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Abstract

We show that matrix completion with trace-norm regularization can be signifi-
cantly hurt when entries of the matrix are sampled non-uniformly, but that a prop-
erly weighted version of the trace-norm regularizer works well with non-uniform
sampling. We show that the weighted trace-norm regularization indeed yields sig-
nificant gains on the highly non-uniformly sampled Netflix dataset.

1 Introduction

Trace-norm regularization is a popular approach for matrixcompletion and collaborative filtering,
motivated both as a convex surrogate to the rank [7, 6] and in terms of a regularized infinite factor
model with connections to large-margin norm-regularized learning [17, 1, 15].

Current theoretical guarantees on using the trace-norm formatrix completion assume a uniform
sampling distribution over entries of the matrix [18, 6, 5, 13]. In a collaborative filtering setting,
where rows of the matrix represent e.g. users and columns represent e.g. movies, this corresponds
to assuming all users are equally likely to rate movies and all movies are equally likely to be rated.
This of course cannot be further from the truth, as invariably some users are more active than others
and some movies are rated by many people while others are rarely rated.

In this paper we show, both analytically and through simulations, that this is not a deficiency of
the proof techniques used to establish the above guarantees. Indeed, a non-uniform sampling dis-
tribution can lead to a significant deterioration in prediction quality and an increase in the sample
complexity. Under non-uniform sampling, as many asΩ(n4/3) samples might be needed for learn-
ing even a simple (e.g. orthogonal low rank)n × n matrix. This is in sharp contrast to the uniform
sampling case, in which̃O(n) samples are enough. It is important to note that if the rank could
be minimized directly, which is in general not computationally tractable,Õ(n) samples would be
enough to learn a low-rank model even under an arbitrary non-uniform distribution.

Our analysis further suggests a weighted correction to the trace-norm regularizer, that takes into
account the sampling distribution. Although appearing at first as counter-intuitive, and indeed be-
ing the opposite of a previously suggested weighting [21], this weighting is well-motivated by our
analytic analysis and we discuss how it corrects the problems that the unweighted trace-norm has
with non-uniform sampling. We show how the weighted trace-norm indeed yields a significant
improvement on the highly non-uniformly sampled Netflix dataset.

The only other work we are aware of that studies matrix completion under non-uniform sampling
is work onexact completion (i.e. when the matrix is assumed to beexactly low rank) under power-
law sampling [12]. Other then being limited to one specific distribution, the requirement of the
matrix being exactly low rank is central to this work, and theresults cannot be directly applied
in the presence of even small noise. Empirically, the approach leads to deterioration in predictive
performance on the Netflix data [12].
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2 Complexity Control in terms of Matrix Factorizations

Consider the problem of predicting the entries of some unknown target matrixY ∈ R
n×m based

on a random subsetS of observed entriesYS . For example,n andm may represent the number of
users and the number of movies, andY may represent a matrix of partially observed rating values.
Predicting elements ofY can be done by finding a matrixX minimizing the training error, here
measured as a squared error, and some measurec(X) of complexity. That is, minimizing either:

min
X

‖XS − YS‖2
F + λc(X) (1)

or: min
c(X)≤C

‖XS − YS‖2
F , (2)

whereYS , and similarlyXS , denotes the matrix “masked” byS, where(YS)i,j = Yi,j if (i, j) ∈ S
and0 otherwise. For now we ignore possible repeated entries inS and we also assume thatn ≤ m
without loss of generality. The two formulations (1) and (2)are equivalent up to some (unknown)
correspondence betweenλ andC, and we will be referring to them interchangeably.

A basic measure of complexity is the rank ofX , corresponding to the minimal dimensionalityk such
thatX = U⊤V for someU ∈ R

k×n andV ∈ R
k×m. Directly constraining the rank ofX forms

one of the most popular approaches to collaborative filtering. However, the rank is non-convex and
hard to minimize. It is also not clear if a strict dimensionality constraint is most appropriate for
measuring the complexity.

Trace-norm Regularization

Lately, methods regularizing thenorm of the factorizationU⊤V , rather than its dimensionality, have
been advocated and were shown to enjoy considerable empirical success [14, 15]. This corresponds
to measuring complexity in terms of thetrace-norm of X , which can be defined equivalently either
as the sum of the singular values ofX , or as [7]:

‖X‖tr = min
X=U ′V

1

2
(‖U‖2

F + ‖V ‖2
F), (3)

where the dimensionality ofU andV is not constrained. Beyond the modeling appeal of norm-
based, rather than dimension-based, regularization, the trace-norm is a convex function ofX and so
can be minimized by either local search or more sophisticated convex optimization techniques.

Scaling

The rank, as a measure of complexity, does not scale with the size of the matrix. That is, even very
large matrices can have low rank. Viewing the rank as a complexity measure corresponding to the
number of underlying factors, if data is explained by e.g. two factors, then no matter how many rows
(“users”) and columns (“movies”) we consider, the data willstill have rank two. The trace-norm,
however, does scale with the size of the matrix. To see this, note that the trace-norm is theℓ1 norm
of the spectrum, while the Frobenius norm is theℓ2 norm of the spectrum, yielding:

‖X‖F ≤ ‖X‖tr ≤ ‖X‖F

√

rank(X) ≤ √
n ‖X‖F . (4)

The Frobenius norm certainly increases with the size of the matrix, since the magnitude of each ele-
ment does not decrease when we have more elements, and so the trace-norm will also increase. The
above suggests measuring the trace-norm relative to the Frobenius norm. Without loss of generality,
consider each target entry to be of roughly unit magnitude, and so in order to fitY each entry of
X must also be of roughly unit magnitude. This suggests scaling the trace-norm by

√
nm. More

specifically, we study the trace-norm through the complexity measure:

tc(X) =
‖X‖2

tr

nm
, (5)

which puts the trace-norm on a comparable scale to the rank. In particular, when each entry ofX is,
on-average, of unit magnitude (i.e. has unit variance) we have1 ≤ tc(X) ≤ rank(X).

The relationship betweentc(X) and the rank is tight for “orthogonal” low-rank matrices, i.e. low-
rank matricesX = U⊤V where the rows ofU and also the rows ofV are orthogonal and of equal
magnitudes. In order for the entries inY to have unit magnitude, i.e.‖Y ‖2

F = nm, we have that rows
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in U have norm
√

n/
√

k and rows inV have norm
√

m/
√

k, yielding preciselytc(X) = rank(X).
Such an orthogonal low-rank matrix can be obtained, e.g., when entries ofU andV are zero-mean
i.i.d. Gaussian with variance1/

√
k, corresponding to unit-variance entries inX .

Generalization Guarantees

Another place where we can see thattc(X) plays a similar role torank(X) is in the generalization
and sample complexity guarantees that can be obtained for low-rank and low-trace-norm learning.
If there is a low-rank matrixX∗ achieving low average error relative toY (e.g. ifY = X∗ + noise),
then by minimizing the training error subject to a rank constraint (a computationally intractable
task),|S| = Õ(rank(X∗)(n + m)) samples are enough in order to guarantee learning a matrixX
whose overall average error is close to that ofX∗ [16]. Similarly, if there is a low-trace-norm matrix
X∗ achieving low average error, then minimizing the training error and the trace-norm (a convex
optimization problem),|S| = Õ(tc(X∗)(n+m)) samples are enough in order to guarantee learning
a matrixX whose overall average error is close to that ofX∗ [18]. In these boundstc(X) plays
precisely the same role as the rank, up to logarithmic factors.

In order to get some intuitive understanding of low-rank learning guarantees, it is enough to consider
the number of parameters in the rank-k factorizationX = U⊤V . It is easy to see that the number of
parameters in the factorization is roughlyk(m + n) (perhaps a bit less due to rotational invariants).
We therefore would expect to be able to learnX when we have roughly this many samples, as is
indeed confirmed by the rigorous sample complexity bounds.

For low-trace-norm learning, consider a sampleS of size|S| ≤ Cn, for some constantC. Taking
entries ofY to be of unit magnitude, we have‖YS‖F =

√

|S| ≤
√

Cn (recall thatYS is defined to
be zero outsideS). From (4) we therefore have:‖YS‖tr ≤

√
Cn · √n =

√
Cn and sotc(YS) ≤ C.

That is, we can “shatter” any sample of size|S| ≤ Cn with tc(X) = C: no matter what the
underlying matrixY is, we can always perfectly fit the training data with a low trace-norm matrix
X s.t.tc(X) ≤ C, without generalizing at all outsideS. On the other hand, we must allow matrices
with tc(X) = tc(X∗), otherwise we can not hope to findX∗, and so we can only constraintc(X) ≤
C = tc(X∗). We therefore cannot expect to learn with less thanntc(X∗) samples. It turns out that
this is essentially the largest random sample that can be shattered withtc(X) ≤ C = tc(X∗). If we
have more than this many samples we can start learning.

3 Trace-Norm Under a Non-Uniform Distribution

In this section, we analyze trace-norm regularized learning when the sampling distribution is not
uniform. That is, when there is some, known or unknown, non-uniform distributionD over entries
of the matrixY (i.e. over index pairs(i, j)) and our sampleS is sampled i.i.d. fromD. Our objective
is to get low average error with respect to the distributionD. That is, we measure generalization
performance in terms of the weighted sum-squared-error:

‖X − Y ‖2
D = E(i,j)∼D

[

(Xij − Yij)
2
]

=
∑

ij

D(i, j)(Xij − Yij)
2. (6)

We first point out that when using the rank for complexity control, i.e. when minimizing the training
error subject to a low-rank constraint, non-uniformitydoesnot pose a problem. The same generaliza-
tion and learning guarantees that can be obtained in the uniform case, also hold under an arbitrary
distributionD. In particular, if there is some low-rankX∗ such that‖X∗ − Y ‖2

D is small, then
Õ(rank(X∗)(n + m)) samples are enough in order to learn (by minimizing trainingerror subject to
a rank constraint) a matrixX with ‖X − Y ‖2

D almost as small as‖X∗ − Y ‖2
D [16].

However, the same does not hold when learning using the trace-norm. To see this, consider an
orthogonal rank-k squaren×n matrix, and a sampling distribution which is uniform over annA×nA

sub-matrixA, with nA = na. That is, the row (e.g. “user”) is selected uniformly among the firstnA

rows, and the column (e.g. “movie”) is selected uniformly among the firstnA columns. We will use
A to denote the subset of entries in the submatrix, i.e.A = {(i, j)|1 ≤ i, j ≤ nA}. For any sample
S, we have:

tc(YS) =
‖YS‖2

tr

n2
≤ ‖YS‖2

F rank(YS)

n2
≤ |S|na

n2
=

|S|
n2−a

, (7)
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where we again take the entries inY to be of unit magnitude. In the second inequality above we
use the fact thatYS is zero outside ofA, and so we can bound the rank ofYS by the dimensionality
nA = na of A.

Settinga < 1, we see that we can shatter any sample of size1 kn2−a = ω̃(n) with a matrixX for
which tc(X)<k. Whena ≤ 1/2, the total number of entries inA is less thann. In this caseÕ(n)

observations are enough in order to memorize2 YA. But when1/2 < a < 1, with Õ(n) observations,
restricting to eventc(X) < 1, we can neither learnY , since we can shatterYS , nor memorize it. For
example, whena = 2/3 and sonA = n2/3, we need roughlyn4/3 to start learning by constraining
tc(X) to a constant — the same as we would need in order to memorizeYA. This is a factor ofn1/3

greater than the sample size needed to learn a matrix with constanttc(X) in the uniform case.

The above arguments establish that restricting the complexity to tc(X) < k might not lead to gen-
eralization withÕ(kn) samples in the non-uniform case. But does this mean that we cannot learn a
rank-k matrix by minimizing the trace-norm using̃O(kn) samples when the sampling distribution
is concentrated on a small submatrix? Of course this is not the case. Since the samples are uniform
on a small submatrix, we can just think of the submatrix A as our entire space. The target matrix
still has low rank, even when restricted to A, and we are back in the uniform sampling scenario.
The only issue here is thattc(X) ≤ k, i.e. ‖X‖tr ≤ n

√
k, is the right constraint in the uniform

observation scenario. When samples are concentrated innA, we actually need to restrict to a much
smaller trace norm,‖X‖tr ≤ na

√
k, which will allow learning withÕ(kna) samples.

We can, however, modify the example and construct a samplingdistribution under whichΩ(n4/3)
samples are required in order to learn even an “orthogonal” low-rank matrix, no matter what con-
straint is placed on the trace-norm. This is a significantly large sample complexity thañO(kn),
which is what we would expect, and what is required for learning by constraining the rank directly.

A

B

To do so, consider another submatrixB of sizenB × nB with nB = n/2, such
that the rows and columns ofA andB do not overlap (see figure). Now, consider
a sampling distributionD which is uniform overA with probability half, and uni-
form overB with probability half. Consider fitting a noisy matrixY = X∗+noise
whereX∗ is “orthogonal” rank-k. In order to fit onB, we need to allow a trace-
norm of at least‖X∗

B‖tr = n
2

√
k, i.e. allowtc(X) = k/4. But as discussed above,

with such a generous constraint on the trace-norm, we will beable to shatterS ⊂ A whenever
|S ∩ A| = |S|/2 ≤ kn2−a/4. Since there is no overlap in rows and columns, and so values in the
sub-matricesA andB are independent, shatteringS∩A means we cannot hope to learn inA. Setting
a=2/3 as before, witho(n4/3) samples, we cannot learn inA andB jointly: either we constrain to
a trace-norm which is too low to fitX∗

B (we under-fit onB), or we allow a trace-norm which is high
enough to overfitYS∩A. In any case, we will make errors on at least half the mass ofD.3

Empirical Example

Let us consider a simple simulation experiment that will help us illustrates this phenomenon. Con-
sider a simple synthetic example, where we usednA = 300 andnB = 4700, with an orthogonal
rank-2 matrixX∗ andY = X∗ + N (0, 1) (in case of repeated entries, the noise is independent for
each appearance in the sample). The training sample size wasalso set to|S|=140,000.

The three curves of Fig. 1 measure the excess (test) error‖X − X∗‖2
D = ‖X − Y ‖2

D−‖Y − X∗‖2
D

of the learned model, as well as the error contribution fromA and fromB, as a function of the
constraint ontc(X), for the sampling distribution discussed above and a specific sample size. As
can be seen, although it is possible to constraintc(X) so as to achieve squared-error of less than0.8
on B, this constraint is too lax forA and allows for over-fitting. Constrainingtc(X) so as to avoid
overfittingA (achieving almost zero excess test error), leads to a suboptimal fit onB.

1Recall thatf(n) = ω̃(g(n)) iff for all p, g(n) logp g(n)
f(n)

→ 0.
2The algorithm saw all (or most) entries of the matrix and doesnot need to predict any unobserved entries.
3More accurately, if we do allow high enough trace-norm to fitB, and|S| = o(n4/3), then the “cost” of

overfittingYS∩A is negligible compared to the cost of fittingX∗

B . For large enoughn, we would be tempted to
very slightly deteriorate the fit ofX∗

B in order to “free up” enough trace-norm and completely overfit YS∩A.
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Figure 1: Left: Mean squared error (MSE) of the learned model as a function of the constraint ontc(X)
(left), tcpq(X) (middle). Right: The solid curves show the optimum of the mean squared error objective
(9) (unweighted trace-norm), as a function of the regularization parameterλ. The dashed curves display a
weighted trace-norm. The black (middle) curve is the overall MSE error, the red (bottom) curve measures only
the contribution fromA, and the blue (top) curve measures only the contribution from B.

Penalty Formulation

Until now we discussed learning by constraining the trace-norm, i.e. using the formulation (2). It is
also insightful to consider the penalty view (1), i.e. learning by minimizing

min
X

‖YS − XS‖2
F + λ ‖X‖tr . (8)

First observe that the characterization (3) allows us to decompose‖X‖tr = ‖XA‖tr + ‖XB‖tr,
where w.l.o.g. we take all columns ofU andV outsideA andB to be zero. Since we also have
‖YS − XS‖2

F = ‖YA∩S − XA∩S‖2
F + ‖YB∩S − XB∩S‖2

F, we can decompose the training objective
(8) as:

‖YS − XS‖2
F + λ ‖X‖tr = (‖YA∩S − XA∩S‖2

F + λ ‖XA‖tr) + (‖YB∩S − XB∩S‖2
F + λ ‖XB‖tr)

=
(

‖YA∩S − XA∩S‖2
F + λnA

√

tcA(XA)
)

+
(

‖YB∩S − XB∩S‖2
F + λnB

√

tcB(XB)
)

, (9)

wheretcA(XA) = ‖XA‖2
tr /n2

A (and similarly tcB(XB)) refers to the complexity measuretc(·)
measured relative to the size ofA (similarly B). We see that the training objective decomposes
to objectives overA andB. Each one of these corresponds to a trace-norm regularized learning
problem, under a uniform sampling distribution (in the corresponding submatrix) of a noisy low-rank
“orthogonal” matrix, and can therefor be learned withÕ(knA) andÕ(knB) samples respectively.
In other words,Õ(kn) samples should be enough to learn both insideA and insideB.

However, the regularization tradeoff parameterλ compounds the two problems. When the objective
is expressed in terms oftc(·), as in (9), the regularization tradeoff is scaled differently in each part
of the training objective. With̃O(kn) samples, it is possible to learn inA with some setting ofλ,
and it is possible to learn inB with some other setting ofλ, but from the discussion above we learn
that no single value ofλ will allow learning in bothA andB. Eitherλ is too high yielding too strict
regularization inB, so learning onB is not possible, perhaps since it is scaled bynB ≫ nA. Or λ
is too small and does not provide enough regularization inA.

Returning to our simulation experiment, the solid curves ofFig. 1, right panel, show the excess
test error for the minimizer of the training objective (9), as a function of the regularization tradeoff
parameterλ. Note that these are essentially the same curves as displayed in Fig. 1, except the
path of regularized solutions is now parameterized byλ rather than by the bound ontc(X). Not
surprisingly, we see the same phenomena: different values of λ are required for optimal learning on
A and onB. Forcing the sameλ on both parts of the training objective (9) yields a deterioration in
the generalization performance.

4 Weighted Trace Norm
The decomposition (9) and the discussion in the previous section suggests weighting the trace-norm
by the frequency of rows and columns. For a sampling distribution D, denote byp(i) the row
marginal, i.e. the probability of observing rowi, and similarly denote byq(j) the column marginal.
We propose using the following weighted version of the trace-norm as a regularizer:

‖X‖tr(p,q) = ‖diag(
√

p)Xdiag(
√

q)‖tr = min
X=U ′V

1

2

(

∑

i

p(i) ‖Ui‖2
+

∑

j

q(j), ‖Vj‖2 )

(10)
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where diag(
√

p) is a diagonal matrix with
√

p(i) on its diagonal (similarly diag(
√

q)). The corre-

sponding normalized complexity measure is given bytcpq(X) = ‖X‖2
tr(p,q). Note that for a uniform

distribution we have thattcpq(X) = tc(X). Furthermore, it is easy to verify that for an “orthogonal”
rank-k matrixX we havetcpq(X) = k for any sampling distribution.

Equipped with the weighted trace-norm as a regularizer, letus revisit the problematic sampling
distribution studied in the previous Section. In order to fitthe “orthogonal” rank-kX∗, we need a
weighted trace-norm of‖X∗‖tr(p,q) =

√

tcpq(X) =
√

k. How large a sampleS ∩ A can we now

shatter using such a weighted trace-norm? We can shatter a sample if ‖YS∩A‖tr ≤
√

k. We can
calculate:

‖YS∩A‖tr(p,q) = ‖YS∩A‖tr /(2nA) ≤
√

|S ∩ A|nA/(2nA) =
√

|S|/(8nA). (11)

That is, we can shatter a sample of size up to|S| = 8knA < 8kn. The calculation forB is identical.
It seems that now, with a fixed constraint on the weighted trace-norm, we have enough capacity to
both fitX∗, and withÕ(kn) samples, avoid overfitting onA.

Returning to the penalization view (2) we can again decompose the training objective as:

‖YS − XS‖2
F + λ ‖X‖tr(p,q) = (12)

=
(

‖YA∩S − XA∩S‖2
F + λ/2

√

tcA(XA)
)

+
(

‖YB∩S − XB∩S‖2
F + λ/2

√

tcB(XB)
)

avoiding the scaling by the block sizes which we encounteredin (9).

Returning to the synthetic experiments of Fig. 1 (right panel), and comparing (9) with (12), we see
that introducing the weighting corresponds to a relative change ofnA/nB in the correspondence of
the regularization tradeoff parameters used forA and forB. This corresponds to a shift oflog nA

nB

in the log-domain used in the figure. Shifting the solid red (bottom) curve by this amount yields
the dashed red (bottom) curve. The solid blue (top) curve andthe dashed red (bottom) curve thus
represent the excess error onB and onA when the weighted trace norm is used, i.e. the training
objective (12) is minimized. The dashed black (middle) curve is the overall excess error when using
this training objective. As can be seen, the weighting aligns the excess errors onA and onB much
better, and yields a lower overall error. The weighted trace-norm achieves the lowest MSE of 0.4301
with correspondingλ = 0.11. This is compared to the lowest MSE of 0.4981 withλ = 0.80,
achieved by the unweighted trace-norm.

It is also interesting to observe that the weighted trace-norm outperforms its unweighted counterpart
for a wide range of regularization parametersλ ∈ [0.01; 0.6]. This may also suggest that in prac-
tice, particularly when working with large and imbalanced datasets, it may be easier to search for
regularization parameters using weighted trace-norm.

Finally, Fig. 1, right panel, also suggests that the optimalshift might actually be smaller than
nA/nB. We can consider a smaller shift by using the partially-weighted trace-norm:

‖X‖tr(p,q,α) =
∥

∥

∥
diag(pα/2)Xdiag(qα/2)

∥

∥

∥

tr
= min

X=U⊤V

1

2
(
∑

i

p(i)α ‖Ui‖2
+

∑

j

q(j)α ‖Vj‖2
).

and the corresponding normalized complexity measuretcα(X) = ‖X‖2
tr(pα/n1−α,qα/m1−α).

Other Weightings and Bayesian Perspective

The weighted trace-norm motivated by the analysis here (with α = 1) implies that the frequent users
(equivalently movies) get regularized much stronger than the rare users (equivalently movies). This
might at first seem quite counter-intuitive as the natural weighting might seem to be the opposite.
Indeed, Weimeret al. [21] speculated that with a uniform weighting (α = 0) frequent users are
regularized too heavily compared to infrequent users, and so suggested regularizing frequent users
(and movies) with a lower weight, corresponding toα = −1. Although this might seem natural, we
saw here that the reverse is actually true – the Weimeret al. weighting (α = −1) would only make
things worse. Indeed, given the analysis here, Weimeret al. actually observed a deterioration in
prediction quality when using their weighting. This is alsodemonstrated in the experiments on the
Netflix data in Section 6.
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The weighted regularization motivated here (withα = 1) is also quite unusual from Bayesian per-
spective. The trace-norm can be viewed as a negative-log-prior for the Probabilistic Matrix Factor-
ization model [15], where entries ofU, V are taken to be i.i.d. Gaussian. The two terms of (8) can
then be interpreted as a log-likelihood and log-prior, and minimizing (8) corresponds to finding the
MAP parameters. Introducing weighting (withα = 1) effectively states that the effect of the prior
becomesstronger as we observe more data. Yet, our analysis strongly suggest that in non-uniform
setting, such “unorthodox” regularization is crucial for achieving good generalization performance.

5 Practical Implementation
When dealing with large datasets, such as the Netflix data, the most practical way to fit trace-norm
regularized models is through stochastic gradient descent[15, 8]. Let ni =

∑

j Sij andmj =
∑

i Sij denote the number of observed ratings for useri and moviej respectively. The training
objective using a partially-weighted trace-norm 10 can be written as:

∑

{i,j}∈S

(

(

Yij − U⊤
i Vj

)2
+

λ

2

(

p(i)α

ni
‖Ui‖2 +

q(j)α

mj
‖Vj‖2

))

,

whereU ∈ R
k×n andV ∈ R

k×m. We can optimize this objective using stochastic gradient descent
by picking one training pair(i, j) at random at each iteration, and taking a step in the direction
opposite the gradient of the term corresponding to the chosen (i, j).

Note that even though the objective (13) as a function ofU andV is non-convex, there are no non-
global local minima if we setk to be large enough, i.e.k > min(n, m) [2]. However, in practice
using very large values ofk becomes computationally expensive. Instead, we consider truncated
trace-norm minimization by restrictingk to smaller values. In the next section we demonstrate
that even when using truncated trace-norm, its weighted version significantly improves model’s
prediction performance.

In our experiments, we also replace unknown rowp(i) and columnq(j) marginals in (13) by their
empirical estimateŝp(i) = ni/|S| andq̂(j) = mj/|S|. This results in the following objective:

∑

{i,j}∈S

(

(

Yij − U⊤
i Vj

)2
+

λ

2|S|

(

nα−1
i ‖Ui‖2

+ mα−1
j ‖Vj‖2

))

. (13)

Settingα = 1, corresponding to the weighted trace-norm (10), results instochastic gradient updates
that do not involve the row and column counts at all and are in some sense the simplest. Strangely,
and likely originating as a “bug” in calculating the stochastic gradients by one of the participants,
these steps match the stochastic training used by many practitioners on the Netflix dataset, without
explicitly considering the weighted trace-norm [8, 19, 15].

6 Experimental results
We tested the weighted trace-norm on the Netflix dataset, which is the largest publicly available col-
laborative filtering dataset. The training set contains 100,480,507 ratings from 480,189 anonymous
users on 17,770 movie titles. Netflix also provides qualification set, containing 1,408,395 ratings,
out of which we set aside 100,000 ratings for validation. The“qualification set” pairs were selected
by Netflix from the most recent ratings for a subset of the users. Due to the special selection scheme,
ratings from users with few ratings are overrepresented in the qualification set, relative to the train-
ing set. To be able to report results where the train and test sampling distributions are the same, we
also created a “test set” by randomly selecting and removing100,000 ratings from the training set.
All ratings were normalized to be zero-mean by subtracting 3.6. The dataset is very imbalanced: it
includes users with over 10,000 ratings as well as users who rated fewer than 5 movies.

For various values ofα, we learned a factorizationU⊤V with k = 30 and withk = 100 dimensions
(factors) using stochastic gradient descent as in (13). Foreach value ofα andk we selected the
regularization tradeoffλ by minimizing the error on the 100,000 qualification set examples set aside
for validation. Results on both the Netflix qualification setand on the test set we created are reported
in Table 1. Recall that the sampling distribution of the “test set” matches that of the training data,
while the qualification set is sampled differently, explaining the large difference in generalization
between the two.
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Table 1: Root Mean Squared Error (RMSE) on the Netflix qualification set and on a test set that was held out
from the training data, for training by minimizing (13). We reportλ/|S| minimizing the error on the validation
set (held out from the qualification set), qualification and test errors using this tradeoff, andtcα(X) at the
optimum. Last row: training by regularizing the max-norm.

α k λ/|S| tcα(X) Test Qual k λ/|S| tcα(X) Test Qual
1 30 0.05 4.34 0.7607 0.9105 100 0.08 5.47 0.7412 0.9071

0.9 30 0.07 4.27 0.7573 0.9091 100 0.1 5.23 0.7389 0.9062
0.75 30 0.2 5.04 0.7723 0.9128 100 0.3 6.24 0.7491 0.9098
0.5 30 0.5 7.32 0.7823 0.9159 100 0.8 9.65 0.7613 0.9127
0 30 2.5 10.36 0.7889 0.9235 100 3.0 21.23 0.7667 0.9203
-1 30 450 11.41 0.7913 0.9256 100 700 23.31 0.7713 0.9221

‖X‖max 30 mc(X) = 5.06 0.7692 0.9131 100 mc(X) = 5.77 0.7432 0.9092

For bothk = 30 andk = 100, the weighted trace-norm (α = 1) significantly outperformed the
unweighted trace-norm (α = 0). Interestingly, the optimal weighting (setting ofα) was a bit lower
then, but very close toα = 1. For completeness, we also evaluated the weighting suggested by
Weimeret al. [21], corresponding toα = −1. Unsurprising, given our analysis, this seemingly
intuitive weighting hurts predictive performance.

For bothk = 30 andk = 100, we also observed that for the weighted trace-norm (α = 1) good
generalization is possible with a wide range ofλ settings, while for the unweighted trace-norm
(α = 0), the results were much more sensitive to the setting ofλ. This confirms our previous results
on the synthetic experiment and strongly suggests that it may be far easier to search for regularization
parameters using the weighted trace-norm.

Comparison with the Max-Norm

We also compared the predictive performance on Netflix to predictions based on max-norm regular-
ization. The max-norm is defined as:

‖X‖max = min
X=U ′V

1

2
(max

i
‖Ui‖2

+ max
j

‖Vj‖2
). (14)

Similarly to the rank, but unlike the trace-norm, generalization and learning guarantees based on the
max-norm hold also under an arbitrary, non-uniform, sampling distribution. Specifically, defining
mc(X) = ‖X‖2

max (no normalization is necessary here),Õ(mc(X)(n+m)) samples are enough for
generalization w.r.t. any sampling distribution (just like the rank) [18]. This suggests that perhaps the
max-norm can be used as an alternative factorization-regularization in the presence of non-uniform
sampling. Indeed, as evident in Table 1, max-norm based regularization does perform much better
then the unweighted trace-norm. The differences between the max-norm and the weighted trace-
norm are small, but it seems that using the weighted trace-norm is slightly but consistently better.

7 Summary
In this paper we showed both analytically and empirically that under non-uniform sampling, trace-
norm regularization can lead to significant performance deterioration and an increase in sample
complexity. Our analytic analysis suggests a non-intuitive weighting for the trace-norm in order to
correct the problem. Our results on both synthetic and on thehighly imbalanced Netflix datasets fur-
ther demonstrate that the weighted trace-norm yields significant improvements in prediction quality.

In terms of optimization, we focused on stochastic gradientdescent,both since it is a simple and
practical method for very large-scale trace-norm optimization [15, 8], and since the weighting was
originally stumbled upon through this optimization approach. However, most recently proposed
methods for trace-norm optimization (e.g. [3, 10, 9, 11, 20]) can also be easily modified for the
weighted trace-norm.

We hope that the weighted trace-norm, and the discussions inSections 3 and 4, will be helpful
in deriving theoretical learning guarantees for arbitrarynon-uniform sampling distributions, both in
the form of generalization error bounds as in [18], and generalizing the compressed-sensing inspired
work on recovery of noisy low-rank matrices as in [4, 13].
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[19] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Scalable collaborative
filtering approaches for large recommender systems.Journal of Machine Learning Research,
10:623–656, 2009.

[20] R. Tomioka, T. Suzuki, M. Sugiyama, and H. Kashima. A fast augmented lagrangian algorithm
for learning low-rank matrices. InICML, pages 1087–1094, 2010.

[21] M. Weimer, A. Karatzoglou, and A. Smola. Improving maximum margin matrix factorization.
Machine Learning, 72(3):263–276, 2008.

9


