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Appendix A: Additional Experiments
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(a) EVOI wrt set size (187 outcomes, 30 runs, RNL)
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(b) EVOI wrt set size (506 outcomes, 30 runs, RL)

We analyze the impact of the size of the query set, varying k from 2 to 7. In Figure1(a) we plot
expected value of information of a query as a function of the number of items in the first dataset,
assuming a noiseless response model, for few of the strategies considered before. Greedy maxi-
mization of EPU (more computationally demanding) shows no advantage over EUS maximization.
Similarly in Figure1(b) we consider the second dataset, this time in a scenario of increased noise
with γ = 0.33; even in this case the difference between maximization of EPU and EUS is minimal,
and discernible only for k ≥ 4.

Appendix B: Proofs

In this appendix we provide all proofs for our theoretical results. First, we clarify part of the notation.
We recall that S⊲x is the event “x is the item with highest utility in the set S” and regions W ∩S⊲
xi, xi ∈ S partition utility space. We call this the S-partition of W . We consider θ[S⊲x] to be the
normalized projection of the belief θ onW∩S⊲x, whose value is 1

Z
P (w) whenw ∈ W∩S⊲x, and

0 otherwise (where Z is a normalizing constant). We also refer with P (S⊲ x; θ) to the probability
mass of such projection under belief θ (the probability, according to belief θ, that x is the true best
option in the slate).

∗From 9/2010 to 12/2010 at the University of Regina; from 01/2011 onwards at Aalborg University.
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p(w; θ[S⊲x]) =

{

P (w; θ)
P (S⊲x; θ) if w ∈ W ∩ S⊲x

0 otherwise
where P (S⊲x; θ) =

∫

W∩S⊲x

P (w; θ)dw

(1)

Proof of Equation 3:

EUSR(S; θ) =
∑

x∈S

P (S  x; θ)

∫

W
u(x; w)P (w; θ|S  x)dw =

∑

x∈S

P (S  x; θ)

∫

W
u(x; w)

P (S  x|w; θ)

P (S  x; θ)
P (w)dw (2)

=
∑

x∈S

∫

W
u(x; w)PR(S  x;w)P (w; θ)dw =

∫

W

∑

x∈S

[PR(S  x;w) u(x; w)]P (w; θ)dw (3)

where we expanded the expression of the expected utility in the conditioned space, used Bayes theo-

rem (2), substituted the response model and moved the summation inside the integration sign. Note that

P (S  x|w; θ) = PR(S  x;w) as the response model is exactly defined as the likelihood of a user

selection response given the utility weights.

Proof of Theorem 1: We consider the gain in EUS that sets S and Q, with S ⊆ Q, incur by the addition
of a given item {a}. Let’s call Gain(S) = EUS({a} ∪S)−EUS(S) (for ease of notation, we make implicit
the current belief θ in the expressions of this proof) and consider Gain(S,w), the gain contribution for each w
(cfr. Observation 3) so that Gain(S) =

∫

w
p(w)Gain(S;w)dw. It follows:

Gain(S;w) = PR(S
′
 a;w)u(a;w) +

∑

x∈S

[PR(S
′
 x;w)− PR(S  x;w)]u(x;w) (4)

where S′ = S ∪ {a} and Q′ = Q ∪ {a}. We will show that Gain(S) ≥ Gain(Q) (characteristics of
diminishing returns) by verifying that, for each w, we have Gain(S;w) ≥ Gain(Q;w). We do that separately
for each response model (NL, C).

Noiseless response model (NL):

Recall that x∗
w(S) indicates the (true) optimal product in set S given utility weights w. We consider different

cases with respect to the optimality of item {a} in the set S′ = S ∪ {a} and Q′ = Q ∪ {a}.

First, if w is such that a optimal in S′ and optimal in Q′, Gain(S′, w) = u(a;w) − u∗
w(S) ≥ u(a;w) −

u∗
w(Q) = Gain(Q′, w), since u∗

w(Q) ≥ u∗
w(S). Second, suppose w such that a is optimal in S′, but not

optimal in Q′; then, Gain(S′, w) = u(a;w) − u∗
w(S) ≥ 0 = Gain(Q′, w). Third, suppose w such that a is

neither optimal in S′, nor in Q′: the gain is zero for both sets. Finally, the following case is impossible: w such
that a optimal in Q′, but not optimal in S′ (impossible because S′ ⊆ Q′).

Thus EUS with noiseless responses is submodular.

Constant error response model (C):

We substitute PR(S  x;w) in the expression of the gain according to the constant response model. Most
terms in the summation in Equation 4 evaluate to β and cancel out. Note that the likelihood α of a correct
answer is a function of the set size k (when there are more items, it is easier for the user to make a mistake).
Let αQ′ = α(|Q′|) (similarly for Q, S and S′), it holds αS′ = αS − β.

Again, we consider different cases with respect to the optimality of item {a} in the set S′ = S ∪ {a} and
Q′ = Q ∪ {a}, and write the expression of the gain in each case.

1. Suppose w is such that a optimal in S′ and optimal in Q′:

Gain(S′
, w) = αS′ [u(a;w)− u

∗
w(S)] ≥ 0 (5)

Gain(Q′
, w) = αQ′ [u(a;w)− u

∗
w(Q)] ≥ 0 (6)

2. Suppose w such that a is optimal in S′, but not optimal in Q′. S has a gain; while Q a loss.

Gain(S′
, w) = αS′ [u(a;w)− u

∗
w(S)] ≥ 0 (7)

Gain(Q′
, w) = β[u(a;w)− u

∗
w(Q)] ≤ 0 (8)

3. Suppose w such that a is neither optimal in S′, nor in Q′. The gain will be negative for both sets
(thus a loss).

Gain(S′
, w) = β[u(a;w)− u

∗
w(S)] ≤ 0 (9)

Gain(Q′
, w) = β[u(a;w)− u

∗
w(Q)] ≤ 0 (10)
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4. The following case is impossible: w such that a optimal in Q′, but not optimal in S′ (impossible
because S′ ⊆ Q′).

In all the cases Gain(S;w) ≥ Gain(Q;w), the gain is greater for S than for the larger set Q (in the third case,

S suffers a smaller loss): by componentwise comparison, and by virtue that u∗
w(Q) ≥ u∗

w(S) and αS′ > αQ′

and that, for the model to be meaningful we have α > β.

Observation 1

EUSC(S, θ) =
∑

x∈S

P (S⊲x; θ)

{

αEU (x; θ|S⊲x) + β
∑

y 6=x

EU (y; θ|S⊲x)

}

(11)

Proof of Observation 1: We use equation 3 to write the value of a set, then we decompose the integration
over each element of the S-partition. Finally, we observe that in the constant error model the likelihood of the
response is independent of w, but only depends on which element of the partition it belongs to.

EUS(S; θ) =

∫

W

∑

y∈S

[u(y;w)PR(S  y;w)]P (w; θ)dw =
∑

x∈S

∫

W∩S⊲x

∑

y∈S

{u(y;w)PR(S  y;w)}P (w; θ)dw = (12)

=
∑

x∈S

{

α

∫

W∩S⊲x
u(x;w)P (w; θ)dw + β

∑

y∈S,y 6=x

∫

W∩S⊲x
u(y;w) P (w; θ|S⊲x)dw

}

(13)

=
∑

x∈S

P (S⊲x; θ)

{

αEU(x, θ|S⊲x) + β
∑

y 6=x

EU(y, θ|S⊲x)

}

(14)

Proof of Lemma 1: Let S = {x1, · · · , xk} be a set of options, and TR(S) = {x′
1, · · · , x

′
k} be the set

resulting from the application of the transformation T. For RNL, the noiseless response model, the argument
relies on partitioning W w.r.t. options in S:

EPUNL(S; θ) =
∑

i,j

P (S⊲xi, T (S)⊲x
′
j; θ)EU (x′

i, θ[S⊲xi, T (S)⊲x
′
j]) (15)

EUSNL(T (S); θ) =
∑

i,j

P (S⊲xi, T (S)⊲x
′
j; θ)EU (x′

j , θ[S⊲xi, T (S)⊲x
′
j]) (16)

Compare the two expression componentwise: 1) If i = j then the components of each expression are the
same. 2) If i 6= j, for any w with nonzero density in θ[S ⊲ xi, T (S)⊲ x′

j ], we have u(x′
j ;w) ≥ u(x′

i, w),
thus EU (x′

j) ≥ EU (xi) in the region S ⊲ xi, T (S)⊲ x′
j . Since EUSNL(T (S); ·) ≥ EPUNL(S; ·) in each

component, the result follows.

For the constant error response model C, we use the observations that EPU and EUS can be expressed in
function of the S-partition. Call λi,j = P (S⊲xi, T (S)⊲x′

j ; θ) the probability of being in the space where
xi is the best item in slate S and x′

j is the best in slate T (S), given the current belief θ.

EPU (S; θ) =
∑

i,j

λi,j

{

αEU(x′
i, θ[S⊲xi, T (S)⊲x

′
j]) + β

∑

o 6=i

EU(x′
o, θ[S⊲xi, T (S)⊲x

′
j])

}

(17)

EUS(T (S); θ) =
∑

i,j

λi,j

{

αEU(x′
j , θ[S⊲xi, T (S)⊲x

′
j]) + β

∑

o 6=j

EU(x′
o, θ[S⊲xi, T (S)⊲x

′
j])

}

(18)

As before, we compare EPU (S; θ) and EUS(T (S); θ) componentwise to show that the latter is greater:

• If i = j then the expressions within the brackets give the same results

• If i 6= j then EU(x′
j , θ[S ⊲ xi, T (S) ⊲ x′

j ]) ≥ EU(x′
i, θ[S ⊲ xi, T (S) ⊲ x′

j ]) by virtue of the
projection, it holds T (S) ⊲ x′

j , so x′
j has higher utility than x′

i by definition. Note also that the
two expressions are convex combinations of the expected utilities of the same items in T (S) wrt the
projected beliefs in the T(S)-partition. It follows that, if α ≥ β the component of EUS(T (S); θ) is
greater (or equal) than the component of EPU (S; θ).
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Proof of Theorem 2: Suppose S∗ is not an optimal query set, i.e., there is some S s.t. EPU (S; θ) >

EPU (S∗; θ). Applying T to S gives a new query set T (S), which by the results above shows:

EUS(T (S); θ) ≥ EPU (S; θ) > EPU (S∗; θ) ≥ EUS(S∗; θ). This contradicts the EUS-optimality of S∗.

Proof of Theorem 3:

We first consider the case k = 2 (pairs of items). As discussed in the paper, the value of the maximal loss ∆max

is function only of the difference in utility of two options. For a specific value of z ≥ 0, EUS-loss is exactly the
utility difference z times the probability of choosing the less preferred option under RL: 1−L(γz) = L(−γz)
where L is the logistic function.

∆max = max f(z) = max
z

1 + eγz
(19)

We impose the derivative equal to zero:

∂f

∂z
= 0 ⇔

1

1 + eγz
+z

−eγz

(1 + eγz)2
= 0 ⇔

1

1 + eγz

(

1−γz
eγz

1 + eγz

)

= 0 ⇔ 1+e
γz−γze

γz = 0 ⇔

(20)

We solve the equation in z:

(γz − 1)eγz = 1 ⇔ (γz − 1) eγz−1 = e
−1 ⇔ γz − 1 = LW

(

1

e

)

(21)

where LW (·) is the Lambert-W function. Moreover, the last expression of Eq. 20, substituted into Eq. 19, gives

∆max = f(zmax) =
e−γzmax

γ
= zmax − 1

γ
. Thus:

zmax =
1

γ

[

1 + LW

(

1

e

)]

; ∆max =
1

γ
LW

(

1

e

)

(22)

The argument is similar for k = 3. Given three options, x1, x2 and x3, we define zi,j = u(xi) − u(xj) to
be the difference in utility between two options. Assuming, without loss of generality, that x1 is the utility
maximizing option in the set (S⊲x1) , the loss function is the following:

f(z1,2, z1,3, z2,3) = z1,2
1

1 + ez1,2 + e−z2,3
+ z1,3

1

1 + ez1,2 + ez2,3
(23)

We maximize the loss by imposing ∂f

∂z
= 0; it is possible to show that z1,2 = z1,3 and z2,3 = 0. The

expression becomes an equation in a single variable; we let z = z1,2 and have to solve γz − 1 − 2e−γz = 0,

giving zmax =

[

1 + LW

(

2
e

)]

.

For sets of any size, once again the loss is maximized when all items beside the most preferred have the same
utility; call z the difference in utility. The function to maximize is: f(z) = z (k − 1) 1

(k−1)+ez
from which

follows

zmax =
1

γ

[

1 + LW

(

k − 1

e

)]

; ∆max =
1

γ
LW

(

k − 1

e

)

(24)
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Proof of Lemma 2: Let x′
i = x∗(θ|S  xi) under RL. The expressions of EUSNL(T (S)) and EPUL(S)

can be rearranged in the following way:

EUSNL(TL(S); θ) =
∑

i

∫

W∩T (S)⊲x′
i

u(x′
i;w)P (w; θ)dw (25)

EPUL(S; θ) =
∑

i

∫

W∩T (S)⊲x′
i

∑

j

PR(S  xj ;w)u(x′
j ;w)P (w; θ)dw (26)

(27)

We compare the two expressions componentwise. In the partition W ∩ S ⊲ xi, x
′
i is the best item in the

slate T (S), giving higher utility than any other x′
i with j 6= i. Therefore u(x′

i;w) is greater than any convex

combination of the (lower or equal) values u(x′
j ;w). Thus EUSNL(TL(S)) is greater.

Proof of EPU ∗
NL(θ) ≥ EPU

∗
L(θ) (consequence of Lemma 2): Let q∗L be the optimal query set with

respect the current belief θ and the logistic response model: q∗L = argmaxq EPUL(q; θ) and EPU∗
L(θ) =

EPUL(q
∗
L; θ), we derive (we drop parametrization wrt θ in the following):

EPU
∗
NL = EUS

∗
NL ≥ EUSNL(TL(q

∗
L)) ≥ EPUL(q

∗
L) = EPU

∗
L (28)

Proof of Theorem 4: Consider the optimal query S∗
L and the set S′ = TL(S

∗
L) obtained by apply-

ing TL. From Lemma 2, EUSNL(S
′; θ) ≥ EPUL(S

∗
L; θ) = EPU

∗
L(θ). From Thm. 3, EUSL(S

′; θ) ≥
EUSNL(S

′; θ) − ∆max; and from Thm. 2, EUS
∗
NL(θ) = EPU

∗
NL(θ). Thus EUS

∗
L(θ) ≥ EUSL(S

′; θ) ≥
EUSNL(S

′; θ)−∆max ≥ EPU
∗
L(θ)−∆max
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