
Supplement: A Theory of Multiclass Boosting

Indraneel Mukherjee Robert E. Schapire

Princeton University
Department of Computer Science

Princeton NJ 08540
{imukherj,schapire}@cs.princeton.edu

We give formal proofs for various claims made in the paper, roughly in their order of appearance.
Recall that we have assumed that the true label yi of example i in our training set is always 1.
Nevertheless, we may occasionally continue to refer to the true labels as yi.

S.1 Minimax Theorem

We will make use of the following minimax result, that appears as Corollary 37.3.2 of [2].
Theorem. (Minimax Theorem) Let C,D be non-empty closed convex subsets of Rm,Rn respec-
tively, and let K be a continuous finite concave-convex function on C × D. If either C or D is
bounded, one has

min
v∈D

max
u∈C

K(u, v) = max
u∈C

min
v∈D

K(u, v).

S.2 Proof of Theorem 1

Applying the minimax theorem yields
0 ≥ max

C∈Ceor
min
h∈H

C • (1h −B) = min
λ∈∆(H)

max
C∈Ceor

C • (Hλ −B) ,

where
Hλ

M=
∑
h∈H

λ(h)1h,

and where the first inequality follows from the definition (2) of the weak-learning condition. Let
λ∗ be a minimizer of the min-max expression. Unless the first entry of each-row of (Hλ∗ −B) is
the largest, the right hand side of the min-max expression can be made arbitrarily large by choosing
C ∈ Ceor appropriately. For example, if in some row i, the j0th element is strictly larger than the
first element, by choosing

C(i, j) =


−1 if j = 1
1 if j = j0
0 otherwise,

we get a matrix in Ceor which causes C • (Hλ∗ −B) to be equal to C(i, j0) − C(i, 1) > 0, an
impossibility by the first inequality.

Therefore, the convex combination of the weak classifiers, obtained by choosing each weak classifier
with weight given by λ∗, perfectly classifies the training data, in fact with a margin γ.

S.3 Proof of Theorem 2

We will reuse notation from the proof of Theorem 1 above. H is boostable implies there exists some
distribution λ∗ ∈ ∆(H) such that

∀j 6= 1, i : Hλ∗(i, 1)−Hλ∗(i, j) > 0.

1

Let γ > 0 be the minimum of the above expression over all possible (i, j), and let B = Hλ∗ . Then
B ∈ Beor

γ , and

max
C∈Ceor

min
h∈H

C • (1h −B) ≤ min
λ∈∆(H)

max
C∈Ceor

C • (Hλ −B) ≤ max
C∈Ceor

C • (Hλ∗ −B) = 0,

where the equality follows since by definition Hλ∗ − B = 0. The max-min expression is at most
zero is another way of saying that H satisfies the weak-learning condition (Ceor,B ∈ Beor

γ) as in
(2).

S.4 Each edge-over-random condition is too strong

In Section 3 we mention that any single edge-over-random condition is too strong. Here we provide,
for any γ > 0 and edge-over-random baseline B ∈ Beor

γ , a dataset and weak classifier space that is
boostable but fails to satisfy the condition (Ceor,B).

Pick m > 1/γ so that bm(1/2 + γ)c > m/2. Our data-set will have m labeled examples
{(0, y0), . . . , (m− 1, ym−1)}, and m weak classifiers. We want the following symmetries in our
weak classifiers:

• Each weak classifier correctly classifies bm(1/2 + γ)c examples and misclassifies the rest.

• On each example, bm(1/2 + γ)c weak classifiers predict correctly.

Note the second property implies boostability, since the uniform convex combination of all the weak
classifiers is a perfect predictor.

The two properties can be satisfied by the following design. A window is a contiguous sequence
of examples that may wrap around; for example {i, (i+ 1) mod m, . . . , (i+ k) mod m} is a
window containing k elements, which may wrap around if i + k ≥ m. For each window of length
bm(1/2 + γ)c create a hypothesis that correctly classifies within the window, and misclassifies
outside. This weak-hypothesis space has size m, and has the required properties.

We still have flexibility as to how the misclassifications occur, and which cost-matrix to use, which
brings us to the next two choices:

• Whenever a hypothesis misclassifies on example i, it predicts label ŷi
M=

argmin {B(i, l) : l 6= yi}.

• A cost-matrix is chosen so that the cost of predicting ŷi on example i is 1, but for any other
prediction the cost is zero. Observe this cost-matrix belongs to Ceor.

Therefore, every time a weak classifier predicts incorrectly, it also suffers cost 1. Since each weak
classifier predicts correctly only within a window of length bm(1/2 + γ)c, it suffers cost dm(1/2−
γ)e. On the other hand, by definition, B(i, ŷi) ≤ 1/k − γ. So the cost of B on the chosen cost-
matrix is m(1/k−γ), which is less than the cost dm(1/2− γ)e of any weak classifier whenever the
number of labels k is more than two. Hence our boostable space of weak classifiers fails to satisfy
(Ceor,B).

S.5 Conditions for AdaBoost.MH and AdaBoost.MR in our framework

In Section 3, we have stated the conditions in our framework corresponding to AdaBoost.MH and
AdaBoost.MR [4]. Here we provide proofs showing that our conditions match the ones in the
original paper.

Theorem. The weak-learning condition used by AdaBoost.MH [4] is equivalent to (CMH,BMH
γ),

and that used by AdaBoost.MR [4] is equivalent to (CMR,BMR
γ).

Proof. AdaBoost.MH [4] was originally designed to use weak-hypotheses that return a prediction
for every example and every label. They require that for any matrix with non-negative entries d(i, l),

2

the weak-hypothesis should achieve 1/2 + γ accuracy

m∑
i=1

1 [h(xi) 6= yi] d(i, yi) +
∑
l 6=yi

1 [h(xi) = l] d(i, l)


≤ (1/2− γ)

m∑
i=1

k∑
l=1

d(i, l). (S.1)

This can be rewritten as
m∑
i=1

−1 [h(xi) = yi] d(i, yi) +
∑
l 6=yi

1 [h(xi) = l] d(i, l)


≤

m∑
i=1

(1/2− γ)
∑
l 6=yi

d(i, l)− (1/2 + γ) d(i, yi)

 .

Using the mapping

C(i, l) =
{
d(i, l) if l 6= yi
−d(i, l) if l = yi,

their weak-learning condition may be rewritten as follows

∀C ∈ Rm×k satisfying {C(i, yi) ≤ 0, C(i, l) ≥ 0 for l 6= yi} ,∃h ∈ H :
m∑
i=1

C(i, h(xi)) ≤
m∑
i=1

(1/2 + γ)C(i, yi) + (1/2− γ)
∑
l 6=yi

C(i, l)

 .

Finally using the fact that we have assumed (without loss of generality) that ∀i : yi = 1, the above
condition is the same as

∀C ∈ CMH,∃h ∈ H : C •
(
1h −BMH

γ

)
≤ 0,

i.e. the (CMH,BMH
γ) weak-learning condition.

AdaBoost.MR [4] is a variant of AdaBoost.MH. For any non-negative cost-vectors {d(i, l)}l 6=yi , the
weak-hypothesis returned should satisfy the following

m∑
i=1

∑
l 6=yi

(1 [h(xi) = l]− 1 [h(xi) = yi]) d(i, l) ≤ −2γ
m∑
i=1

∑
l 6=yi

d(i, l)

i.e.
m∑
i=1

−1 [h(xi) = yi]
∑
l 6=yi

d(i, l) +
∑
l 6=yi

1 [h(xi) = l] d(i, l)

 ≤ −2γ
m∑
i=1

∑
l 6=yi

d(i, l)

Substituting

C(i, l) =

{
d(i, l) l 6= yi
−
∑
l 6=yi d(i, l) l = yi,

we may rewrite AdaBoost.MR’s weak-learning condition as

∀C ∈ Rm×k satisfying

C(i, l) ≥ 0 for l 6= yi, C(i, yi) = −
∑
l 6=yi

C(i, l)

 ,∃h ∈ H :

m∑
i=1

C(i, h(xi)) ≤ −γ
m∑
i=1

−C(i, yi) +
∑
l 6=yi

C(i, l)

 .

Again using the fact that we have assumed ∀i : yi = 1, the above condition is the same as
∀C ∈ CMR,∃h ∈ H : C •

(
1h −BMR

γ

)
≤ 0,

i.e. the (CMR,BMR
γ) weak-learning condition.

3

S.6 Weak-learning conditions of AdaBoost.MH and AdaBoost.M1 are same in our
framework

Here we prove the claim, made in Section 1, that the weak-learning conditions of AdaBoost.MH and
AdaBoost.M1 [1] are identical in our framework.

We first rewrite the conditons used by AdaBoost.M1 in the language of our framework. Ad-
aboost.M1 [1] requires 1/2 + γ accuracy with respect to any non-negative weights d(1), . . . , d(m)
on the training set,

m∑
i=1

d(i)1 [h(xi) 6= yi] ≤ (1/2− γ)
m∑
i=1

d(i), (S.2)

i.e.
m∑
i=1

d(i)Jh(xi) 6= yiK ≤ −2γ
m∑
i=1

d(i).

where J·K is the± indicator function, taking value +1 when its argument is true, and−1 when false.
Using the transformation

C(i, l) = Jl 6= yiKd(i)
we may rewrite the above condition as

∀C ∈ Rm×k satisfying {0 ≤ −C(i, yi) = C(i, l) for l 6= yi} , (S.3)

∃h ∈ H :
m∑
i=1

C(i, h(xi)) ≤ 2γ
m∑
i=1

C(i, yi)

i.e. ∀C ∈ CM1,∃h ∈ H : C •
(
1h −BM1

γ

)
≤ 0, (S.4)

where BM1
γ (i, l) = 2γ1 [l = yi], and CM1 ⊂ Rm×k consists of matrices satisfying the constraints in

(S.3).

We now show the equivalence of the weak-learning conditions of AdaBoost.M1 and AdaBoost.MH.
Lemma. A weak classifier spaceH satisfies (CM1,BM1

γ) if and only if it satisfies (CMH,BMH
γ).

Proof. We will refer to (CM1,BM1
γ) by M1 and (CMH,BMH

γ) by MH for brevity. The proof is in three
steps.

Step (i): H satisfies M1 impliesH satisfies MH. This follows since any constraint (S.2) imposed by
M1 onH can be reproduced by MH by plugging the following values of d(i, l) in (S.1)

d(i, l) =
{
d(i) if l = yi
0 if l 6= yi.

Step (ii): H satisfies M1 implies there is a convex combination Hλ of the matrices 1h ∈ H such
that

∀i :
(
Hλ −BMH

γ

)
(i, l)

{
≥ 0 if l = yi
≤ 0 if l 6= yi.

Indeed, the minmax theorem yields

min
λ∈∆(H)

max
C∈CM1

C •
(
Hλ −BM1

γ

)
= max

C∈CM1
min
h∈H

C •
(
1h −BM1

γ

)
≤ 0,

where the inequality is a restatement of our assumption that H satisfies M1. If λ is a minimizer of
the minmax expression, then Hλ must satisfy

∀i : Hλ(i, l)
{
≥ 1/2 + γ if l = yi
≤ 1/2− γ if l 6= yi,

(S.5)

or else some choice of C ∈ CM1 can cause C•
(
Hλ −BM1

)
to exceed 0. In particular, if Hλ(i0, l) <

1/2 + γ, then (
Hλ −BM1

γ

)
(i0, yi0) <

∑
l 6=yi0

(
Hλ −BM1

γ

)
(i0, l).

4

Now, if we choose C ∈ CM1 as

C(i, l) =


0 if i 6= i0
1 if i = i0, l 6= yi0
−1 if i = i0, l = yi0 ,

then,

C •
(
Hλ −BM1

γ

)
= −

(
Hλ −BM1

γ

)
(i0, yi0) +

∑
l 6=yi0

(
Hλ −BM1

γ

)
(i0, l) > 0,

contradicting the minmax inequality. Therefore some Hλ satisfying (S.5) exists. Step (ii) now
follows by observing that BMH

γ satisfies

∀i : BMH
γ (i, l) =

{
1/2 + γ if l = yi
1/2− γ if l 6= yi.

Step (iii) IfH satisfies M1’s conditions, then Step (ii) implies

0 ≥ min
λ∈∆(H)

max
C∈CMH

C •
(
Hλ −BMH

γ

)
= max

C∈CMH
min
h∈H

C •
(
1h −BMH

γ

)
,

where the equality follows from the minimax theorem. The max min expression at most zero en-
codes BMH’s weak-learning condition. HenceH satisfies M1 impliesH satisfies MH. Together with
Step (i), this completes the proof.

S.7 Proof of Theorem 3

We will show the following three conditions are equivalent:

(A) H is boostable
(B) ∃γ > 0 such that ∀C ∈ Ceor,∃h ∈ H : C • 1h ≤ maxB∈Beor

γ
C •B

(C) ∃γ > 0 : H satisfies (CMR,BMR
γ).

We will show (A) implies (B), (B) implies (C), and (C) implies (A) to achieve the above.

(A) implies (B): Immediate from Theorem 2.

(B) implies (C): Suppose (B) is satisfied with 2γ. We will show that this implies H satisfies
(CMR,BMR

γ). Notice CMR ⊂ Ceor. Therefore it suffices to show that

∀C ∈ CMR,B ∈ Beor
2γ : C •

(
B−BMR

γ

)
≤ 0.

Notice that B ∈ Q2γ implies B′ = B−BMR
γ belongs to Beor

0 . Then, for any C ∈ CMR, C •B′ can
be written as

C •B′ =
m∑
i=1

k∑
j=2

C(i, j) (B′(i, j)−B′(i, 1)) .

Since C(i, j) ≥ 0 for j > 1, and B′(i, j)−B′(i, 1) ≤ 0, we have our result.

(C) implies (A): Applying the minimax theorem,

0 ≥ max
C∈CMR

min
h∈H

C •
(
1h −BMR

γ

)
= min

λ∈∆(H)
max

C∈CMR
C •

(
Hλ −BMR

γ

)
.

For any i0 and l0 6= 1, the following cost-matrix C satisfies C ∈ CMR,

C(i, l) =


0 if i 6= i0 or l 6∈ {1, l0}
1 if i = i0, l = l0
−1 if i = i0, l = 1.

Let λ belong to the argmin of the min max expression. Then C •
(
Hλ −BMR

γ

)
≤ 0 implies

Hλ(i0, 1) − Hλ(i0, l0) ≥ 2γ. Since this is true for all i0 and l0 6= 1, we conclude that the
(CMR,BMR

γ) condition implies boostability.

This concludes the proof of equivalence.

5

S.8 Proof of Theorem 5

Let Ceor
0 ⊆ Rk denote all vectors c satisfying ∀l : c(1) ≤ c(l). Then, we have

φb
t (s) =

min
c∈Ceor

0

max
p∈∆{1,...,k}

El∼p [φt−1 (s + el)]

s.t. El∼p[c(l)] ≤ El∼b [c(l)] ,
(by (4))

= min
c∈Ceor

0

max
p∈∆

min
λ≥0
{El∼p [φt−1 (s + el)] + λ (El∼b [c(l)]− El∼p[c(l)])} (Lagrangean)

= min
c∈Ceor

0

min
λ≥0

max
p∈∆

El∼p [φt−1 (s + el)] + λ 〈b− p, c〉 (min-max theorem)

= min
c∈Ceor

0

max
p∈∆

El∼p [φt−1 (s + el)] + 〈b− p, c〉 (absorb λ into c)

= max
p∈∆

min
c∈Ceor

0

El∼p [φt−1 (s + el)] + 〈b− p, c〉 (min-max theorem) .

Unless q(1) − p(1) ≤ 0 and q(l) − p(l) ≥ 0 for each l > 1, the quantity 〈b− p, c〉 can be made
arbitrarily small for appropriate choices of c ∈ Ceor

0 . The max-player is therefore forced to constrain
its choices of p, and the above expression becomes

max
p∈∆

p(1)≥q(1),∀l>1:p(l)≤q(l)

El∼p [φt−1 (s + el)]

Lemma 6 of [3] states that if L is proper (as defined in our paper), so is φt; the same result can be
extended to our drifting games. This implies the optimal choice of p in the above expression is in
fact the distribution that puts as small weight as possible in the first coordinate, namely b.

Therefore the optimum choice of p is b, and the potential is the same as

φt(s) = El∼b [φt−1 (s + el)] .

Inductively assuming φt−1(x) = E
[
L(Rt−1

b (x))
]
,

φt(s) = El∼b

[
L(Rt−1

b (s) + el)
]

= E
[
L(Rtb(s))

]
.

The last equality follows by observing that the random positionRt−1
b (s)+el is distributed asRtb(s)

when l is sampled from b.

S.9 Calculations for the Adaptive case

While discussing the adaptive algorithm we mention how to choose the weights αt in each round.
Here are formal proofs to back up some of the claims made in that section.

Lemma. Suppose cost matrix Ct is chosen as in (7), and the returned weak classifier ht beats Uδt
on Ct i.e. Ct • 1ht ≤ Ct •Uδt . Then choosing any weight αt > 0 for ht makes the loss at time t,∑m
i=1

∑k
l=2 e

{ft(i,l)−ft(i,1)}, at most a factor

1− 1
2

(eαt − e−αt)δt +
1
2

(eαt + e−αt − 2)

of the loss before choosing,
∑m
i=1

∑k
l=2 e

{ft−1(i,l)−ft−1(i,1)}.

Proof. Let S+, S− denote the set of examples where ht classified correctly, incorrectly resp. Also
let Lt(i) denote the sum

∑k
l=2 e

ft(i,l)−ft(i,1). Then the loss after t rounds is
∑
i∈S+∪S− Lt(i).

Further Ct(i, 1) = −Lt−1(i). By the edge-condition

−
∑
i∈S+

Lt−1(i) +
∑
i∈S−

e{ft−1(i,ht(xi))−ft−1(i,1)} = Ct • 1ht ≤ Ct •Uδt = −δt
∑

i∈S+∪S−

Lt−1(i),

i.e,
∑
i∈S+

Lt−1(i)−
∑
i∈S−

e{ft−1(i,ht(xi))−ft−1(i,1)} ≥ δt
∑

i∈S+∪S−

Lt−1(i).

6

On the other hand, the drop in loss after choosing ht with weight αt is∑
i∈S+

(
1− e−αt

)
Lt−1(i)−

∑
i∈S−

(eαt − 1) e{ft−1(i,ht(xi))−ft−1(i,1)}

=
(
eαt − e−αt

2

)∑
i∈S+

Lt−1(i)−
∑
i∈S−

e{ft−1(i,ht(xi))−ft−1(i,1)}


−

(
eαt + e−αt − 2

2

)∑
i∈S+

Lt−1(i) +
∑
i∈S−

e{ft−1(i,ht(xi))−ft−1(i,1)}

 .

Now e{ft−1(i,ht(xi))−ft−1(i,1)} is upper bounded by Lt−1(i), so that the second term in curly-
brackets is upper bounded by the loss after t − 1 rounds. We have already shown the first term
in curly brackets is at least δt times the loss after t− 1 rounds. Hence the loss in round t is at most
a factor 1− 1

2 (eαt − e−αt)δt + 1
2 (eαt + e−αt − 2) of the loss in round t− 1.

Corollary. Suppose Ct is chosen as in (7). Then if ht beats Uδt , for some δt ∈ [0, 1], on Ct, then
for any αt > 0, there is a γt ∈ [1− k, 1] such that

• ht beats Uγt on Cαt , where Cαt is defined as in (7), and

• κ(γt, αt) ≤ g(αt, δt)
M= 1− 1

2 (eαt − e−αt)δt + 1
2 (eαt + e−αt − 2).

Proof. Recall κ(γt, αt) = 1 + 1−γt
k (eαt − e−αt) − γt(1 − e−αt). If g(αt, δt) >

supγt∈[1−k,1] κ(γt, αt), then the choice of γt = 1− k satisfies the requirements in the statement of
the corollary. Otherwise observe

κ(0, αt) = e−αt ≤ g(αt, δt),

so that, by continuity of κ, we may pick a value of γt such that κ(γt, αt) = g(αt, δt). As before,
define Lt(i) =

∑k
l=2 e

{ft(i,l)−ft(i,1)}. By expanding out one may see
m∑
i=1

Lt−1(i) + αtCαt •Uγt = κ(γt, αt)
m∑
i=1

Lt−1(i).

Similarly one may verify,
m∑
i=1

Lt−1(i) + αtCαt • 1ht =
m∑
i=1

Lt(i).

The previous lemma yields
∑m
i=1 Lt(i) ≤ g(αt, δt)

∑m
i=1 Lt−1(i) = κ(γt, αt)

∑m
i=1 Lt−1(i). This

shows ht beats Uγt on Cαt .

References

[1] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and
an application to boosting. Journal of Computer and System Sciences, 55(1):119–139, August
1997.

[2] R. Tyrell Rockafellar. Convex Analysis. Princeton University Press, 1970.
[3] Robert E. Schapire. Drifting games. Machine Learning, 43(3):265–291, June 2001.
[4] Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confidence-rated

predictions. Machine Learning, 37(3):297–336, December 1999.

7

