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Abstract

We provide here additional details relatively to our paper.

1 Reminder of properties of multi-fixation RBM

Here we write down explicitly the main properties of the multi-fixation RBM, specifically the form
of its conditional distributions:

p(h|y,x) =
∏
j

p(hj |y,x)

p(hj = 1|y,x1:K) = sigm(cj + Uj·y +
K∑

k=1

Pj· diag(z(ik, jk)) F xk)

p(xk|h) =
∏

i

p(xki|h) ∀ k ∈ {1, . . . ,K}

p(xki = 1|h) = sigm(bi + h>P diag(z(ik, jk)) F·i) ∀ k ∈ {1, . . . ,K}

p(y = el|h) =
exp(dl + h>U·l)∑C

l∗=1 exp(dl∗ + h>U·l∗)

p(y = el|x1:K) =
exp(dl +

∑
j softplus(cj + Ujl +

∑K
k=1 Pj· diag(z(ik, jk)) F xk))∑C

l∗=1 exp(dl∗ +
∑

j softplus(cj + Ujl∗ +
∑K

k=1 Pj· diag(z(ik, jk)) F xk))

where each glimpse xk is a binary vector.

2 Detailed description of the hybrid cost gradient

We start with the hybrid cost:

Hybrid cost: Chybrid = − log p(yt|xt
1:K)− α log p(yt,xt

1:K) . (1)

The gradient with respect to any parameter θ has the following simple form:

∂Chybrid

∂θ
= Eh|yt,xt

1:K

[
∂

∂θ
E(yt,xt

1:K ,h)
]
− Ey,h|xt

1:K

[
∂

∂θ
E(y,xt

1:K ,h)
]

+α

(
Eh|yt,xt

1:K

[
∂

∂θ
E(yt,xt

1:K ,h)
]
− Ey,x1:K ,h

[
∂

∂θ
E(y,x1:K ,h)

])

1



Algorithm 1 Gibbs sampling in Contrastive Divergence, to obtain samples xneg
1:K and yneg for the

multi-fixation RBM, for the hybrid cost
Input: training pair (yt,xt

1:K)
% Notation: a ∼ p means a is sampled from p
hneg ∼ p(h|yt,xt

1:K)
yneg ∼ p(y|hneg)
for k from 1 to K do

xneg
k ∼ p(xk|hneg)

end for

The expectations with respect to h only are tractable. Because h is binary and the energy function
is linear in h, we have that

Eh|yt,xt
1:K

[
∂

∂θ
E(yt,xt

1:K ,h)
]

=
∂

∂θ
E(yt,xt

1:K ,h(yt,xt
1:K))

where we defined

h(yt,xt
1:K) = sigm

(
c + Uyt +

K∑
k=1

P diag(z(ik, jk)) F xt
k

)
.

In other words, the stochastic value of h is simply replaced by its expectation given yt and xt
1:K .

The expectation with respect to y and h can also be done exactly:

Ey,h|xt
1:K

[
∂

∂θ
E(y,xt

1:K ,h)
]

= Ey|xt
1:K

[
Eh|y,xt

1:K

[
∂

∂θ
E(y,xt

1:K ,h)
]]

= Ey|xt
1:K

[
∂

∂θ
E(y,xt

1:K ,h(y,xt
1:K))

]
=

∑
y∈{el|l∈{1,...,C}}

p(y|xt
1:K)

∂

∂θ
E(y,xt

1:K ,h(y,xt
1:K))

where C is the number of classes, and p(y|xt
1:K) can be computed tractably.

However, the expectation with respect to y, x1:K and h is intractable. Contrastive Divergence
provides a good approximation however, by replacing the expectation over the input units x1:K with
a point estimate at a sample xneg

1:K . We also replace the expectation over y by a point estimate at a
sample yneg (while not necessary, it is more efficient to do so):

Ey,x1:K ,h

[
∂

∂θ
E(y,x1:K ,h)

]
= Ey,x1:K

[
Eh|y,x1:K

[
∂

∂θ
E(h|y,x1:K)

]]
= Eh|yneg,xneg

1:K

[
∂

∂θ
E(yneg,xneg

1:K ,h)
]

=
∂

∂θ
E(yneg,xneg

1:K ,h(yneg,xneg
1:K))

In Contrastive Divergence, the samples xneg
1:K and yneg are obtained by running a brief MCMC

chain, initialized at the training data observation xt
1:K and yt. In particular, we use one step of

Gibbs sampling, first sampling a value of hneg for h given xt
1:K , and then sampling a new value

for all glimpses xneg
1:K and for the target yneg given hneg. Algorithm 1 gives a pseudocode of this

sampling procedure.
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Algorithm 2 Gibbs sampling in Contrastive Divergence, to obtain samples xneg
1:k and yneg for the

multi-fixation RBM, for the kth term of the hybrid-sequential cost
Input: training pair (yt,xt

1:k)
% Notation: a ∼ p means a is sampled from p
hneg ∼ p(h|yt,xt

1:k)
yneg ∼ p(y|hneg)
xneg

k ∼ p(xk|hneg)

All that is left to derive are the gradients of the energy function with respect to all parameters, which
are simply:

∂

∂dl∗
E(y,x1:K ,h) = −yl∗

∂

∂cj
E(y,x1:K ,h) = −hj

∂

∂bi
E(y,x1:K ,h) = −

K∑
k=1

xki

∂

∂Ujl∗
E(y,x1:K ,h) = −hjyl∗

∂

∂Pji
E(y,x1:K ,h) = −hj

K∑
k=1

z(ik, jk)i Fi· xk

∂

∂Fji
E(y,x1:K ,h) = −h>

K∑
k=1

P·jz(ik, jk)jxki

∂

∂z̄(ik, jk)a
E(y,x1:K ,h) = −(h>P·a) z(ik, jk)a (1− z(ik, jk)a) (Fa· xk)

3 Detailed description of the hybrid-sequential cost gradient

We now move to the hybrid-sequential cost:

Hybrid-sequential cost: Chybrid−seq =
K∑

k=1

− log p(yt|xt
1:k)− α log p(yt,xt

k|xt
1:k−1)

It has the following gradient:

∂Chybrid−seq

∂θ
=

K∑
k=1

{
Eh|yt,xt

1:k

[
∂

∂θ
E(yt,xt

1:k,h)
]
− Ey,h|xt

1:k

[
∂

∂θ
E(y,xt

1:k,h)
]

(2)

+α

(
Eh|yt,xt

1:k

[
∂

∂θ
E(yt,xt

1:k,h)
]
− Ey,xk,h|x1:k−1

[
∂

∂θ
E(y,x1:k,h)

])}
The expectations with respect to h only and with respect to h and y are still tractable. The only
difference is that we have K such expectations, one for every subsequence x1:k where k ∈ 1, . . . ,K.
Hence, the formulas of the previous section still apply, the only difference being that the number of
glimpses k changes in the visible layer.

As for the expectations with respect to y, xk and h, it is intractable but Contrastive Divergence can
also be used, much like for the expectations with respect to h, y and x1:K in the previous section.
The only difference is that a sample xneg

k for the kth glimpse only is needed, instead of for the whole
sequence of glimpses, since we are conditioning on the previous glimpses x1:k−1. Algorithm 2 gives
a pseudo-code for sampling xneg

k .

The training update for the hybrid-sequential cost can just proceed sequentially. For k = 1 to K,
the kth glimpse xk is obtained and then gradients for the corresponding kth group of terms in the
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summation of Equation 2 are estimated and accumulated. Once all gradients have been accumulated,
the multi-fixation RBM is updated by a gradient step.
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