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Abstract

A challenging problem in estimating high-dimensional graphical models is to
choose the regularization parameter in a data-dependent way. The standard tech-
niques include K-fold cross-validation (K-CV), Akaike information criterion
(AIC), and Bayesian information criterion (BIC). Though these methods work
well for low-dimensional problems, they are not suitable in high dimensional set-
tings. In this paper, we present StARS: a new stability-based method for choosing
the regularization parameter in high dimensional inference for undirected graphs.
The method has a clear interpretation: we use the least amount of regularization
that simultaneously makes a graph sparse and replicable under random sampling.
This interpretation requires essentially no conditions. Under mild conditions, we
show that StARS is partially sparsistent in terms of graph estimation: i.e. with
high probability, all the true edges will be included in the selected model even
when the graph size diverges with the sample size. Empirically, the performance
of StARS is compared with the state-of-the-art model selection procedures, in-
cludingK-CV, AIC, and BIC, on both synthetic data and a real microarray dataset.
StARS outperforms all these competing procedures.

1 Introduction
Undirected graphical models have emerged as a useful tool because they allow for a stochastic
description of complex associations in high-dimensional data. For example, biological processes in
a cell lead to complex interactions among gene products. It is of interest to determine which features
of the system are conditionally independent. Such problems require us to infer an undirected graph
from i.i.d. observations. Each node in this graph corresponds to a random variable and the existence
of an edge between a pair of nodes represent their conditional independence relationship.

Gaussian graphical models [4, 23, 5, 9] are by far the most popular approach for learning high di-
mensional undirected graph structures. Under the Gaussian assumption, the graph can be estimated
using the sparsity pattern of the inverse covariance matrix. If two variables are conditionally inde-
pendent, the corresponding element of the inverse covariance matrix is zero. In many applications,
estimating the the inverse covariance matrix is statistically challenging because the number of fea-
tures measured may be much larger than the number of collected samples. To handle this challenge,
the graphical lasso or glasso [7, 24, 2] is rapidly becoming a popular method for estimating sparse
undirected graphs. To use this method, however, the user must specify a regularization parameter
λ that controls the sparsity of the graph. The choice of λ is critical since different λ’s may lead to
different scientific conclusions of the statistical inference. Other methods for estimating high dimen-
sional graphs include [11, 14, 10]. They also require the user to specify a regularization parameter.

The standard methods for choosing the regularization parameter are AIC [1], BIC [19] and cross
validation [6]. Though these methods have good theoretical properties in low dimensions, they are
not suitable for high dimensional problems. In regression, cross-validation has been shown to overfit
the data [22]. Likewise, AIC and BIC tend to perform poorly when the dimension is large relative to
the sample size. Our simulations confirm that these methods perform poorly when used with glasso.

1



A new approach to model selection, based on model stability, has recently generated some interest
in the literature [8]. The idea, as we develop it, is based on subsampling [15] and builds on the
approach of Meinshausen and Bühlmann [12]. We draw many random subsamples and construct a
graph from each subsample (unlike K-fold cross-validation, these subsamples are overlapping). We
choose the regularization parameter so that the obtained graph is sparse and there is not too much
variability across subsamples. More precisely, we start with a large regularization which corresponds
to an empty, and hence highly stable, graph. We gradually reduce the amount of regularization
until there is a small but acceptable amount of variability of the graph across subsamples. In other
words, we regularize to the point that we control the dissonance between graphs. The procedure
is named StARS: Stability Approach to Regularization Selection. We study the performance of
StARS by simulations and theoretical analysis in Sections 4 and 5. Although we focus here on
graphical models, StARS is quite general and can be adapted to other settings including regression,
classification, clustering, and dimensionality reduction.

In the context of clustering, results of stability methods have been mixed. Weaknesses of stability
have been shown in [3]. However, the approach was successful for density-based clustering [17].
For graph selection, Meinshausen and Bühlmann [12] also used a stability criterion; however, their
approach differs from StARS in its fundamental conception. They use subsampling to produce a new
and more stable regularization path then select a regularization parameter from this newly created
path, whereas we propose to use subsampling to directly select one regularization parameter from
the original path. Our aim is to ensure that the selected graph is sparse, but inclusive, while they
aim to control the familywise type I errors. As a consequence, their goal is contrary to ours: instead
of selecting a larger graph that contains the true graph, they try to select a smaller graph that is
contained in the true graph. As we will discuss in Section 3, in specific application domains like
gene regulatory network analysis, our goal for graph selection is more natural.

2 Estimating a High-dimensional Undirected Graph

Let X =
(
X(1), . . . , X(p)

)T
be a random vector with distribution P . The undirected graph G =

(V,E) associated with P has vertices V = {X(1), . . . , X(p)} and a set of edgesE corresponding to
pairs of vertices. In this paper, we also interchangeably use E to denote the adjacency matrix of the
graph G. The edge corresponding to X(j) and X(k) is absent if X(j) and X(k) are conditionally
independent given the other coordinates ofX . The graph estimation problem is to inferE from i.i.d.
observed data X1, . . . , Xn where Xi = (Xi(1), . . . , Xi(p))T .

Suppose now that P is Gaussian with mean vector µ and covariance matrix Σ. Then the edge
corresponding to X(j) and X(k) is absent if and only if Ωjk = 0 where Ω = Σ−1. Hence, to
estimate the graph we only need to estimate the sparsity pattern of Ω. When p could diverge with n,
estimating Ω is difficult. A popular approach is the graphical lasso or glasso [7, 24, 2]. Using glasso,
we estimate Ω as follows: Ignoring constants, the log-likelihood (after maximizing over µ) can be
written as ℓ(Ω) = log |Ω| − trace

(
Σ̂Ω

)
where Σ̂ is the sample covariance matrix. With a positive

regularization parameter λ, the glasso estimator Ω̂(λ) is obtained by minimizing the regularized
negative log-likelihood

Ω̂(λ) = arg min
Ω≻0

{
−ℓ(Ω) + λ||Ω||1

}
(1)

where ||Ω||1 =
∑

j,k |Ωjk| is the elementwise ℓ1-norm of Ω. The estimated graph Ĝ(λ) =
(V, Ê(λ)) is then easily obtained from Ω̂(λ): for i ̸= j, an edge (i, j) ∈ Ê(λ) if and only if
the corresponding entry in Ω̂(λ) is nonzero. Friedman et al. [7] give a fast algorithm for calculating
Ω̂(λ) over a grid of λs ranging from small to large. By taking advantage of the fact that the objec-
tive function in (1) is convex, their algorithm iteratively estimates a single row (and column) of Ω
in each iteration by solving a lasso regression [21]. The resulting regularization path Ω̂(λ) for all
λs has been shown to have excellent theoretical properties [18, 16]. For example, Ravikumar et al.
[16] show that, if the regularization parameter λ satisfies a certain rate, the corresponding estimator
Ω̂(λ) could recover the true graph with high probability. However, these types of results are either
asymptotic or non-asymptotic but with very large constants. They are not practical enough to guide
the choice of the regularization parameter λ in finite-sample settings.
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3 Regularization Selection
In Equation (1), the choice of λ is critical because λ controls the sparsity level of Ĝ(λ). Larger values
of λ tend to yield sparser graphs and smaller values of λ yield denser graphs. It is convenient to
define Λ = 1/λ so that small Λ corresponds to a more sparse graph. In particular, Λ = 0 corresponds
to the empty graph with no edges. Given a grid of regularization parameters Gn = {Λ1, . . . ,ΛK},
our goal of graph regularization parameter selection is to choose one Λ̂ ∈ Gn, such that the true
graph E is contained in Ê(Λ̂) with high probability. In other words, we want to “overselect” instead
of “underselect”. Such a choice is motivated by application problems like gene regulatory networks
reconstruction, in which we aim to study the interactions of many genes. For these types of studies,
we tolerant some false positives but not false negatives. Specifically, it is acceptable that an edge
presents but the two genes corresponding to this edge do not really interact with each other. Such
false positives can generally be screened out by more fine-tuned downstream biological experiments.
However, if one important interaction edge is omitted at the beginning, it’s very difficult for us to
re-discovery it by follow-up analysis. There is also a tradeoff: we want to select a denser graph
which contains the true graph with high probability. At the same time, we want the graph to be as
sparse as possible so that important information will not be buried by massive false positives. Based
on this rationale, an “underselect” method, like the approach of Meinshausen and Bühlmann[12],
does not really fit our goal. In the following, we start with an overview of several state-of-the-art
regularization parameter selection methods for graphs. We then introduce our new StARS approach.

3.1 Existing Methods

The regularization parameter is often chosen using AIC or BIC. Let Ω̂(Λ) denote the estimator
corresponding to Λ. Let d(Λ) denote the degree of freedom (or the effective number of free pa-
rameters) of the corresponding Gaussian model. AIC chooses Λ to minimize −2ℓ

(
Ω̂(Λ)

)
+ 2d(Λ)

and BIC chooses Λ to minimize −2ℓ
(
Ω̂(Λ)

)
+ d(Λ) · log n. The usual theoretical justification for

these methods assumes that the dimension p is fixed as n increases; however, in the case where
p > n this justification is not applicable. In fact, it’s even not straightforward how to estimate
the degree of freedom d(Λ) when p is larger than n . A common practice is to calculate d(Λ) as
d(Λ) = m(Λ)(m(Λ)− 1)/2+ p where m(Λ) denotes the number of nonzero elements of Ω̂(Λ). As
we will see in our experiments, AIC and BIC tend to select overly dense graphs in high dimensions.

Another popular method is K-fold cross-validation (K-CV). For this procedure the data is parti-
tioned into K subsets. Of the K subsets one is retained as the validation data, and the remaining
K − 1 ones are used as training data. For each Λ ∈ Gn, we estimate a graph on the K − 1 training
sets and evaluate the negative log-likelihood on the retained validation set. The results are averaged
over all K folds to obtain a single CV score. We then choose Λ to minimize the CV score over he
whole grid Gn. In regression, cross-validation has been shown to overfit [22]. Our experiments will
confirm this is true for graph estimation as well.

3.2 StARS: Stability Approach to Regularization Selection
The StARS approach is to choose Λ based on stability. When Λ is 0, the graph is empty and two
datasets from P would both yield the same graph. As we increase Λ, the variability of the graph
increases and hence the stability decreases. We increase Λ just until the point where the graph
becomes variable as measured by the stability. StARS leads to a concrete rule for choosing Λ.

Let b = b(n) be such that 1 < b(n) < n. We draw N random subsamples S1, . . . , SN from
X1, . . . , Xn, each of size b. There are

(
n
b

)
such subsamples. Theoretically one uses all

(
n
b

)
sub-

samples. However, Politis et al. [15] show that it suffices in practice to choose a large number N
of subsamples at random. Note that, unlike bootstrapping [6], each subsample is drawn without
replacement. For each Λ ∈ Gn, we construct a graph using the glasso for each subsample. This
results in N estimated edge matrices Êb

1(Λ), . . . , Êb
N (Λ). Focus for now on one edge (s, t) and one

value of Λ. Let ψΛ(·) denote the glasso algorithm with the regularization parameter Λ. For any
subsample Sj let ψΛ

st(Sj) = 1 if the algorithm puts an edge and ψΛ
st(Sj) = 0 if the algorithm does

not put an edge between (s, t). Define θb
st(Λ) = P(ψΛ

st(X1, . . . , Xb) = 1). To estimate θb
st(Λ), we

use a U-statistic of order b, namely, θ̂b
st(Λ) =

1
N

N∑
j=1

ψΛ
st(Sj).
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Now define the parameter ξb
st(Λ) = 2θb

st(Λ)(1 − θb
st(Λ)) and let ξ̂b

st(Λ) = 2θ̂b
st(Λ)(1 − θ̂b

st(Λ)) be
its estimate. Then ξb

st(Λ), in addition to being twice the variance of the Bernoulli indicator of the
edge (s, t), has the following nice interpretation: For each pair of graphs, we can ask how often they
disagree on the presence of the edge: ξb

st(Λ) is the fraction of times they disagree. For Λ ∈ Gn, we
regard ξb

st(Λ) as a measure of instability of the edge across subsamples, with 0 ≤ ξb
st(Λ) ≤ 1/2.

Define the total instability by averaging over all edges: D̂b(Λ) =
∑

s<t ξ̂
b
st/

(
p
2

)
. Clearly on the

boundary D̂b(0) = 0, and D̂b(Λ) generally will increase as Λ increases. However, when Λ gets very
large, all the graphs will become dense and D̂b(Λ) will begin to decrease. Subsample stability for
large Λ is essentially an artifact. We are interested in stability for sparse graphs not dense graphs.
For this reason we monotonize D̂b(Λ) by defining Db(Λ) = sup0≤t≤Λ D̂b(t). Finally, our StARS

approach chooses Λ by defining Λ̂s = sup
{

Λ : Db(Λ) ≤ β
}

for a specified cut point value β.

It may seem that we have merely replaced the problem of choosing Λ with the problem of choosing
β, but β is an interpretable quantity and we always set a default value β = 0.05. One thing to note
is that all quantities Ê, θ̂, ξ̂, D̂ depend on the subsampling block size b. Since StARS is based on
subsampling, the effective sample size for estimating the selected graph is b instead of n. Compared
with methods like BIC and AIC which fully utilize all n data points. StARS has some efficiency
loss in low dimensions. However, in high dimensional settings, the gain of StARS on better graph
selection significantly dominate this efficiency loss. This fact is confirmed by our experiments.

4 Theoretical Properties
The StARS procedure is quite general and can be applied with any graph estimation algorithms.
Here, we provide its theoretical properties. We start with a key theorem which establishes the rates
of convergence of the estimated stability quantities to their population means. We then discuss the
implication of this theorem on general gaph regularization selection problems.

Let Λ be an element in the grid Gn = {Λ1, . . . ,ΛK} where K is a polynomial of n. We denote
Db(Λ) = E(D̂b(Λ)). The quantity ξ̂b

st(Λ) is an estimate of ξb
st(Λ) and D̂b(Λ) is an estimate of

Db(Λ). Standard U -statistic theory guarantees that these estimates have good uniform convergence
properties to their population quantities:
Theorem 1. (Uniform Concentration) The following statements hold with no assumptions on P .
For any δ ∈ (0, 1), with probability at least 1 − δ, we have

∀Λ ∈ Gn, max
s<t

|ξ̂b
st(Λ) − ξb

st(Λ)| ≤
√

18b (2 log p+ log(2/δ))
n

, (2)

max
Λ∈Gn

|D̂b(Λ) −Db(Λ)| ≤
√

18b (logK + 4 log p+ log (1/δ))
n

. (3)

Proof. Note that θ̂b
st(Λ) is a U -statistic of order b. Hence, by Hoeffding’s inequality for U -statistics

[20], we have, for any ϵ > 0,

P(|θ̂b
st(Λ) − θb

st(Λ)| > ϵ) ≤ 2 exp
(
−2nϵ2/b

)
. (4)

Now ξ̂b
st(Λ) is just a function of the U -statistic θ̂b

st(Λ). Note that

|ξ̂b
st(Λ) − ξb

st(Λ)| = 2|θ̂b
st(Λ)(1 − θ̂b

st(Λ)) − θb
st(Λ)(1 − θb

st(Λ))| (5)

= 2|θ̂b
st(Λ) −

(
θ̂b

st(Λ)
)2 − θb

st(Λ) +
(
θb

st(Λ)
)2| (6)

≤ 2|θ̂b
st(Λ) − θb

st(Λ)| + 2|
(
θ̂b

st(Λ)
)2 −

(
θb

st(Λ)
)2| (7)

≤ 2|θ̂b
st(Λ) − θb

st(Λ)| + 2|(θ̂b
st(Λ) − θb

st(Λ))(θ̂b
st(Λ) + θb

st(Λ))| (8)

≤ 2|θ̂b
st(Λ) − θb

st(Λ)| + 4|θ̂b
st(Λ) − θb

st(Λ)| (9)

= 6|θ̂b
st(Λ) − θb

st(Λ)|, (10)

we have |ξ̂b
st(Λ) − ξb

st(Λ)| ≤ 6|θ̂b
st(Λ) − θb

st(Λ)|. Using (4) and the union bound over all the edges,
we obtain: for each Λ ∈ Gn,

P(max
s<t

|ξ̂b
st(Λ) − ξb

st(Λ)| > 6ϵ) ≤ 2p2 exp
(
−2nϵ2/b

)
. (11)
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Using two union bound arguments over the K values of Λ and all the p(p− 1)/2 edges, we have:

P
(

max
Λ∈Gn

|D̂b(Λ) −Db(Λ)| ≥ ϵ

)
≤ |Gn| ·

p(p− 1)
2

· P(max
s<t

|ξ̂b
st(Λ) − ξb

st(Λ)| > ϵ) (12)

≤ K · p4 · exp
(
−nϵ2/(18b)

)
. (13)

Equations (2) and (3) follow directly from (11) and the above exponential probability inequality.

Theorem 1 allows us to explicitly characterize the high-dimensional scaling of the sample size n,
dimensionality p, subsampling block size b, and the grid size K. More specifically, we get

n

b log
(
np4K

) → ∞ =⇒ max
Λ∈Gn

|D̂b(Λ) −Db(Λ)| P→ 0 (14)

by setting δ = 1/n in Equation (3). From (14), let c1, c2 be arbitrary positive constants, if b = c1
√
n,

K = nc2 , and p ≤ exp (nγ) for some γ < 1/2, the estimated total stability D̂b(Λ) still converges
to its mean Db(Λ) uniformly over the whole grid Gn.

We now discuss the implication of Theorem 1 to graph regularization selection problems. Due to
the generality of StARS, we provide theoretical justifications for a whole family of graph estimation
procedures satisfying certain conditions. Let ψ be a graph estimation procedure. We denote Êb(Λ)
as the estimated edge set using the regularization parameter Λ by applyingψ on a subsampled dataset
with block size b. To establish graph selection result, we start with two technical assumptions:

(A1) ∃Λo ∈ Gn, such that maxΛ≤Λo∧Λ∈Gn Db(Λ) ≤ β/2 for large enough n.

(A2) For any Λ ∈ Gn and Λ ≥ Λo, P
(
E ⊂ Êb(Λ)

)
→ 1 as n→ ∞.

Note that Λo here depends on the sample size n and does not have to be unique. To understand
the above conditions, (A1) assumes that there exists a threshold Λo ∈ Gn, such that the population
quantity Db(Λ) is small for all Λ ≤ Λo. (A2) requires that all estimated graphs using regularization
parameters Λ ≥ Λo contain the true graph with high probability. Both assumptions are mild and
should be satisfied by most graph estimation algorithm with reasonable behaviors. More detailed
analysis on how glasso satisfies (A1) and (A2) will be provided in the full version of this paper.
There is a tradeoff on the design of the subsampling block size b . To make (A2) hold, we require
b to be large. However, to make D̂b(Λ) concentrate to Db(Λ) fast, we require b to be small. Our
suggested value is b = ⌊10

√
n⌋, which balances both the theoretical and empirical performance

well. The next theorem provides the graph selection performance of StARS:
Theorem 2. (Partial Sparsistency): Let ψ to be a graph estimation algorithm. We assume (A1) and
(A2) hold for ψ using b = ⌊10

√
n⌋ and |Gn| = K = nc1 for some constant c1 > 0. Let Λ̂s ∈ Gn

be the selected regularization parameter using the StARS procedure with a constant cutting point β.
Then, if p ≤ exp (nγ) for some γ < 1/2, we have

P
(
E ⊂ Êb(Λ̂s)

)
→ 1 as n→ ∞. (15)

Proof. We define An to be the event that maxΛ∈Gn |D̂b(Λ) − Db(Λ)| ≤ β/2. The scaling of
n,K, b, p in the theorem satisfies the L.H.S. of (14), which implies that P(An) → 1 as n→ ∞.

Using (A1), we know that, on An,

max
Λ≤Λo∧Λ∈Gn

D̂b(Λ) ≤ max
Λ∈Gn

|D̂b(Λ) −Db(Λ)| + max
Λ≤Λo∧Λ∈Gn

Db(Λ) ≤ β. (16)

This implies that, on An, Λ̂s ≥ Λo. The result follows by applying (A2) and a union bound.

5 Experimental Results
We now provide empirical evidence to illustrate the usefulness of StARS and compare it with several
state-of-the-art competitors, including 10-fold cross-validation (K-CV), BIC, and AIC. For StARS
we always use subsampling block size b(n) = ⌊10 ·

√
n] and set the cut point β = 0.05. We first
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quantitatively evaluate these methods on two types of synthetic datasets, where the true graphs are
known. We then illustrate StARS on a microarray dataset that records the gene expression levels
from immortalized B cells of human subjects. On all high dimensional synthetic datasets, StARS
significantly outperforms its competitors. On the microarray dataset, StARS obtains a remarkably
simple graph while all competing methods select what appear to be overly dense graphs.

5.1 Synthetic Data
To quantitatively evaluate the graph estimation performance, we adapt the criteria including pre-
cision, recall, and F1-score from the information retrieval literature. Let G = (V,E) be a p-
dimensional graph and let Ĝ = (V, Ê) be an estimated graph. We define precision = |Ê ∩ E|/|Ê|,
recall = |Ê ∩ E|/|E|, and F1-score = 2 · precision · recall/(precision + recall). In other words,
Precision is the number of correctly estimated edges divided by the total number of edges in the
estimated graph; recall is the number of correctly estimated edges divided by the total number of
edges in the true graph; the F1-score can be viewed as a weighted average of the precision and recall,
where an F1-score reaches its best value at 1 and worst score at 0. On the synthetic data where we
know the true graphs, we also compare the previous methods with an oracle procedure which selects
the optimal regularization parameter by minimizing the total number of different edges between the
estimated and true graphs along the full regularization path. Since this oracle procedure requires the
knowledge of the truth graph, it is not a practical method. We only present it here to calibrate the
inherent challenge of each simulated scenario. To make the comparison fair, once the regulariza-
tion parameters are selected, we estimate the oracle and StARS graphs only based on a subsampled
dataset with size b(n) = ⌊10

√
n⌋. In contrast, the K-CV, BIC, and AIC graphs are estimated using

the full dataset. More details about this issue were discussed in Section 3.

We generate data from sparse Gaussian graphs, neighborhood graphs and hub graphs, which mimic
characteristics of real-wolrd biological networks. The mean is set to be zero and the covariance
matrix Σ = Ω−1. For both graphs, the diagonal elements of Ω are set to be one. More specifically:

1. Neighborhood graph: We first uniformly sample y1, . . . , yn from a unit square. We then set
Ωij = Ωji = ρ with probability

(√
2π

)−1
exp

(
−4∥yi − yj∥2

)
. All the rest Ωij are set to

be zero. The number of nonzero off-diagonal elements of each row or column is restricted
to be smaller than ⌊1/ρ⌋. In this paper, ρ is set to be 0.245.

2. Hub graph: The rows/columns are partitioned into J equally-sized disjoint groups: V1 ∪
V2 . . . ∪ VJ = {1, . . . , p}, each group is associated with a “pivotal” row k. Let |V1| = s.
We set Ωik = Ωki = ρ for i ∈ Vk and Ωik = Ωki = 0 otherwise. In our experiment,
J = ⌊p/s⌋, k = 1, s+ 1, 2s+ 1, . . ., and we always set ρ = 1/(s+ 1) with s = 20.

We generate synthetic datasets in both low-dimensional (n = 800, p = 40) and high-dimensional
(n = 400, p = 100) settings. Table 1 provides comparisons of all methods, where we repeat the
experiments 100 times and report the averaged precision, recall, F1-score with their standard errors.

Table 1: Quantitative comparison of different methods on the datasets from the neighborhood and hub graphs.
Neighborhood graph: n =800, p=40 Neighborhood graph: n=400, p =100

Methods Precision Recall F1-score Precision Recall F1-score

Oracle 0.9222 (0.05) 0.9070 (0.07) 0.9119 (0.04) 0.7473 (0.09) 0.8001 (0.06) 0.7672 (0.07)
StARS 0.7204 (0.08) 0.9530 (0.05) 0.8171 (0.05) 0.6366 (0.07) 0.8718 (0.06) 0.7352 (0.07)
K-CV 0.1394 (0.02) 1.0000 (0.00) 0.2440 (0.04) 0.1383 (0.01) 1.0000 (0.00) 0.2428 (0.01)
BIC 0.9738 (0.03) 0.9948 (0.02) 0.9839 (0.01) 0.1796 (0.11) 1.0000 (0.00) 0.2933 (0.13)
AIC 0.8696 (0.11) 0.9996 (0.01) 0.9236 (0.07) 0.1279 (0.00) 1.0000 (0.00) 0.2268 (0.01)

Hub graph: n =800, p=40 Hub graph: n=400, p =100

Methods Precision Recall F1-score Precision Recall F1-score

Oracle 0.9793 (0.01) 1.0000 (0.00) 0.9895 (0.01) 0.8976 (0.02) 1.0000 (0.00) 0.9459 (0.01)
StARS 0.4377 (0.02) 1.0000 (0.00) 0.6086 (0.02) 0.4572 (0.01) 1.0000 (0.00) 0.6274 (0.01)
K-CV 0.2383 (0.09) 1.0000 (0.00) 0.3769 (0.01) 0.1574 (0.01) 1.0000 (0.00) 0.2719 (0.00)
BIC 0.4879 (0.05) 1.0000 (0.00) 0.6542 (0.05) 0.2155 (0.00) 1.0000 (0.00) 0.3545 (0.01)
AIC 0.2522 (0.09) 1.0000 (0.00) 0.3951 (0.00) 0.1676 (0.00) 1.0000 (0.00) 0.2871 (0.00)

For low-dimensional settings where n ≫ p, the BIC criterion is very competitive and performs the
best among all the methods. In high dimensional settings, however, StARS clearly outperforms all
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the competing methods for both neighborhood and hub graphs. This is consistent with our theory.
At first sight, it might be surprising that for data from low-dimensional neighborhood graphs, BIC
and AIC even outperform the oracle procedure! This is due to the fact that both BIC and AIC
graphs are estimated using all the n = 800 data points, while the oracle graph is estimated using
only the subsampled dataset with size b(n) = ⌊10 ·

√
n⌋ = 282. Direct usage of the full sample

is an advantage of model selection methods that take the general form of BIC and AIC. In high
dimensions, however, we see that even with this advantage, StARS clearly outperforms BIC and
AIC. The estimated graphs for different methods in the setting n = 400, p = 100 are provided in
Figures 1 and 2, from which we see that the StARS graph is almost as good as the oracle, while the
K-CV, BIC, and AIC graphs are overly too dense.

(a) True graph (b) Oracle graph (c) StARS graph

(d) K-CV graph (e) BIC graph (f) AIC graph

Figure 1: Comparison of different methods on the data from the neighborhood graphs (n = 400, p = 100).

5.2 Microarray Data

We apply StARS to a dataset based on Affymetrix GeneChip microarrays for the gene expression
levels from immortalized B cells of human subjects. The sample size is n = 294. The expression
levels for each array are pre-processed by log-transformation and standardization as in [13]. Using
a sub-pathway subset of 324 correlated genes, we study the estimated graphs obtained from each
method under investigation. The StARS and BIC graphs are provided in Figure 3. We see that
the StARS graph is remarkably simple and informative, exhibiting some cliques and hub genes. In
contrast, the BIC graph is very dense and possible useful association information is buried in the
large number of estimated edges. The selected graphs using AIC and K-CV are even more dense
than the BIC graph and will be reported elsewhere. A full treatment of the biological implication of
these two graphs validated by enrichment analysis will be provided in the full version of this paper.

6 Conclusions

The problem of estimating structure in high dimensions is very challenging. Casting the problem
in the context of a regularized optimization has led to some success, but the choice of the regu-
larization parameter is critical. We present a new method, StARS, for choosing this parameter in
high dimensional inference for undirected graphs. Like Meinshausen and Bühlmann’s stability se-
lection approach [12], our method makes use of subsampling, but it differs substantially from their
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(a) True graph (b) Oracle graph (c) StARS graph

(d) K-CV graph (e) BIC graph (f) AIC graph

Figure 2: Comparison of different methods on the data from the hub graphs (n = 400, p = 100).

(a) StARS graph (b) BIC graph

Figure 3: Microarray data example. The StARS graph is more informative graph than the BIC graph.

approach in both implementation and goals. For graphical models, we choose the regularization pa-
rameter directly based on the edge stability. Under mild conditions, StARS is partially sparsistent.
However, even without these conditions, StARS has a simple interpretation: we use the least amount
of regularization that simultaneously makes a graph sparse and replicable under random sampling.

Empirically, we show that StARS works significantly better than existing techniques on both syn-
thetic and microarray datasets. Although we focus here on graphical models, our new method is
generally applicable to many problems that involve estimating structure, including regression, clas-
sification, density estimation, clustering, and dimensionality reduction.
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