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Appendix A: Additional Experiments
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(a) EVOI wrt set size (187 outcomes, 30 runs, Rnr) (b) EVOI wrt set size (506 outcomes, 30 runs, Rr,)

We analyze the impact of the size of the query set, varying k from 2 to 7. In Figurel(a) we plot
expected value of information of a query as a function of the number of items in the first dataset,
assuming a noiseless response model, for few of the strategies considered before. Greedy maxi-
mization of EPU (more computationally demanding) shows no advantage over EUS maximization.
Similarly in Figurel(b) we consider the second dataset, this time in a scenario of increased noise
with v = 0.33; even in this case the difference between maximization of EPU and EUS is minimal,
and discernible only for k > 4.

Appendix B: Proofs

In this appendix we provide all proofs for our theoretical results. First, we clarify part of the notation.
We recall that ST>x is the event “x is the item with highest utility in the set S” and regions W N .S >
x;, x; € S partition utility space. We call this the S-partition of W. We consider ]S > z] to be the
normalized projection of the belief # on WNS > x, whose value is %P(w) whenw € WNS>x, and
0 otherwise (where Z is a normalizing constant). We also refer with P(S > z; 0) to the probability
mass of such projection under belief 6 (the probability, according to belief 6, that x is the true best
option in the slate).

*From 9/2010 to 12/2010 at the University of Regina; from 01/2011 onwards at Aalborg University.



L) e e WS
p(w; O[S >z]) = { PPw;0) l v ¥ Where P(Sx;0) = / P(w;0)dw
0 otherwise WS
(H
Proof of Equation 3:
EUSR(S;0) = z%:SP(S ~ x; 0) /W u(z; w) P(w; 8|S ~ z)dw = z%:SP(S ~ x;0) /W u(z; w) %P(w)dw (2)

IZE:S /W u(z; w) PR(S ~ z;w)P(w; 0)dw /W IZE:S[PR(S ~ zyw) u(z; w)|P(w; 0)dw  (3)

where we expanded the expression of the expected utility in the conditioned space, used Bayes theo-

rem (2), substituted the response model and moved the summation inside the integration sign. Note that

P(S ~ zlw;0) = Pr(S ~» x;w) as the response model is exactly defined as the likelihood of a user
selection response given the utility weights. =

Proof of Theorem 1: We consider the gain in EUS that sets S and @, with S C @, incur by the addition
of a given item {a}. Let’s call Gain(S) = FUS({a} U S) — EUS(S) (for ease of notation, we make implicit
the current belief € in the expressions of this proof) and consider Gain (.S, w), the gain contribution for each w
(cfr. Observation 3) so that Gain(S) = [ p(w)Gain(S;w)dw. It follows:

Gain(S;w) = Pr(S" ~ a;w)u(a;w) + Z[PR(S' ~ z;w) — Pr(S ~ z;w)]u(z; w) 4)
zeS

where S = S U {a} and Q' = Q U {a}. We will show that Gain(S) > Gain(Q) (characteristics of

diminishing returns) by verifying that, for each w, we have Gain(S;w) > Gain(Q;w). We do that separately
for each response model (NL, C).

Noiseless response model (NL):

Recall that x}, (.5) indicates the (true) optimal product in set S given utility weights w. We consider different
cases with respect to the optimality of item {a} in the set S’ = SU {a} and Q' = Q U {a}.

First, if w is such that a optimal in S’ and optimal in Q’, Gain(S’,w) = u(a;w) — ul,(S) > u(a;w) —
uy(Q) = Gain(Q', w), since ul, (Q) > uy(S). Second, suppose w such that a is optimal in S’, but not
optimal in Q’; then, Gain(S",w) = u(a;w) — uj,(S) > 0 = Gain(Q',w). Third, suppose w such that a is
neither optimal in S’, nor in Q’: the gain is zero for both sets. Finally, the following case is impossible: w such
that a optimal in @', but not optimal in .S’ (impossible because S’ C Q).

Thus EUS with noiseless responses is submodular.
Constant error response model (C):

We substitute Pr(S ~» z;w) in the expression of the gain according to the constant response model. Most
terms in the summation in Equation 4 evaluate to 5 and cancel out. Note that the likelihood « of a correct
answer is a function of the set size k (when there are more items, it is easier for the user to make a mistake).
Let ag: = a(|Q’|) (similarly for @, S and S”), it holds agr = s — B.

Again, we consider different cases with respect to the optimality of item {a} in the set S’ = S U {a} and
Q' = Q U {a}, and write the expression of the gain in each case.

1. Suppose w is such that a optimal in S” and optimal in Q'

Gain(S',w) = ag[u(a;w) —ul(S)] >0 )
Gain(Q', w) = ag [u(a;w) —uy,(Q)] >0 (6)
2. Suppose w such that a is optimal in S, but not optimal in Q. S has a gain; while Q a loss.
Gain(S',w) = ag [u(a;w) —u,,(S)] >0 (7)
Gain(Q', w) = Blu(a; w) — ul(Q)] < 0 ®

3. Suppose w such that a is neither optimal in S’, nor in )’. The gain will be negative for both sets
(thus a loss).

Gain(S',w) = Blu(a; w) — up(9)

<0 ©)
Gain(Q',w) = Blu(a;w) - uy(Q)] < 0

10)



4. The following case is impossible: w such that a optimal in @', but not optimal in S’ (impossible
because S’ C Q).

In all the cases Gain(S;w) > Gain(Q;w), the gain is greater for S than for the larger set Q (in the third case,
S suffers a smaller loss): by componentwise comparison, and by virtue that uy, (Q) > uy,(S) and cgr > g
and that, for the model to be meaningful we have oo > 5. m

Observation 1

EUSc(S,0) = > P(Se; 9){a EU(z;0|S>x)+ 8 EU(y; 0|S>x)} (11)

€S yF#x

Proof of Observation 1: We use equation 3 to write the value of a set, then we decompose the integration
over each element of the S-partition. Finally, we observe that in the constant error model the likelihood of the
response is independent of w, but only depends on which element of the partition it belongs to.

EUs(s;0) = [ 3 (w0 PR(S =yl PCws ) = 3 Jono 3ty ) Pa(S = )} Pl O)dw = 12

= Z{a‘/Wmswu(z;wW(w;e)dww >/

u(y; w) P(w;G\SDz)dw} (13)
€S yES,y#az  WNS>a

=> P(SDz;Q){QEU(z,Q\SDI) +8>" EU(y,G\SDz)} (14)

z€s A

Proof of Lemma 1: Let S = {z1,---,xx} be a set of options, and Tr(S) = {z}, - ,x}} be the set
resulting from the application of the transformation T. For Ry, the noiseless response model, the argument
relies on partitioning W w.r.t. options in S:

EPUni(S;0) = Y P(Seai, T(S)>a};0)EU (2, 0[S > 2:, T(S) > ) (15)
0,7

EUSNn(T(S);0) = Y P(Sxi, T(S) >} 0) EU (x5, 0[S > xi, T(S) > 25]) (16)
1,7

Compare the two expression componentwise: 1) If ¢ = j then the components of each expression are the
same. 2) If ¢ # j, for any w with nonzero density in 6[S > z;, T'(S) > 2], we have u(z}; w) > u(z}, w),
thus EU(z);) > EU (x;) in the region S >z, T'(S) > 2. Since EUSn(T(S);-) > EPUnL(S;-) in each
component, the result follows.

For the constant error response model C, we use the observations that EPU and EUS can be expressed in
function of the S-partition. Call A; j = P(S> x4, T(S) >« ;0) the probability of being in the space where
x; is the best item in slate S and  is the best in slate T'(.S), given the current belief 6.

EPU(S; 0) = Aij {aEU(x;, 0[Sai, T(S)>af]) + B> EU(xy, 0[S xs, T(S) D:c;])} (17)

0,J oF1

EUS(T(S); 0) = > Aij {aEU(x; 0[Sz, T(S)>af]) + B EU(x,, 0[S >, T(S) m;-])}
0,5 oFj

(18)
As before, we compare EPU(S;60) and EUS(T'(S);0) componentwise to show that the latter is greater:

e If i = j then the expressions within the brackets give the same results

e If i # jthen EU(x},0[S > i, T(S) > x}]) > EU(zi, 0[S > x:, T(S) > «7]) by virtue of the
projection, it holds 7'(S) > «’;, so «’; has higher utility than «} by definition. Note also that the
two expressions are convex combinations of the expected utilities of the same items in T'(S) wrt the
projected beliefs in the T(S)-partition. It follows that, if o > 8 the component of EUS(T'(S); 0) is
greater (or equal) than the component of EPU (S; 0).



Proof of Theorem 2: Suppose S* is not an optimal query set, i.e., there is some S s.t. EPU(S;0) >
EPU(S*;0). Applying T to S gives a new query set 7'(S), which by the results above shows:
EUS(T(S);6) > EPU(S;0) > EPU(S*;68) > EUS(S*;6). This contradicts the EUS-optimality of S*.
m

Proof of Theorem 3:

We first consider the case k = 2 (pairs of items). As discussed in the paper, the value of the maximal loss Amax
is function only of the difference in utility of two options. For a specific value of z > 0, EUS-loss is exactly the
utility difference z times the probability of choosing the less preferred option under Rz: 1 — L(yz) = L(—~z)
where L is the logistic function.

Amax = max f(z) = max T or (19)
We impose the derivative equal to zero:
of 1 —ev* 1 e’?
— =0 & =0 ————([1-v2—— ] =0 & 14+ —y2"" =0 &
0z 1+ ev? t2 (1+e7%)2 1+ ev? < 1T e”fz> el myze
(20)
We solve the equation in z:
(vz—1e" =1 & (yz—1)e" "= ©yz-1=Lw (é) 21

where Ly (+) is the Lambert-W function. Moreover, the last expression of Eq. 20, substituted into Eq. 19, gives

Amax = f(Zmax) = e Tmax = Zmax — % Thus:

:
1+LW<1>} N lcw<1> 22)
e ~ e

The argument is similar for k& = 3. Given three options, z1, z2 and x3, we define z; ; = u(z;) — u(x;) to
be the difference in utility between two options. Assuming, without loss of generality, that z; is the utility
maximizing option in the set (S x1) , the loss function is the following:

Zmax =

1 1
z z
M eme fe e | M T T eria 4 o

(212, 21,3, 22,3) = (23)

We maximize the loss by imposing % = 0; it is possible to show that 212 = 21,3 and 223 = 0. The
expression becomes an equation in a single variable; we let z = z1 2 and have to solve vz — 1 — 2e™7* =0,

giving zZmax = |1+ Lw % .

For sets of any size, once again the loss is maximized when all items beside the most preferred have the same
utility; call z the difference in utility. The function to maximize is: f(z) = z (k — 1) from which

follows

1
(k—1)+e?

1+£W<E>} : Amax—lzw<’“‘1> (24)
e ~ e




Proof of Lemma 2: Letz; = 2*(0|S ~ z;) under Ry. The expressions of EUS N1 (T(S)) and EPU 1.(S)
can be rearranged in the following way:

EUSNL(TL(S);0) = Z/ u(xy; w)P(w; 0)dw (25)
P WnT(S)>a)
EPUL(S;0) = Z/ > Pr(S ~ zj;w)u(a); w) P(w; 0)dw (26)
i WnT(S)>a) P
(27)

We compare the two expressions componentwise. In the partition W N S > z;, z; is the best item in the
slate T'(S), giving higher utility than any other =} with j # i. Therefore u(z;;w) is greater than any convex
combination of the (lower or equal) values u(z;; w). Thus EUSnr(T1(S)) is greater.  m

Proof of EPU % (6) > EPU7(0) (consequence of Lemma 2): Let g}, be the optimal query set with
respect the current belief 6 and the logistic response model: ¢7 = arg maxqy EPUL(g;0) and EPU} () =
EPUL(q};0), we derive (we drop parametrization wrt € in the following):

EPUyNy = EUSyy > EUSNL(TL(q1)) 2 EPUL(qr) = EPUL (28)

Proof of Theorem 4: Consider the optimal query S}, and the set S’ = T.(S}) obtained by apply-
ing Tr,. From Lemma 2, EUSN.(S";0) > EPUL(S;;0) = EPU7(0). From Thm. 3, EUSL(S’;0) >
EUSNL(S";0) — Amax; and from Thm. 2, EUSy,(0) = EPU . (0). Thus EUST () > EUSL(S’;0) >
EUSNL(S';0) — Amax > EPUL(0) — Amax = ®



