Boosting Classifier Cascades

Mohammad J. Saberian Nuno Vasconcelos
Statistical Visual Computing Laboratory, Statistical Visual Computing Laboratory,
University of California, San Diego University of California, San Diego
La Jolla, CA 92039 La Jolla, CA 92039
saberi an@icsd. edu nuno@icsd. edu
Abstract

The problem of optimal and automatic design of a detectaadesis considered.
A novel mathematical model is introduced for a cascadedctiwteT his model is
analytically tractable, leads to recursive computatiom accounts for both clas-
sification and complexity. A boosting algorithm, FCBoostproposed for fully
automated cascade design. It exploits the new cascade nmithrnizes a La-
grangian cost that accounts for both classification riskamdplexity. It searches
the space of cascade configurations to automatically déterthe optimal num-
ber of stages and their predictors, and is compatible withtdttapping of neg-
ative examples and cost sensitive learning. Experimert® shat the resulting
cascades have state-of-the-art performance in varioupuigmvision problems.

1 Introduction

There are many applications where a classifier must be degignder computational constraints.
One problem where such constraints are extreme is that etbdgtection in computer vision.
To accomplish tasks such as face detection, the classifist pnacess thousands of examples per
image, extracted from all possible image locations andescal a rate of several images per second.
This problem has been the focus of substantial attentia®shre introduction of the detector cascade
architecture by Viola and Jones (VJ) in [13]. This archieetwas used to design the first real time
face detector with state-of-the-art classification accyrarhe detector has, since, been deployed
in many practical applications of broad interest, e.g. fdegection on low-complexity platforms
such as cameras or cell phones. The outstanding perfornoatioe VJ detector is the result of 1) a
cascade of simple to complex classifiers that reject mostfaces with a few machine operations,
2) learning with a combination of boosting and Haar featwfesxtremely low complexity, and 3)
use of bootstrapping to efficiently deal with the extremalgek class of non-face examples.

While the resulting detector is fast and accurate, the psooésiesigning a cascade is not. In
particular, VJ did not address the problem of how to autoradlyi determine the optimal cascade
configuration, e.g. the numbers of cascade stages and waraktes per stage, or even how to design
individual stages so as to guarantee optimality of the asaa a whole. In result, extensive manual
supervision is required to design cascades with good speadacy trade off. This includes trial-
and-error tuning of the false positive/detection rate ahestage, and of the cascade configuration.
In practice, the design of a good cascade can take up seveeisw This has motivated a number
of enhancements to the VJ training procedure, which can feniwed into three main areas: 1)
enhancement of the boosting algorithms used in cascadgndesip. cost-sensitive variations of
boosting [12, 4, 8], float Boost [5] or KLBoost [6], 2) post pessing of a learned cascade, by ad-
justing stage thresholds, to improve performance [7], drep8cialized cascade architectures which
simplify the learning process, e.g. the embedded cascduir(Boost) of [15], where each stage
contains all weak learners of previous stages. These eatr@mts do not address the fundamental
limitations of the VJ design, namely how to guarantee oVveesdcade optimality.

= = =AdaBoost = = = AdaBoost
—— ChainBoost —— ChainBoost

...........
.....

i ! 3
30 40 50 o 10 20 30 40 50
Iterations Iterations

Figure 1:Plots of Ry, (left) and L (right) for detectors designed with AdaBoost and ChainBoost.

More recently, various works have attempted to addresptbisiem [9, 8, 1, 14, 10]. However, the
proposed algorithms still rely on sequential learning afozale stages, which is suboptimal, some-
times require manual supervision, do not search over casoaafigurations, and frequently lack
a precise mathematical model for the cascade. In this woekaddress these problems, through
two main contributions. The first is a mathematical model dadetector cascade, which is an-
alytically tractable, accounts for both classification aetnplexity, and is amenable to recursive
computation. The second is a boosting algorithm, FCBobst, éxploits this model to solve the
cascade learning problem. FCBoost solves a Lagrangiamization problem, where the classifi-
cation risk is minimized under complexity constraints. Tisk is that of the entire cascade, which
is learned holistically, rather than through sequentagstdesign, and FCBoost determines the opti-
mal cascade configuration automatically. It is also conppetivith bootstrapping and cost sensitive
boosting extensions, enabling efficient sampling of negagxamples and explicit control of the
false positive/detection rate trade off. An extensive eixpental evaluation, covering the problems
of face, car, and pedestrian detection demonstrates i&sisuity over previous approaches.

2 Problem Definition

A binary classifierh(z) maps an example into a class label) € {—1, 1} according toh(z) =
sign[f(x)], wheref(z) is a continuous-valued predictor Optimal classifiers mine a risk

Ri(f) = Exy{Lly, f(z)]} = \S | ZL Yi, f(3)] @

whereS; = {(z1,v1),..., (zn,yn)} is @ set of training examplegi € {1, -1} the class label of
exampler;, andL[y, f(x)] aloss function. Commonly used losses are upper bounds aetbene
loss, whose risk is the probability of classification errfdence,R;, is a measure of classification
accuracy. For applications with computational constsaiaoptimal classifier design must also take
into consideration the classification complexity. Thiséhiaved by defining a computational risk

Re(f) = Exy{Lcly,C(f(|S|ZLC Yi, C(f (24))] 2

whereC(f(x)) is the complexity of evaluating(x), andL¢ [y, C(f(x))] aloss function that encodes
the cost of this operation. In most detection problems etargre rare events and contribute little to
the overall complexity. In this case, which we assume thhoug this work,L¢[1,C(f(2))] = 0
andL¢o[—1,C(f(x))] is denotedL[C(f(x))]. The computational risk is thus

Re(f) L ST Lofe(f (). 3)

=
191, -

whereS; contains the negative examples%f Usually, more accurate classifiers are more complex.
For example in boosting, where the decision rule is a contibinaf weak rules, a finer approxima-
tion of the classification boundary (smaller error) regsiimre weak learners and computation.

Q

Optimal classifier design under complexity constraints ma@blem of constrained optimization,
which can be solved with Lagrangian methods. These miniaizagrangian

L(fiS) = a7 > Lly fx)] + == 3 Lelc(f()], 4)
‘S | x; €St |St ‘ €S,

wheren is a Lagrange multiplier, which controls the trade-off bes&w error rate and complexity.
Figure 1 illustrates this trade-off, by plotting the evadatof R;, andL as a function of the boosting
iteration, for the AdaBoost algorithm [2]. While the risk ays decreases with the addition of weak
learners, this is not true for the Lagrangian. After a smathber of iterations, the gain in accuracy
does not justify the increase in classifier complexity. Tlsign of classifiers under complexity
constraints has been addressed through the introductidete€tor cascades. A detector cascade
H(z) implements a sequence of binary decisiéngr),i = 1...m. An examplex is declared a
target ¢y = 1) if and only if it is declared a target by all stages/sfi.e. h;(x) = 1, Vi. Otherwise,
the example is rejected. For applications where the mgjofiexamples can be rejected after a
small number of cascade stages, the average classificatienstvery small. However, the problem
of designing an optimal detector cascade is still poorlyanstbod. A popular approach, known as
ChainBoost or embedded cascade [15], is to 1) use standard boosting algorithms to desigrtectiar,
and 2) insert a rejection point after each weak learner. iBh&mple to implement, and creates
a cascade with as many stages as weak learners. Howeventitbauction of the intermediate
rejection pointsa posteriori of detector design, sacrifices the risk-optimality of théedeor. This

is illustrated in Figure 1, where the evolution 8f, and £ are also plotted for ChainBoost. In this
example £ is monotonically decreasing, i.e. the addition of weakreas no longer carries a large
complexity penalty. This is due to the fact that most negativamples are rejected in the earliest
cascade stages. On the other hand, the classification makrns than double that of the original
boosted detector. It is not known how close ChainBoost iptoral, in the sense of (4).

3 Classifier cascades

In this work, we seek the design of cascades that are prowgitiynal under (4). We start by
introducing a mathematical model for a detector cascade.

3.1 Cascade predictor

Let H(z) = {h1(x),...,hm(x)} be a cascade oh detectorsh;(z) = sgn[f:(x)]. To develop
some intuition, we start with a two-stage cascades 2. The cascade implements the decision rule

H(F)(z) = sgn[F(z)] (5)

where
o) = Fih@ ={ 50 F DS ©
= fiu(=f1) +u(fi)fe (7)

is denoted theascade predictor, (.) is the step function and we omit the dependencer dar
notational simplicity. This equation can be extended to scade ofm stages, by replacing the
predictor of the second stage, when= 2, with the predictor of the remaining cascade, whers

larger. LettingF; = F(f;,..., fm) be the cascade predictor for the cascade composed of gtages
tom
F=F = fiu(=fr) +u(fi) Fa. (8)
More generally, the following recursion holds
Fro = fru(—fr) +ulfe) Frp 9)

with initial condition F,,, = f,,. In Appendix A, it is shown that combining (8) and (9) recuedy
leads to

F = TLm + T2,mfm (10)
= T+ Topfru(—fi) + TopFrpu(fr), k<m. (11)

with initial conditionsT} o = 0, T o = 1 and
T g1 =Tk + feu(—fi) Dok, To g1 = Top u(fr). (12)

SinceT , Tz 1, andFy 11 do not depend oif, (10) and (11) make explicit the dependence of the
cascade predictof, on the predictor of thé!” stage.

3.2 Differentiable approximation

Letting 7 (fx + eg) = F(f1,-., fx + €9, ..fm), the design of boosting algorithms requires the eval-
uation of bothF(f, + €g), and the functional derivative of with respect to eaclfy, along any
directiong

<OF(fr), g >= dif(fk + 69)’
€ =0

These are straightforward for the last stage since, fron) (10
F(fm+eg)=a™+eb™g, <OF(fm),g>=0b"g, (13)
where
a™ = Tl,m + T2,m,fm = F(fm)7 b = T2,m- (14)
In general, however, the right-hand side of (11) is nonedéhtiable, due to the(.) functions. A
differentiable approximation is possible by adopting thessic sigmoidal approximation(z) ~

%, whereo is a relaxation parameter. Using this approximation in (11)

F=F(fr) = Tix+Topfe(l—u(fe)) + ToxFrriu(fe) (15)
1
~ Tp+Topfe+ §T2,k[7:k+1 — fil[tanh(o fi) + 1]. (16)
It follows that
<OF(fr),g> = by 17
1

bF = §T27k. {[1 — tanh(o fi)] + o[Frs1 — fu][l — tanh2(o'fk)]} . (18)

F(fr + eg) can also be simplified by resorting to a first order Tayloreseexpansion aroungl,
F(fe+eg) =~ d"+ebiyg (19)

o = F(fi) = Top+ Tox {fk b 2 Funr - flltanh(of) + 1]} o)

3.3 Cascade complexity

In Appendix B, a similar analysis is performed for the congpiainal complexity. Denoting b§(fx)
the complexity of evaluating,, it is shown that

C(F) = Pri + PoiC(fr) + Popu(fr)C(Frg1)- (21)
with initial conditionsC(F,,+1) =0, P,; =0, P,; = 1 and
Pi g1 =P1 i +C(fx) Po P51 = P pu(fr). (22)

This makes explicit the dependence of the cascade comphaxithe complexity of thé'" stage.

In practice, f, =), i1 for g € U, wherel{ is a set of functions of approximately identical
complexity. For example, the set of projections into Haatdees, in whiclC(f;) is proportional to

the number of featureg. In general,f;, has three components. The first is a predictor that is also
used in a previous cascade stage, ¢xdx) = fr—1(x) + cg(x) for an embedded cascade. In this
casef;—1(z) has already been evaluated in stdgel and is available with no computational cost.
The second is the sé(f;) of features that have been used in some sjage:. These features are
also available and require minimal computation (multiglion by the weight; and addition to the
running sum). The third is the saf(f;) of features that have not been used in any sjaget. The

overall computation is

C(fk) = IN(fi)l + AO(fi)l, (23)
where\ < 1 is the ratio of computation required to evaluate a used vsv feature. For Haar
wavelets \ =~ % It follows that updating the predictor of thié" stage increases its complexity to

_fC(fr)+ N fgeO(fr)
ctren ={ I 1T g eV &9
and the complexity of the cascade to
C(F(fr+eg) = Pii+ PopC(fi +e€g) + Pou(fi + €9)C(Fit1) (25)
= "+ C(fi + €g) + Bru(fi + €g) (26)
with
" =Py Y =Pos B = PopC(Fiyr) (27)

3.4 Neutral predictors

The models of (10), (11) and (21) will be used for the desigoptimal cascades. Another observa-
tion that we will exploit is that

H[}_(flvvfmvfm)] = H[]:(flv---afm)]'

This implies that repeating the last stage of a cascade duieshange its decision rule. For this
reasom(z) = f,(x) is referred to as theeutral predictor of a cascade of stages.

4 Boosting classifier cascades
In this section, we introduce a boosting algorithm for cdecdesign.

4.1 Boosting

Boosting algorithms combine weak learners to produce a tmgecision boundary. Boost-
ing iterations are gradient descent steps towards theqtoedi(x) of minimum risk for the loss
L[y, f(x)] = e~¥/(*) [3]. Given a sel/ of weak learners, the functional derivative®f along the
direction of weak leaney is

CSRL(f)g> — L >+eg<m))} _ awsg(z), (28
L(f):9 IStIZ{ |S“X:y 9((28)

e=0
wherew; = e~¥f(:) js the weight ofr;. Hence, the best update is
g"(z) = argmax < —dRL(f),9 > . (29)
geu

Letting I(x) be the indicator function, the optimal step size along thecsed directiong*(x), is

: —y(Fleteg @) _ Ly 2o wid (yi = g7 (x4))

* _ vi(f(wi)teg™ (@) — i T AT

¢* =argmin » e Y = —log . (30)
cER zl: 2 > s wil (yi # g*(x:))

The predictor is updated intt(x) = f(x) + ¢*¢*(z) and the procedure iterated.
4.2 Cascade risk minimization

To derive a boosting algorithm for the design of detectorcadss, we adopt the loss
Ly, F(f1,..., fm)(x)] = e7 971 fm) @) and minimize the cascade risk

1
Rp(F) = Exy e T (frifm)) oy — e~ YViF (f1ye i fm) (@)
t P
Using (13) and (19),

1 d k k
< SR (F g >= 72 2 emvila® (wi)teb (xi)g(xi)]] = E : wkblg(31
L(F(fr), g S| 7‘, |:de |St| Yyiw) (31)

e=0

wherew! = e=via" (@) pk = b (z;) anda*, b are given by (14), (18), and (20). The optimal
descent direction and step size for #ié stage are then

g = argmez%j(< =0RL(F(fx)),g9 > (32)
g

* : —y;b¥cgl (z;

¢ = argmin E wr e Yl 9k (@), (33)

In general, because thé are not constant, there is no closed form 4pr and a line search must
be used. Note that, sinaé (z;) = F(fx)(z;), the weighting mechanism is identical to that of
boosting, i.e. points are reweighed according to how wel tre classified by the current cascade.
Given the optimat™*, g* for all stages, the impact of each update in the overall chsdak, Ry, is
evaluated and the stage of largest impact is updated.

4.3 Adding a new stage

Searching for the optimal cascade configuration requirepat for the addition of new stages,
whenever necessary. This is accomplished by including &ralquredictor as the last stage of the
cascade. If adding a weak learner to the neutral stage retlueeisk further than the corresponding
addition to any other stage, a new stage (containing thealquredictor plus the weak learner) is
created. Since this new stage includes the last stage of¢hips cascade, the process mimics the
design of an embedded cascade. However, there are notiessithat a new stage should be added
at each boosting iteration, or consist of a single weak karn

4.4 Incorporating complexity constraints

Joint optimization of speed and accuracy, requires themimgtion of the Lagrangian of (4). This
requires the computation of the functional derivatives

< SRe(F () >= o= St | LelC(F U+ co)wi] 9

EAl de o

wherey? = I(y; = —1). Similarly to boosting, which upper bounds the zero-one igs-y f) by
the exponential loss™¥/, we rely on a loss that upper-bounds the true complexitys Tipper-bound
is a combination of a boosting-style boungf +g) < /<9, and the bound(f +eg) < C(f)+1,
which follows from (24). Using (26),

LolC(F(fr +€9)(wi)] = Lela® + " C(fi + €g) + BEul(fr + €g)] (35)
= " +5C(fr) + 1) + Brerte (36)
and, since{ & L [C(F(fx + €9))] }._, = B%el*g,
1

<ORG(F(f0)9> = 1o D uivrsrg(w:) (37)
t i

with 8F = 8*(z;) andyF = e/+(*i), The derivative of (4) with respect to tié" stage predictor is
then

<OL(F(f)),g> = <ORL(F(fr)),g>+n<IdRc(F(fr)),g > (38)
_ _yiwfbf yfﬂ’fﬁf)
- S e o)

g

with w? = e~¥" (@) anda* andb* given by (14), (18), and (20). Given a set of weak leardgrs
the optimal descent direction and step size forktestage are then

gr = arg max < —0L(F(fx)),g > (40)
g
. 1 k —y:bFca* (., n x
¢t =argmin{ — wie Vi veg (@) 4 7 fﬁfﬁcg’“(ml) . 41
k gceR{|St§i: |s;\§i:yw ()

A pair (gj. ;¢ 1) is found among the s&?(f;) and another among the gét— O(f) . The one

that most reduces (4) is selected as the best update féf'tretage and the stage with the largest
impact is updated. This gradient descent procedure is ddfast Cascade Boosting (FCBoost).

5 Extensions
FCBoost supports a number of extensions that we briefly désituthis section.

5.1 Cost Sensitive Boosting

As is the case for AdaBoost, it is possible to use cost seasitsks in FCBoost. For exam-
ple, the risk of CSAdaBoost: Ry (f) = Ex.y{y‘e ¥/ ®} [12] or Asym-AdaBoost: Ry (f) =
Exy{e v"v/(®1[8], wherey® = CI(y = —1) + (1 — C)I(y = 1) andC is a cost factor.

0.36

Train Set Test Set
Data Set | pos neg pos | neg
Face 9,000 9,000 | 832 832 |~
Car 1,000] 10,000| 100 | 2,000
Pedestrian | 1,000 | 10,000 200 | 2,000

0.32

0.28

0.24 L v
0 10 20 30
RC

Figure 2:Left: data set characteristics. Right: Trade-off between the eRg) Gnd complexity Rc) com-
ponents of the risk ag changes in (4).

Table 1:Performance of various classifiers on the face, car, and pedestsissets.

Face Car Pedestrian
Method Ry, Re L Ry, Re L Ry, Re L
AdaBoost 0.20| 50 1.20 | 0.22| 50 1.22 | 0.35| 50 1.35
ChainBoost 0.45| 265| 0.50| 0.65| 2.40| 0.70 | .052 | 3.34 | 0.59
FCBoost (n = 0.02) 0.30| 493| 040 | 0.44| 5.38| 0.55| 0.46 | 4.23 | 0.54

5.2 Bootstrapping

Bootstrapping is a procedure to augment the training seydiyg false positives of the current
classifier as the training set for the following [11]. Thisgroves performance, but is feasible only
when the bootstrapping procedutllees not affect previously rejected examples. Otherwise, the
classifier will forget the previous negatives while leagifrom the new ones. Since FCBoost learns
all cascade stages simultaneously, and any stage can chtiegbootstrapping, this condition is
violated. To overcome the problem, rather than replacihgegjative examples with false positives,
only a random subset is replaced. The negatives that remée itraining set prevent the classifier
from forgetting about the previous iterations. This metlsagsed to update the training set whenever
the false positive rate of the cascade being learned reatbes

6 Evaluation

Several experiments were performed to evaluate the peafteenof FCBoost, using face, car, and
pedestrian recognition data sets, from computer visioalllcases, Haar wavelet features were used
as weak learners. Figure 2 summarizes the data sets.

Effect of n: We started by measuring the impactipfsee (4), on the accuracy and complexity of
FCBoost cascades. Figure 2 plots the accuracy componeheaifsk, Ry, as a function of the
complexity componentR«, on the face data set, for cascades trained with diffeyefhe leftmost
point corresponds tg = 0.05, and the rightmost tg = 0. As expected, ag decreases the cascade
has lower error and higher complexity. In the remaining expents we used = 0.02.

Cascade comparison:Figure 3 (a) repeats the plots of the Lagrangian of the rigkvshin Fig-

ure 1, for classifiers trained with) boosting iterations, on the face data. In addition to AdaBoo
and ChainBoost, it presents the curves of FCBoost wijth=(0.02) and without § = 0) com-
plexity constraints. Note that, in the latter case, permoe is in between those of AdaBoost and
ChainBoost. This reflects the fact that FCBoost 0) does produce a cascade, but this cascade
has worse accuracy/complexity trade-off than that of CBaost. On the other hand, the inclusion
of complexity constraints, FCBoos} & 0.02), produces a cascade with the best trade-off. These
results are confirmed by Table 1, which compares classifigrssd on all data sets. In all cases, Ad-
aBoost detectors have the lowest error, but at a tremendouputational cost. On the other hand,
ChainBoost cascades are always the fastest, at the cost bfghest classification error. Finally,
FCBoost {; = 0.02) achieves the best accuracy/complexity trade-off: iteads has the lowest risk
LagrangianC. Itis close to ten times faster than the AdaBoost detecial es half of the increase

in classification error (with respect to AdaBoost) of the BB@ost cascade. Based on these results,
FCBoost {) = 0.02) was used in the last experiment.

0.8 T T T T f 94
—6— FCBoost n=0
0.7r FCBoost n=0.02 90t
AdaBoost &
i o4
§ —*—ChainBoost p —>— Viola & Jones
- 06F - -% —6— ChainBoost
3 % a5t —#%— FloatBoost
o = = = WaldBoost
051 —— FCBoost
04 ; : . 80 I I I I | I
o 10 20 30 40 50 0 25 50 75 100 125 150
Iterations Number of False Positives
@ (b)

Figure 3:a) Lagrangian of the risk for classifiers trained with various boostingithgos. b) ROC of various
detector cascades on the MIT-CMU data set.

Table 2:Comparison of the speed of different detectors.

Method | VJ [13] | FloatBoost [5]| ChainBoost [15]| WaldBoost [9]| [8] | FCBoost
Evals 8 18.9 18.1 10.84 15.45 7.2

Face detection:We finish with a face detector designed with FCBoest{(0.02), bootstrapping,
and130K Haar features. To make the detector cost-sensitive, weCSédlaBoost with C' = 0.99.
Figure 3 b) compares the resulting ROC to those of VJ [13],itB@ost [15], FloatBoost [5] and
WaldBoost [9]. Table 2 presents a similar comparison fordatector speed (average number of
features evaluated per patch). Note the superior perfarenahthe FCBoost cascade in terms of
both accuracy and speed. To the best of our knowledge, this isaliedt face detector reported to
date.

A Recursive form of cascade predictor

Applying (9) recursively to (8)

F = fiu(=fi) +u(fi)F2 (42)
= fiu(—=f1) +u(fr) [foul—f2) +u(f2)Fs] (43)
fru(=f1) + fou(fr)u(—f2) +u(fi)u(f2) [fsu(—f3) + u(fs)Fa] (44)
k-1
= > fiu(=fi) [T w(r) + Fe [] w(s) (45)
im1 j<i i<k
= T +TorFi (46)

whereT} ;, = Zf;ll fou(—fi) [1;<; w(f;) andTz . = T, u(f;) satisfy the recursions of (12).
Combining (46) and (9) then leads to (11). (10) follows fre¥B)and the initial conditiotF,,, = f;,.

B Recursive form of cascade complexity

LetC(fi) be the complexity of evaluatingy,. Then

C(F) = C(fr)+u(fi)C(F2) (47)
= C(f1) +u(f1)[C(f2) + u(f2)C(F3)] (48)
k—1
= Y ct) [Tusy) +c) [Tulr) (49)
i=1 j<i j<k
= P+ P iC(F) (50)
with
P g1 =Py +C(fx) Pog P j+1 = Papu(fi) (51)
and initial conditionsP; ; = 0, P»; = 1. The relationship of (47) is a special case of
C(Fk) = C(fr) + u(fr)C(Frt1) (52)

with initial conditionsC(F,,) = C(f,.) andC(F,,+1) = 0. Combining (52) with (50) leads to (21).

References

[1] S. C. Brubaker, M. D. Mullin, and J. M. Rehg. On the desifnascades of boosted ensembles
for face detectionlnternational Journal of Computer Vision, 77:65-86, 2008.
[2] Y. Freund and R. E. Schapire. A decision-theoretic gelieation of on-line learning and an
application to boosting, 1997.
[3] J. Friedman, T. Hastie, and R. Tibshirani. Additive ktig regression: a statistical view of
boosting.Annals of Statistics, 28:2000, 1998.
[4] X. Hou, C.-L. Liu, and T. Tan. Learning boosted asymnetiassifiers for object detection.
In |EEE Conference on Computer Vision and Pattern Recognition,, pages 330-338, 2006.
[5] S. Z. Li and Z. Zhang. Floatboost learning and statistfeae detection. |EEE Trans. on
Pattern Analysis and Machine Intelligence, 26(9):1112-1123, 2004.
[6] C. Liu and H.-Y. Shum;. Kullback-leibler boosting. IEEE Conference on Computer Vision
and Pattern Recognition, pages 587-594, 2003.
[7] H. Luo. Optimization design of cascaded classifiersltHEE Conference on Computer Vision
and Pattern Recognition,, pages 480-485, 2005.
[8] H. Masnadi-Shirazi and N. Vasconcelos. High detectiate cascades for real-time object
detection. INEEE International Conference on Computer Vision, volume 2, pages 1-6, 2007.
[9] J. Sochman and J. Matas. Waldboost - learning for timesttamed sequential detection. In
| EEE Conference on Computer Vision and Pattern Recognition, pages 150-157, 2005.
[10] J. Sun, J. M. Rehg, and A. Bobick. Automatic cascadaimgiwith perturbation biaslEEE
Conference on Computer Vision and Pattern Recognition, 2:276—283, 2004.
[11] K. K. Sung and T. Poggio. Example based learning for viiased human face detectioBEE
Trans. on Pattern Analysis and Machine Intelligence, 20:39-51, 1998.
[12] P. Viola and M. Jones. Fast and robust classificationguasymmetric adaboost and a detector
cascade. Idvancesin Neural Information Processing System, pages 1311-1318, 2001.
[13] P. Viola and M. Jones. Robust real-time object detectloternational Journal of Computer
Vision, 57(2):137-154, 2004.
[14] J. Wu, S. Brubaker, M. D. Mullin, and J. M. Rehg. Fast asyetric learning for cascade face
detection.|EEE Trans. on Pattern Analysis and Machine Intelligence, 3:369-382, 2008.
[15] R. Xiao, L. Zhu, and H.-J. Zhang. Boosting chain leagnfor object detection. IHEEE
International Conference on Computer Vision, pages 709-715, 2003.

