Hashing Hyper plane Queriesto Near Points
with Applicationsto L arge-Scale Active Learning
Supplementary Material

Prateek Jain Sudheendra Vijayanarasimhan
Algorithms Research Group Department of Computer Science
Microsoft Research, Bangalore, India University of Texas at Austin
praj ai n@n crosoft.com svnaras@s. ut exas. edu

Kristen Grauman
Department of Computer Science
University of Texas at Austin
graunman@s. ut exas. edu

Appendix A: Proof of LSH for Hyperplane Hashing

We first recall the data-structure used for LSH. We stenash tables and every hash table contains
k-bit hash keys. So, theth hash table has a corresponding funcijon R? — 0, 1* that given a
vector, maps the vector to-bit hash keys. Each functiog, is obtained by randomly samplirig
with replacementy, = (hs,, hsys .-, hs,).

Here, we show that using locality-sensitive hash functimnghe distancely (-, -) along with hash
tables, we can get @l + €)-approximate solution to our hyperplane-to-point seangtblem in
sub-linear time.

In particular, we prove the following theorem:

Theorem 0.1. LetH be a family of(r, 7(1 + €), p1, p2)-locality hash functions (see Definition 3.1
(Main TexD), withp; > p,. Now given a database & points, we sek = log, ,,,, N andl = N?,

wherep = %- Now usingH along withi-hash tables ovek-bits, given a hyperplane query

w, with probability at Ieast% — % the algorithm solves the-, ¢)-neighbor problem, i.e., if there
exists a pointe s.t. dg(x, w) < (1 + ¢)r, then the algorithm will return the point with probability
> 1/2 — 1/e. The retrieval time is bounded By(N*).

Proof. Our proof is a simple adaption of the proof of Theorem 1, Giagtial. [1]. We present it
here for the sake of completeness.

Following [1] we prove two properties:

P1l: Letz* be a point such thaty(z*, w) < r, theng,(z*) = g;(w) for somel < j < [with
probability1/2 — 1/e.

Proof: Now we know that

% lole _
Prig;(z*) = g;(w)] > pk = p, /2" = N7

Hence,
Prlg; (@) # g;(w),¥j] = IL; Prlg; (@) # g;(w)] < (1= N77)' = (1= N"")¥" < 1/e.
Thus, P1 holds with probability 1 — 1/e.

P2: Consider the sef = {y s.t, dy(y,w) > r(1 + €) andg;(y) = g;(w) for somej}. Then
|S| < ¢l with probability at least — 1/c.

Proof: Now if dg(y, w) > r(1 + €), thenPr[h(y) = h(w)] < p2. Hence, for anyj,

log n
Pr(g;(y) = gj(w)] < pk =p, /" =1/N.

Thus the expected number of collisions for a singlis N - Pr[g;(y) = g;(w)] = 1 and hence
E[|S]] = l. Therefore, by Markov’s inequality:

Pr(|S| > cl) < 1/ec.
Hence, P2 holds with probability 1 — 1/c.

The theorem now immediately follows from P1 and P2, as by Phrweeassured of retrieving the
point * with probability > 1/2 — 1/e, and by P2 we are assured of not looking at more than
cl = O(NP) points. O

Appendix B: Comparison of approximation guarantees

In this section we compare the bounds on retrieval for botbuofhashing methods. To recall, our

. L 1-log(1—4%)
H-Hash method guarantees tfie+ ¢)-approximate solution in tim&/?, wherep < Hiz

1+% log 4

Similarly, our EH-Hash method guarantees thiet ¢)-approximate solution in timéV?, where
—1 .2 . N

P < Clgsg,cf’:iHQEi%gﬁz/’2l§’){ 5= Note that the functioreos ! sin*(/r) behaves similarly to

+ — 25, which is twice the probability of collision for our H-Hashetimod when the points are

within distancer (see Figure 1). This indicates that the bounds for our EHaHasthod should be

significantly stronger than the corresponding bounds fotHtiash method.

Figure 2 compares the values @bbtained by our two methods for different valueseofWe can
clearly see that for our EH-Hash method the value @& always smaller than the corresponding
value for H-Hash method. Now, we give a concrete example.clet3.5. Then it can be easily
computed that if the closest point to the hyperplane is aleamigarounds?, then H-Hash will return

a point within9° in time N°-°7 while the corresponding bound for EH-Hash method willX5&8?,

a significant gain.

bt
o

s "'acos(sin(rll 2)2)/11
204 ser1/2-20rf

o

©03 \

o

202

e AN

©

0.1 §'\\\

a ’%\

OO

1, 2 3

Figure 1: Comparison of the probability of collisigh for our EH-Hash method with the function

fo)=3-%

r vs p for e=3.500000 r vs p for e=4.000000
rvs p for €=3.000000 lpwmas lrwsi,
1 LTI \ "-..,--...,.." g\. .-"""""-n
N amewnme e,
\Q 0.8 % 08 ~,
0.8 2, \\,“ ’ \«
a “'%... <06 e, e g,
e, "y
0. T, 0.4 T, 06 T,
+:EH-Hash . “]=+EH-Hash) ++:EH-Hash e,
o |=xsH-Hash 0 ==:H-Hash 04---H—Hash
'40 0.2 0.4 20 01 02 03 04 ‘0 0.1 0.2 0.3

r r r

Figure 2: Comparision of the values@for our H-Hash and EH-Hash methods with different values
of e = {3.0,3.5,4.0}

Appendix C: Randomized Sampling

Proof of Lemma 3.4Let i;, denote the randomly sampled index (using probability ittistion p
defined in the lemma) at thleth round, i.e. i, is indexj with probability p;. Next, we define a
random variabl&’;, as,

Gk = vi, Yiy, [Diy -

Note that,
Grl = pjviyi/p; =v"y, 1)
J
112752
Var Gk Zp] ij]/pj - ()2 t2/|| jHQ = ||'U||2Hy||2 =1 (2)
3)

Now, our final approximation foo”'y is obtained by averaging random variablgs, i.e.,
= % > G
k
Now, using Bernstein’s inequality:
t
|2Gk7v y)| > te) < exp(—te?).
k=1

Hence, if we seleat = 5, then with probability at least — log(1/c),

o7y —vly| <e

References

[1] A. Gionis, P. Indyk, and R. Motwani. Similarity Search lifigh Dimensions via Hashing. In
Proceedings of the 25th Intl Conf. on Very Large Data Ba$699.

