
Supplement

Here we provide the derivations that were omitted in the main text. The following two identities will
be used repeatedly. Since  is stationary, we haveP
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Again, we will suppress the dependence on w.

Proof of Theorem 1:

Differentiating the Bellman equation (2) yields
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To obtain the last equation we used (43). Now we move Ow () on the right side of (44), multiply
by  () and sum over . Noting thatP
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which follows from (42), the LMDP policy gradient is as given in (5).

Proof of Theorem 2:

Using the identity Ow = Ow log , equation (5) can also be written as
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With the policy parameterization (7), we have
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Substituting (47) in (46) and using the fact thatP
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which follows from (43), the gradient is as given in (9).

Proof of Theorem 4:

Using (47), equation (17) can be written as
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The second term is zero because of (43), thus we have equation (19).


