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Appendix

This appendix is mainly devoted to the proof of Theorem 2.1 in [1]. For clarity, we recall Algorithm
2 and Theorem 2.1 in [1].

The problem considered in [1] is

min F (x) ≡ f(x) + g(x). (1)

Algorithm 2 Alternating linearization method with skipping step
Input: x0 = y0

for k = 0, 1, · · · do
1. Solve xk+1 := argminxQ(x, yk) ≡ f(x) + g(yk)−

⟨
λk, x− yk

⟩
+ 1

2µ∥x− yk∥22;
2. If F (xk+1) > Q(xk+1, yk) then xk+1 := yk.
3. Solve yk+1 := argminy Qf (x

k+1, y);
4. λk+1 = ∇f(xk+1)− (xk+1 − yk+1)/µ.

end for

Theorem 2.1. Assume ∇f is Lipschitz continuous with constant L(f). For β/L(f) ≤ µ ≤ 1/L(f)
where 0 < β ≤ 1, Algorithm 2 satisfies

F (yk)− F (x∗) ≤ ∥x0 − x∗∥2

2µ(k + kn)
,∀k, (2)

where x∗ is an optimal solution of (1) and kn is the number of iterations until the k − th for which
F (xk+1) ≤ Q(xk+1, yk). Thus Algorithm 2 produces a sequence which converges to the optimal
solution in function value, and the number of iterations needed is O(1/ϵ) for an ϵ-optimal solution.

To prove Theorem 2.1, we need the following definitions and a lemma which is a generalization of
Lemma 2.3 in [2]. Let Ψ : Rn → R and Φ : Rn → R be convex functions and define

Qψ(u, v) := ϕ(u) + ψ(v) + ⟨γψ(v), u− v⟩+ 1

2µ
∥u− v∥22,

where γψ(v) is any subgradient in the subdifferential ∂ψ(v) of ψ(v) at the point v, and

pψ(v) := argmin
u
Qψ(u, v). (3)

Lemma A-1. Let Φ(·) = ϕ(·) + ψ(·). For any v, if

Φ(pψ(v)) ≤ Qψ(pψ(v), v), (4)
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then for any u,

2µ(Φ(u)− Φ(pψ(v))) ≥ ∥pψ(v)− u∥2 − ∥v − u∥2. (5)

Proof. From (4), we have
Φ(u)− Φ(pψ(v)) ≥ Φ(u)−Qψ(pψ(v), v)

= Φ(u)−
(
ϕ(pψ(v)) + ψ(v) + ⟨γψ(v), pψ(v)− v⟩+ 1

2µ∥pψ(v)− v∥22
)
.

(6)

Now since ϕ and ψ are convex we have

ϕ(u) ≥ ϕ(pψ(v)) + ⟨u− pψ(v), γϕ(pψ(v))⟩, (7)

ψ(u) ≥ ψ(v) + ⟨u− v, γψ(v)⟩, (8)

where γϕ(·) is a subgradient of ϕ(·) and γϕ(pψ(v)) satisfies the first-order optimality conditions for
(3), i.e.,

γϕ(pψ(v)) + γψ(v) +
1

µ
(pψ(v)− v) = 0. (9)

Summing (7) and (8) yields

Φ(u) ≥ ϕ(pψ(v)) + ⟨u− pψ(v), γϕ(pψ(v))⟩+ ψ(v) + ⟨u− v, γψ(v)⟩. (10)

Therefore, from (6), (9) and (10) it follows that

Φ(u)− Φ(pψ(v)) ≥ ⟨γψ(v) + γϕ(pψ(v)), u− pψ(v)⟩ −
1

2µ
∥pψ(v)− v∥22

= ⟨− 1

µ
(pψ(v)− v), u− pψ(v)⟩ −

1

2µ
∥pψ(v)− v∥22

=
1

2µ

(
∥pψ(v)− u∥2 − ∥u− v∥2

)
.

Proof. [Proof of Theorem 2.1] Let I be the set of all iteration indices until k − 1-st for which no
skipping occurs and let Ic be its complement. Let I = {ni}, i = 0, . . . , kn − 1. It follows that for
all n ∈ Ic x

n+1 = yn.

For n ∈ I we can apply Lemma A-1 to obtain the following inequalities. In (5), by letting ψ = f ,
ϕ = g, u = x∗ and u = xn+1, we get pψ(v) = yn+1, Φ = F and

2µ(F (x∗)− F (yn+1)) ≥ ∥yn+1 − x∗∥2 − ∥xn+1 − x∗∥2. (11)

Similarly, by letting ψ = g, ϕ = f , u = x∗ and v = yn in (5) we get pg(v) = xn+1, Φ = F and

2µ(F (x∗)− F (xn+1)) ≥ ∥xn+1 − x∗∥2 − ∥yn − x∗∥2. (12)

Taking the summation of (11) and (12) we get

2µ(2F (x∗)− F (xn+1)− F (yn+1)) ≥ ∥yn+1 − x∗∥2 − ∥yn − x∗∥2. (13)

For n ∈ Ic, (11) holds, and we get

2µ(F (x∗)− F (yn+1)) ≥ ∥yn+1 − x∗∥2 − ∥yn − x∗∥2, (14)

due to the fact that xn+1 = yn in this case.

Summing (13) and (14) over n = 0, 1, . . . , k − 1 we get

2µ((2|I|+ |Ic|)F (x∗)−
∑
n∈I

F (xn+1)−
k−1∑
n=0

F (yn+1)) (15)

≥
k−1∑
n=0

(
∥yn+1 − x∗∥2 − ∥yn − x∗∥2

)
=∥yk − x∗∥2 − ∥y0 − x∗∥2

≥− ∥x0 − x∗∥2.
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For any n, since Lemma A-1 holds for any u, letting u = xn+1 instead of x∗ we get from (11) that

2µ(F (xn+1)− F (yn+1)) ≥ ∥yn+1 − xn+1∥2 ≥ 0, (16)

or, equivalently,

2µ(F (xn)− F (yn)) ≥ ∥yn − xn∥2 ≥ 0. (17)

Similarly, for n ∈ I by letting u = yn instead of x∗ we get from (12) that

2µ(F (yn)− F (xn+1)) ≥ ∥xn+1 − yn∥2 ≥ 0. (18)

On the other hand, for n ∈ Ic, (18) also holds because xn+1 = yn, and hence holds for all n.

Adding (16) and (18) we obtain

2µ(F (yn)− F (yn+1)) ≥ 0. (19)

and adding (17) and (18) we obtain

2µ(F (xn)− F (xn+1)) ≥ 0. (20)

(19) and (20) show that the sequences F (yn) and F (xn) are non-increasing. Thus we have,

k−1∑
n=0

F (yn+1) ≥ kF (yk) and
∑
n∈I

F (xn+1) ≥ knF (x
k). (21)

Combining (15) and (21) yields

2µ
(
(k + kn)F (x

∗)− knF (x
k)− kF (yk)

)
≥ −∥x0 − x∗∥2. (22)

From (17) we know that F (xk) ≥ F (yk). Thus (22) implies that

2µ(k + kn)
(
F (yk)− F (x∗)

)
≤ ∥x0 − x∗∥2,

which gives us the desired result (2).

Also, for any given ϵ > 0, as long as k ≥ L(f)∥x0−x∗∥2

2βϵ , we have from (2) that F (yk)−F (x∗) ≤ ϵ;
i.e., the number of iterations needed is O(1/ϵ) for an ϵ-optimal solution.
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