that complete label information is provided [40] reduces to [36], giving
a unified framework for data with heterogeneous levels of annotation. We empirically observe that
the localization approach of [8] fails in the case that there are many images with no object present,
motivating a slight modification of the learning algorithm to optimize detection ranking analogous



to [11, 21, 41]. We extend these works to the case that the predictions to be ranked are structured
outputs. When combined with discriminative latent variable learning, this results in an algorithm
similar to multiple instance ranking [6], but we exploit the full generality of structured output learn-
ing.

The computer vision literature has approached learning from weakly annotated data in many differ-
ent ways. Search engine results [20] or associated text captions [5, 7, 13, 34] are attractive due to
the availability of millions of tagged or captioned images on the internet, providing a weak form of
labels beyond unsupervised learning [37]. This generally leads to ambiguity as captions tend to be
correlated with image content, but may contain errors. Alternatively, one may approach the problem
of object detection by considering generic properties of objects or their attributes in order to com-
bine training data from multiple classes [1, 26, 18]. Deselaers et al. learn the common appearance
of multiple object categories, which yields an estimate of where in an image an object is without
specifying the specific class to which it belongs [15]. This can then be utilized in a weak supervision
setting to learn a detector for a specific object category. Carbonetto et al. consider a Bayesian frame-
work for learning across incomplete, noisy, segmentation-level annotation [10]. Structured output
learning with latent variables has been proposed for inferring partial truncation of detections due to
occlusion or image boundaries [38]. Image level binary labels have often been used, as this generally
takes less time for a human annotator to produce [4, 12, 23, 28, 30, 31, 33]. Here, we consider this
latter kind of weak annotation, and will also consider cases where the object center is constrained to
a region in the image, but that exact coordinates are not given [27]. Simultaneous localization and
classification using a discriminative latent variable model has been recently explored in [29], but
that work has not considered mixed annotation, or a structured output loss.

The rest of this paper is structured as follows. In Section 2 we review a structured output learning
formulation for object detection that will form the basis of our optimization. We then propose to
improve that approach to better handle negative training instances by developing a ranking objective
in Section 3. The resulting objective allows us to approach the problem of weakly annotated data in
Section 4, and the methods are empirically validated in Section 5.

2 Object Detection with Structured Output Learning

Structured output learning generalizes traditional learning settings to the prediction of more complex
output spaces, in which there may be non-trivial interdependencies between components of the
output. In our case, we would like to learn a mapping f : X — ) where X" the space of images and
Y is the space of bounding boxes or no bounding box: Y = 0 J(I,t,r,b), where (I,t,7,b) € R*
specifies the left, top, right, and bottom coordinates of a bounding box. This approach was first
proposed by [8] using the Structured Output SVM formulation of [36]:
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where A(y;,y) is a loss for predicting y when the true output is y;, and ¢(x;,y;) is a joint kernel
map that measures statistics of the image, x;, local to the bounding box, y; [8, 9].! Training is
achieved using delayed constraint generation, and at test time, a prediction is made by computing
f(z) = argmax, (w, (z, y)).

It was proposed in [8] to treat images in which there is no instance of the object of interest as zero
vectors in the Hilbert space induced by ¢, i.e. ¢(x,y_) = 0 Vz where y_ indicates the label that
there is no object in the image (i.e. y_ = (). During training, constraints are generated by finding
g7 = argmax, ey 1,1 (W, (T4, y)) +A(yi, y). For negative images, A(y—, y) = 1if y indicates an
object is present, so the maximization corresponds simply to finding the bounding box with highest
score. The resulting constraint corresponds to:

'As in [8], we make use of the margin rescaling formulation of structured output learning. The slack
rescaling variant is equally applicable [36].




which tends to decrease the score associated with all bounding boxes in the image. The primary
problem with this approach is that it optimizes a regularized risk functional for which negative
images are treated equally with positive images. In the case of imbalances in the training data
where a large majority of images do not contain the object of interest, the objective function may
be dominated by the terms in ). &; for which there is no bounding box present. The learning
procedure may focus on decreasing the score of candidate detections in negative images rather than
on increasing the score of correct detections. We show empirically in Section 5 that this treatment
of negative images is in fact detrimental to localization performance. The results presented in [8]
were achieved by training only on images with an instance of the object present, ignoring large
quantities of negative training data. Although one may attempt to address this problem by adjusting
the loss function, A, to penalize negative images less than positive images, this approach is heuristic
and requires searching over an additional parameter during training (the relative size of the loss
for negative images). We address this imbalance more elegantly without introducing additional
parameters in the following section.

3 Learning to Rank

We propose to remedy the shortcomings outlined in the previous section by modifying the objective
in Equation (1) to simultaneously localize and rank object detections. The following constraints
applied to the test set ensure a perfect ranking, that is that every true detection has a higher score
than all false detections:

<w7¢(-75i7yi)> > <w,¢(1'j,gj)> Vivj> gj € y\{yj} (5)

We modify these constraints, incorporating a structured output loss, in the following structured
output ranking objective
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where n denotes the number of positive instances in the training set. As compared with Equa-
tions (1)-(3), we now compare each positive instance to all bounding boxes in all images in the
training set instead of just the bounding boxes from the image it comes from. The constraints at-
tempt to give all positive instances a score higher than all negative instances, where the size of
the margin is scaled to be proportional to the loss achieved by the negative instance. We note that
one can use this same approach to optimize related ranking objectives, such as precision at a given
detection rate, by extending the formulations of [11, 41] to incorporate our structured output loss
function, A.

As in [8, 36] we have an intractable number of constraints in Equation (7). We will address this
problem using a constraint generation approach with a 1-slack formulation
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where ¥y is a vector with jth element §;. Although this results in a number of constraints exponential
in the number of training examples, we can solve this efficiently using a cutting plane algorithm. The
proof of equivalence between this optimization problem and that in Equations (6)-(8) is analogous
to the proof in [22, Theorem 1]. We are only left to find the maximally violated constraints in
Equation (10). Algorithm 1 gives an efficient procedure for doing so.

Algorithm 1 works by first scoring all positive regions, as well as finding and scoring the maxi-
mally violated regions from each image. We make use of the transitivity of ordering these two sets
of scores to avoid comparing all pairs in a naive fashion. If (w, ¢(z;,77)) > (w, d(zi,y:)) and



Algorithm 1 1-slack structured output ranking — maximally violated constraint.

Ensure: Maximally violated constraint is § — (w, ) < ¢
for all : do

Sj_ = <w7 ¢(x17y’t)>
end for
for all 5 do
g;k = argmax, <w7 QS(Ija y)> + A(ij y)
end for
(st,p*) = sort(s™) {pT is a vector of indices specifying a given score’s original index. }
(s—,p~) =sort(s™)
§=0k=114=¢,.=0
for all j do
while s > sf Ak <ni +1do

by =¢1+ 9 (fﬂpz,yp;r)
k=k+1

end while

vt (=10 (5,5 )
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end for

(w, d(xs,95)) > (w, ¢(xp, yp)), we do not have to compare (w, ¢(z;, gjj)) and (w, ¢(zp, yp)). In-
stead, we sort the instances of the class by their score, and sort the negative instances by their score
as well. We keep an accumulator vector for positive images, ¢, and a count of the number of
violated constraints (k — 1). We iterate through each violated region, ordered by score, and sum the
violated constraints into ) and J, yielding the maximally violated 1-slack constraint.

4 Weakly Supervised Data

Now that we have developed a structured output learning framework that is capable of appropriately
handling images from the background class, we turn our attention to the problem of learning with
weakly annotated data. We will consider the problem in full generality by assuming that we have
bounding box level annotation for some training images, but only binary labels or weak location
information for others. For negatively labeled images, we know that no bounding box in the entire
image contains an instance of the object class, while for positive images at least one bounding box
belongs to the class of interest. We approach this issue by considering the location of a bounding
box to be a latent variable to be inferred during training. The value that this variable can take is
constrained by the weak annotation. In the case that we have only a binary image-level label, we
constrain the latent variable to indicate that some region of the image corresponds to the object of
interest. In a more constrained case, such as annotation indicating the object center, we constrain
the latent variable to belong to the set of bounding boxes that have a center consistent with the anno-
tation. There is an asymmetry in the image level labeling in that negative labels can be considered
to be full annotation (i.e. all bounding boxes do not contain an instance of the object), while posi-
tive labels are incomplete.> We consider the index variable j to range over all completely labeled
images, including negative images.

We consider a modification of the constrained objective developed in the previous section to include
constraints of the form given in Equation (7), but also constraints for our weakly annotated positive
images, which we index by m,

( max <w,¢<xm,gm>>) w0, 85, 5,)) = Ay Fi) — g Ymadi €Y\ {ui}s (12)
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Note that this is exactly the asymmetry discussed in [2] in the context of multiple instance learning. Our
setting can be seen as a generalization to mixed annotations.



where ), is the set of bounding boxes consistent with the weak annotation for image m. Due to the
maximization over ¢,,, the optimization is no longer convex, but we can find a local optimum using
the CCCP algorithm [40]. This is effectively equivalent to the case of loss-rescaled multiple instance
learning, and we note that the resulting objective has similarities to that of [2]. Viewed another way,
we treat the location of the hypothesized bounding box as a latent variable. In order to use this in our
discriminative optimization, we will try to put a large margin between the maximally scoring box
and all bounding boxes with high loss. Though our algorithm does not have direct information about
the true location of the object of interest, it tries to learn a discriminant function that can distinguish
aregion in the positively labeled images from all regions in the negatively labeled images.

5 Results

We validate our model on the benchmark INRIA pedestrian detection dataset of Dalal and
Triggs [14] using a histogram of oriented gradients (HOG) representation, and the PASCAL VOC
dataset [16, 17]. Following [9, 24, 25], we provide detailed results on the cat class as the high vari-
ation in pose is appropriate for testing a bag of words model, but also provide summary results for all
classes in the form of improvement in mean average precision (mean AP). We first illustrate the per-
formance of the ranking objective developed in Section 3 and subsequently show the performance
of learning with weakly supervised data using the latent variable approach of Section 4.

5.1 Experimental Setup

We have implemented variants of two popular object detection systems in order to show the gen-
eralization of the approaches developed in this work to different levels of supervision and feature
descriptors. In the first variant, we have used a linear bag of words model similar to that developed
in [8, 24, 25]. Inference of maximally violated constraints and object detection was performed using
Efficient Subwindow Search (ESS) branch-and-bound inference [24, 25]. The joint kernel map, ¢,
was constructed using a concatenation of the bounding box visual words histogram (the restriction
kernel) and a global image histogram, similar to the approach described in [9]. Results are presented
on the VOC 2007 dataset [16, 17].

The second variant of the detector is based on the histogram of oriented gradients (HOG) represen-
tation [14]. HOG subdivides the image into cells, usually of size 8 x 8 pixels, and computes for
each cell a weighed histogram of the gradient orientations. The experiments use the HOG variant
of [19], which results in a 31-dimensional histogram for each cell. The HOG features are extracted
at multiple scales, forming a pyramid. An object is described by a rectangular arrangement of HOG
cells (the aspect ratio of the rectangular grouping is fixed). The joint feature map, ¢, extracts from
the HOG representation of the image the rectangular group of HOG cells at a given scale and loca-
tion [38]. A constant bias term is appended to the resulting feature [38] for all but the ranking cost
functional, as the bias term cancels out in that formulation. Note that the model is analogous to the
HOG detector of [14], and in particular does not use flexible parts as in [19]. Results are presented
for the INRIA pedestrian data set [14].

5.2 Learning to Rank

In order to evaluate the effects of optimizing the ranking objective developed in this work, we begin
by comparing the performance of the objective in Equations (6)-(8) in a fully supervised setting with
that of the objective in Equations (1)-(3), which correspond to the optimization proposed in [8].

In Figure 1, we show the relative performance of the linear bag of visual words model applied to the
PASCAL VOC 2007 data set [17]. We first show results for the cat class in which 10% of negative
images are included in the training set (Figure 1(a)), and subsequently results for which all negative
images are used for training (Figure 1(b)). While the ranking objective can appropriately handle
varying amounts of negative training data, the objective in Equation (1) fails, resulting in worse
performance as the amount of negative training data increases. These results empirically show the
shortcomings of the treatment of negative images proposed in [8], but the ranking objective by
contrast is robust to large imbalances between positive and negative images. Mean AP increases by
69% as a result of using the ranking objective when 10% of negative images are included during
training, and mean AP improves by 71% when all negative images are used.
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Figure 1: Precision-recall curves for the structured output ranking objective proposed in this paper
(blue) vs. the structured output objective proposed in [8] (red) for varying amounts of negative
training data. Results are shown on the cat class from the PASCAL VOC 2007 data set for 10%
of negative images (1(a)) and for 100% of negatives (1(b)). In all cases a linear bag of visual words
model was employed (see text for details). The structured output objective proposed in [8] performs
worse with increasing amounts of negative training data, and the algorithm completely fails in 1(b).
The ranking objective, on the other hand, does not suffer from this shortcoming (blue curves).

Figure 2.(a) analyzes the performance of the HOG pedestrian detection on the INRIA data set.
Three cost functionals are compared: a simple binary SVM, the structural SVM model of (1), and
the ranking SVM model of (6). The INRIA dataset contains 1218 negative images (i.e. images not
containing people). Each image is subdivided (in scale and space) into twenty sub-images and a
maximally violating window (object location) is extracted from each of those. This results in 24360
negative windows. The dataset contains also 612 positive images, for a total of 1237 labeled pedes-
trians. Thus there are about twenty times more negative examples than positive ones. Reweighted
versions of the binary and structural SVM models that balance the number of positive and negative
examples are also tested. As the figure shows, balancing the data in the cost functional is important,
especially for the binary SVM model; the ranking model is slightly superior to the other formula-
tions, with average precision of 77%, and does not require an adjustment to the loss to account for
a given level of data imbalance. By comparison, the state-of-the-art detector of [32] has average
precision 78%. We conjecture that this small difference in performance is due to their use of color
information.

5.3 Learning with Weak Annotations

To evaluate the objective in the case of weak supervision, we have additionally performed experi-
ments in which we have varied the percentage of bounding box annotations provided to the learning
algorithm.

Figure 3 contrasts the performance on the VOC dataset of our proposed discriminative latent vari-
able algorithm with that of a fully supervised algorithm in which weakly annotated training data are
ignored. We have run the algorithm for 10% of images having full bounding box annotations (with
the other 90% weakly labeled) and for 50% of images having complete annotation. In the fully su-
pervised case, we ignore all images that do not have full bounding box annotation and train the fully
supervised ranking objective developed in Section 3. In all cases, the latent variable model performs
convincingly better than subsampling. For 10% of images fully annotated, mean AP increases by
64%, and with 50% of images fully annotated, mean AP increases by 83%.

Figure 2.(b) reports the performance of the latent variable ranking model (8) for the HOG-based de-
tector on the INRIA pedestrian dataset. Only one positive image is fully labeled with the pedestrian
bounding boxes while the remaining positive images are weakly labeled. Since most positive images
contain multiple pedestrians, the weak annotations carry a minimal amount of information that is
still sufficient to distinguish the different pedestrian instances. Specifically, the bounding boxes are
discarded and only their centers are kept. Estimating the latent variables consists of a search over
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Figure 2: (a) Precision-recall curves for different formulations: binary and structural SVMs, bal-
anced binary and structural SVMs, ranking SVM. The unbalanced SVMs, and in particular the
binary one, do not work well due to the large number of negative examples compared to the positive
ones. The ranking formulation is slightly better than the other balanced costs for this dataset. (b)
Precision-recall curves for increasing amounts of weakly supervised data for the ranking formula-
tion. For all curves, only one image is fully labeled with bounding boxes around pedestrians, while
the other images are labeled only by the pedestrian centers. The first curve (AP 32%) corresponds
to the case in which only the fully supervised image is used; the last curve (AP 75%) to the case in
which all the other training images are added with weak annotations. The performance is almost as
good as the fully supervised case (AP 77%) of (a).
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(a) cat class trained with 10% of bounding (b) cat class trained with 50% of bounding
boxes. boxes.

Figure 3: Precision-recall curves for the structured output ranking objective proposed in this paper
trained with a linear bag of words image representation and weak supervision (blue) vs. only using
fully labeled samples (red). Results are shown for 10% of bounding boxes (left) and for 50% of
bounding boxes (right), the remainder of the images were provided with weak annotation indicating
the presence or absence of an object in the image, but not the object location. In both cases, the
latent variable model (blue) results in performance that is substantially better than discarding weakly
annotated images and using a fully supervised setting (red).

all object locations and scales for which the corresponding bounding box center is within a given
bound of the labeled center (the bound is set to 25% of the length of the box diagonal). In other
words, a weak annotation contains only approximate location information. This gives robustness to
inaccuracies in manually labeling the centers. The figure shows how the model performs when, in
addition to the singly fully annotated image, an increasing number of weakly annotated images are
added. Starting from 32% AP, the method improves up to 75% AP, which is remarkably similar to
the best result (77% AP) obtained with full supervision.

(b)



6 Discussion

We can draw several conclusions from the results in Section 5. First, using the learning formulation
developed in [8], negative images are not handled properly, resulting in the undesired behavior
that additional negative images in the training data decrease performance. The special case of the
objective in Equations (1)-(3), for which no negative training data are incorporated, can be viewed
roughly as an estimate of the log probability of an object being present at a location conditioned on
that an object is present in the image. While this results in reasonable performance in terms of recall
(c.f. [8]), it does not result in a good average precision (AP) score. In fact, the results presented in [8]
were computed by training the objective function only on positive images, and then using a separate
non-linear ranking function based on global image statistics. Using only positively labeled images
in the objective presented in Section 2 only incorporates a subset of the constraints in Equation (7)
corresponding to ¢ = j. Incorporating all these constraints directly optimizes ranking, enabling the
use of all available negative training data to improve localization performance.

Reweighting the loss corresponding to positive and negative examples resulted in similar perfor-
mance to the ranking objective on the INRIA pedestrian data set, but requires a search across an
additional parameter. From the perspective of regularized risk, subsampling negative images can be
viewed as a noisy version of this reweighting, and experiments on PASCAL VOC using the objec-
tive in (1) showed poor performance over a wide range of sampling rates. The ranking objective
by contrast weights loss from the negative examples appropriately (Algorithm 1) according to their
contribution to the loss for the precision-recall curve. This is a much more principled and robust
criterion for setting the loss function.

By using the ranking objective to treat negative images, learning with weak annotations was made
directly applicable using a discriminative latent variable model. Results showed consistent improve-
ment across different proportions of weakly and fully supervised data. Our formulation handled
different ratios of weakly annotated and fully annotated training data without additional parameter
tuning in the loss function. The discriminative latent variable approach has been able to achieve
performance within a few percent of that achieved by a fully supervised system using only one fully
supervised label. The weak labels used for the remaining data are significantly less expensive to
supply [39]. That this is consistent across the data sets reported here indicates that discriminative
latent variable models are a promising strategy for treating weak annotation in general.
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