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Appendix A: Proof of LSH for Hyperplane Hashing

We first recall the data-structure used for LSH. We storel-hash tables and every hash table contains
k-bit hash keys. So, thes-th hash table has a corresponding functiongs : R

d → 0, 1k that given a
vector, maps the vector tok-bit hash keys. Each functiongs is obtained by randomly samplingH
with replacement:gs = (hs1

, hs2
, . . . , hsk

).

Here, we show that using locality-sensitive hash functionsfor the distancedθ(·, ·) along with hash
tables, we can get a(1 + ǫ)-approximate solution to our hyperplane-to-point search problem in
sub-linear time.

In particular, we prove the following theorem:

Theorem 0.1. LetH be a family of(r, r(1 + ǫ), p1, p2)-locality hash functions (see Definition 3.1
(Main Text)), with p1 > p2. Now given a database ofN points, we setk = log1/p2

N and l = Nρ,

whereρ = log p1

log p2
. Now usingH along with l-hash tables overk-bits, given a hyperplane query

w, with probability at least12 − 1
e , the algorithm solves the(r, ǫ)-neighbor problem, i.e., if there

exists a pointx s.t. dθ(x,w) ≤ (1 + ǫ)r, then the algorithm will return the point with probability
≥ 1/2 − 1/e. The retrieval time is bounded byO(Nρ).

Proof. Our proof is a simple adaption of the proof of Theorem 1, Gionis et al. [1]. We present it
here for the sake of completeness.

Following [1] we prove two properties:
P1: Let x

∗ be a point such thatdθ(x
∗,w) ≤ r, thengj(x

∗) = gj(w) for some1 ≤ j ≤ l with
probability1/2 − 1/e.
Proof: Now we know that

Pr[gj(x
∗) = gj(w)] ≥ pk

1 = p
log1/p2

N

1 = N−ρ.

Hence,

Pr[gj(x
∗) 6= gj(w),∀j] = Πj Pr[gj(x

∗) 6= gj(w)] ≤ (1 − N−ρ)l = (1 − N−ρ)Nρ ≤ 1/e.

Thus, P1 holds with probability> 1 − 1/e.

P2: Consider the setS = {y s.t., dθ(y,w) > r(1 + ǫ) andgj(y) = gj(w) for somej}. Then
|S| ≤ cl with probability at least1 − 1/c.
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Proof: Now if dθ(y,w) > r(1 + ǫ), thenPr[h(y) = h(w)] ≤ p2. Hence, for anyj,

Pr[gj(y) = gj(w)] ≤ pk
2 = p

log1/p2
n

2 = 1/N.

Thus the expected number of collisions for a singlej is N · Pr[gj(y) = gj(w)] = 1 and hence
E[|S|] = l. Therefore, by Markov’s inequality:

Pr(|S| > cl) ≤ 1/c.

Hence, P2 holds with probability> 1 − 1/c.

The theorem now immediately follows from P1 and P2, as by P1 weare assured of retrieving the
point x

∗ with probability > 1/2 − 1/e, and by P2 we are assured of not looking at more than
cl = O(Nρ) points.

Appendix B: Comparison of approximation guarantees

In this section we compare the bounds on retrieval for both ofour hashing methods. To recall, our

H-Hash method guarantees the(1 + ǫ)-approximate solution in timeNρ, whereρ ≤ 1−log(1− 4r
π2 )

1+ ǫ

1+ π2

4r
log 4

.

Similarly, our EH-Hash method guarantees the(1 + ǫ)-approximate solution in timeNρ, where

ρ ≤ log cos−1 sin2(
√

r)−log π
log cos−1 sin2(

√
r(1+ǫ/2))−log π

. Note that the functioncos−1 sin2(
√

r) behaves similarly to
1
2 − 2r

π2 , which is twice the probability of collision for our H-Hash method when the points are
within distancer (see Figure 1). This indicates that the bounds for our EH-Hash method should be
significantly stronger than the corresponding bounds for our H-Hash method.

Figure 2 compares the values ofρ obtained by our two methods for different values ofǫ. We can
clearly see that for our EH-Hash method the value ofρ is always smaller than the corresponding
value for H-Hash method. Now, we give a concrete example. Letǫ = 3.5. Then it can be easily
computed that if the closest point to the hyperplane is at angle of around5o, then H-Hash will return
a point within9o in timeN0.97 while the corresponding bound for EH-Hash method will beN0.89,
a significant gain.
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Figure 1: Comparison of the probability of collisionp1 for our EH-Hash method with the function
f(r) = 1

2 − 2r
π2
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Figure 2: Comparision of the values ofρ for our H-Hash and EH-Hash methods with different values
of ǫ = {3.0, 3.5, 4.0}
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Appendix C: Randomized Sampling

Proof of Lemma 3.4.Let ik denote the randomly sampled index (using probability distribution p
defined in the lemma) at thek-th round, i.e.,ik is indexj with probabilitypj . Next, we define a
random variableGk as,

Gk = vik
yik

/pik
.

Note that,

E[Gk] =
∑

j

pjvjyj/pj = v
T
y, (1)

V ar(Gk) =
∑

j

pj(vjyj/pj)
2 − (vT

y)2 ≤
v2

j t2j
t2j/‖y‖2

= ‖v‖2‖y‖2 = 1. (2)

(3)

Now, our final approximation forvT
y is obtained by averaging random variablesGk, i.e.,

ṽ
T
x =

1

t

∑

k

Gk.

Now, using Bernstein’s inequality:

Pr(|
t∑

k=1

(Gk − v
T
y)| ≥ tǫ) < exp(−tǫ2).

Hence, if we selectt = c
ǫ2 , then with probability at least1 − log(1/c),

|ṽT
y − v

T
y| ≤ ǫ.
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