
Boosting Classifier Cascades

Mohammad J. Saberian
Statistical Visual Computing Laboratory,

University of California, San Diego
La Jolla, CA 92039

saberian@ucsd.edu

Nuno Vasconcelos
Statistical Visual Computing Laboratory,

University of California, San Diego
La Jolla, CA 92039
nuno@ucsd.edu

Abstract

The problem of optimal and automatic design of a detector cascade is considered.
A novel mathematical model is introduced for a cascaded detector. This model is
analytically tractable, leads to recursive computation, and accounts for both clas-
sification and complexity. A boosting algorithm, FCBoost, is proposed for fully
automated cascade design. It exploits the new cascade model, minimizes a La-
grangian cost that accounts for both classification risk andcomplexity. It searches
the space of cascade configurations to automatically determine the optimal num-
ber of stages and their predictors, and is compatible with bootstrapping of neg-
ative examples and cost sensitive learning. Experiments show that the resulting
cascades have state-of-the-art performance in various computer vision problems.

1 Introduction

There are many applications where a classifier must be designed under computational constraints.
One problem where such constraints are extreme is that of object detection in computer vision.
To accomplish tasks such as face detection, the classifier must process thousands of examples per
image, extracted from all possible image locations and scales, at a rate of several images per second.
This problem has been the focus of substantial attention since the introduction of the detector cascade
architecture by Viola and Jones (VJ) in [13]. This architecture was used to design the first real time
face detector with state-of-the-art classification accuracy. The detector has, since, been deployed
in many practical applications of broad interest, e.g. facedetection on low-complexity platforms
such as cameras or cell phones. The outstanding performanceof the VJ detector is the result of 1) a
cascade of simple to complex classifiers that reject most non-faces with a few machine operations,
2) learning with a combination of boosting and Haar featuresof extremely low complexity, and 3)
use of bootstrapping to efficiently deal with the extremely large class of non-face examples.

While the resulting detector is fast and accurate, the process of designing a cascade is not. In
particular, VJ did not address the problem of how to automatically determine the optimal cascade
configuration, e.g. the numbers of cascade stages and weak learners per stage, or even how to design
individual stages so as to guarantee optimality of the cascade as a whole. In result, extensive manual
supervision is required to design cascades with good speed/accuracy trade off. This includes trial-
and-error tuning of the false positive/detection rate of each stage, and of the cascade configuration.
In practice, the design of a good cascade can take up several weeks. This has motivated a number
of enhancements to the VJ training procedure, which can be organized into three main areas: 1)
enhancement of the boosting algorithms used in cascade design, e.g. cost-sensitive variations of
boosting [12, 4, 8], float Boost [5] or KLBoost [6], 2) post processing of a learned cascade, by ad-
justing stage thresholds, to improve performance [7], and 3) specialized cascade architectures which
simplify the learning process, e.g. the embedded cascade (ChainBoost) of [15], where each stage
contains all weak learners of previous stages. These enhancements do not address the fundamental
limitations of the VJ design, namely how to guarantee overall cascade optimality.

1

0 10 20 30 40 50
0.2

0.4

0.6

0.8

Iterations

 R
L

AdaBoost
ChainBoost

0 10 20 30 40 50
0.5

0.6

0.7

0.8

Iterations

L

AdaBoost
ChainBoost

Figure 1:Plots ofRL (left) andL (right) for detectors designed with AdaBoost and ChainBoost.

More recently, various works have attempted to address thisproblem [9, 8, 1, 14, 10]. However, the
proposed algorithms still rely on sequential learning of cascade stages, which is suboptimal, some-
times require manual supervision, do not search over cascade configurations, and frequently lack
a precise mathematical model for the cascade. In this work, we address these problems, through
two main contributions. The first is a mathematical model fora detector cascade, which is an-
alytically tractable, accounts for both classification andcomplexity, and is amenable to recursive
computation. The second is a boosting algorithm, FCBoost, that exploits this model to solve the
cascade learning problem. FCBoost solves a Lagrangian optimization problem, where the classifi-
cation risk is minimized under complexity constraints. Therisk is that of the entire cascade, which
is learned holistically, rather than through sequential stage design, and FCBoost determines the opti-
mal cascade configuration automatically. It is also compatible with bootstrapping and cost sensitive
boosting extensions, enabling efficient sampling of negative examples and explicit control of the
false positive/detection rate trade off. An extensive experimental evaluation, covering the problems
of face, car, and pedestrian detection demonstrates its superiority over previous approaches.

2 Problem Definition

A binary classifierh(x) maps an examplex into a class labely ∈ {−1, 1} according toh(x) =
sign[f(x)], wheref(x) is a continuous-valued predictor. Optimal classifiers minimize a risk

RL(f) = EX,Y {L[y, f(x)]} ≃
1

|St|

∑

i

L[yi, f(xi)] (1)

whereSt = {(x1, y1), . . . , (xn, yn)} is a set of training examples,yi ∈ {1,−1} the class label of
examplexi, andL[y, f(x)] a loss function. Commonly used losses are upper bounds on thezero-one
loss, whose risk is the probability of classification error.Hence,RL is a measure of classification
accuracy. For applications with computational constraints, optimal classifier design must also take
into consideration the classification complexity. This is achieved by defining a computational risk

RC(f) = EX,Y {LC [y, C(f(x))]} ≃
1

|St|

∑

i

LC [yi, C(f(xi))] (2)

whereC(f(x)) is the complexity of evaluatingf(x), andLC [y, C(f(x))] a loss function that encodes
the cost of this operation. In most detection problems, targets are rare events and contribute little to
the overall complexity. In this case, which we assume throughout this work,LC [1, C(f(x))] = 0
andLC [−1, C(f(x))] is denotedLC [C(f(x))]. The computational risk is thus

RC(f) ≈
1

|S−

t |

∑

xi∈S
−

t

LC [C(f(xi))]. (3)

whereS−

t contains the negative examples ofSt. Usually, more accurate classifiers are more complex.
For example in boosting, where the decision rule is a combination of weak rules, a finer approxima-
tion of the classification boundary (smaller error) requires more weak learners and computation.

Optimal classifier design under complexity constraints is aproblem of constrained optimization,
which can be solved with Lagrangian methods. These minimizea Lagrangian

L(f ;St) =
1

|St|

∑

xi∈St

L[yi, f(xi)] +
η

|S−

t |

∑

xi∈S
−

t

LC [C(f(xi))], (4)

2

whereη is a Lagrange multiplier, which controls the trade-off between error rate and complexity.
Figure 1 illustrates this trade-off, by plotting the evolution ofRL andL as a function of the boosting
iteration, for the AdaBoost algorithm [2]. While the risk always decreases with the addition of weak
learners, this is not true for the Lagrangian. After a small number of iterations, the gain in accuracy
does not justify the increase in classifier complexity. The design of classifiers under complexity
constraints has been addressed through the introduction ofdetector cascades. A detector cascade
H(x) implements a sequence of binary decisionshi(x), i = 1 . . .m. An examplex is declared a
target (y = 1) if and only if it is declared a target by all stages ofH, i.e. hi(x) = 1,∀i. Otherwise,
the example is rejected. For applications where the majority of examples can be rejected after a
small number of cascade stages, the average classification time is very small. However, the problem
of designing an optimal detector cascade is still poorly understood. A popular approach, known as
ChainBoost or embedded cascade [15], is to 1) use standard boosting algorithms to design a detector,
and 2) insert a rejection point after each weak learner. Thisis simple to implement, and creates
a cascade with as many stages as weak learners. However, the introduction of the intermediate
rejection points,a posteriori of detector design, sacrifices the risk-optimality of the detector. This
is illustrated in Figure 1, where the evolution ofRL andL are also plotted for ChainBoost. In this
example,L is monotonically decreasing, i.e. the addition of weak learners no longer carries a large
complexity penalty. This is due to the fact that most negative examples are rejected in the earliest
cascade stages. On the other hand, the classification risk ismore than double that of the original
boosted detector. It is not known how close ChainBoost is to optimal, in the sense of (4).

3 Classifier cascades

In this work, we seek the design of cascades that are provablyoptimal under (4). We start by
introducing a mathematical model for a detector cascade.

3.1 Cascade predictor

Let H(x) = {h1(x), . . . , hm(x)} be a cascade ofm detectorshi(x) = sgn[fi(x)]. To develop
some intuition, we start with a two-stage cascade,m = 2. The cascade implements the decision rule

H(F)(x) = sgn[F(x)] (5)

where

F(x) = F(f1, f2)(x) =

{

f1(x) if f1(x) < 0
f2(x) if f1(x) ≥ 0

(6)

= f1u(−f1) + u(f1)f2 (7)

is denoted thecascade predictor, u(.) is the step function and we omit the dependence onx for
notational simplicity. This equation can be extended to a cascade ofm stages, by replacing the
predictor of the second stage, whenm = 2, with the predictor of the remaining cascade, whenm is
larger. LettingFj = F(fj , . . . , fm) be the cascade predictor for the cascade composed of stagesj
tom

F = F1 = f1u(−f1) + u(f1)F2. (8)

More generally, the following recursion holds

Fk = fku(−fk) + u(fk)Fk+1 (9)

with initial conditionFm = fm. In Appendix A, it is shown that combining (8) and (9) recursively
leads to

F = T1,m + T2,mfm (10)

= T1,k + T2,kfku(−fk) + T2,kFk+1u(fk), k < m. (11)

with initial conditionsT1,0 = 0, T2,0 = 1 and

T1,k+1 = T1,k + fku(−fk)T2,k, T2,k+1 = T2,k u(fk). (12)

SinceT1,k, T2,k, andFk+1 do not depend onfk, (10) and (11) make explicit the dependence of the
cascade predictor,F , on the predictor of thekth stage.

3

3.2 Differentiable approximation

LettingF(fk + ǫg) = F(f1, .., fk + ǫg, ..fm), the design of boosting algorithms requires the eval-
uation of bothF(fk + ǫg), and the functional derivative ofF with respect to eachfk, along any
directiong

< δF(fk), g >=
d

dǫ
F(fk + ǫg)

∣

∣

∣

∣

ǫ=0

.

These are straightforward for the last stage since, from (10),
F(fm + ǫg) = am + ǫbmg, < δF(fm), g >= bmg, (13)

where
am = T1,m + T2,mfm = F(fm), bm = T2,m. (14)

In general, however, the right-hand side of (11) is non-differentiable, due to theu(.) functions. A
differentiable approximation is possible by adopting the classic sigmoidal approximationu(x) ≈
tanh(σx)+1

2 , whereσ is a relaxation parameter. Using this approximation in (11),
F = F(fk) = T1,k + T2,kfk(1 − u(fk)) + T2,kFk+1u(fk) (15)

≈ T1,k + T2,kfk +
1

2
T2,k[Fk+1 − fk][tanh(σfk) + 1]. (16)

It follows that
< δF(fk), g > = bkg (17)

bk =
1

2
T2,k

{

[1 − tanh(σfk)] + σ[Fk+1 − fk][1 − tanh2(σfk)]
}

. (18)

F(fk + ǫg) can also be simplified by resorting to a first order Taylor series expansion aroundfk

F(fk + ǫg) ≈ ak + ǫbkg (19)

ak = F(fk) = T1,k + T2,k

{

fk +
1

2
[Fk+1 − fk][tanh(σfk) + 1]

}

. (20)

3.3 Cascade complexity

In Appendix B, a similar analysis is performed for the computational complexity. Denoting byC(fk)
the complexity of evaluatingfk, it is shown that

C(F) = P1,k + P2,kC(fk) + P2,ku(fk)C(Fk+1). (21)
with initial conditionsC(Fm+1) = 0, P1,1 = 0, P2,1 = 1 and

P1,k+1 = P1,k + C(fk)P2,k P2,k+1 = P2,k u(fk). (22)

This makes explicit the dependence of the cascade complexity on the complexity of thekth stage.

In practice,fk =
∑

l clgl for gl ∈ U , whereU is a set of functions of approximately identical
complexity. For example, the set of projections into Haar features, in whichC(fk) is proportional to
the number of featuresgl. In general,fk has three components. The first is a predictor that is also
used in a previous cascade stage, e.g.fk(x) = fk−1(x) + cg(x) for an embedded cascade. In this
case,fk−1(x) has already been evaluated in stagek− 1 and is available with no computational cost.
The second is the setO(fk) of features that have been used in some stagej ≤ k. These features are
also available and require minimal computation (multiplication by the weightcl and addition to the
running sum). The third is the setN (fk) of features that have not been used in any stagej ≤ k. The
overall computation is

C(fk) = |N (fk)| + λ|O(fk)|, (23)
whereλ < 1 is the ratio of computation required to evaluate a used vs. new feature. For Haar
wavelets,λ ≈ 1

20 . It follows that updating the predictor of thekth stage increases its complexity to

C(fk + ǫg) =

{

C(fk) + λ if g ∈ O(fk)
C(fk) + 1 if g ∈ N (fk),

(24)

and the complexity of the cascade to
C(F(fk + ǫg)) = P1,k + P2,kC(fk + ǫg) + P2,ku(fk + ǫg)C(Fk+1) (25)

= αk + γkC(fk + ǫg) + βku(fk + ǫg) (26)
with

αk = P1,k γk = P2,k βk = P2,kC(Fk+1). (27)

4

3.4 Neutral predictors

The models of (10), (11) and (21) will be used for the design ofoptimal cascades. Another observa-
tion that we will exploit is that

H[F(f1, . . . , fm, fm)] = H[F(f1, . . . , fm)].

This implies that repeating the last stage of a cascade does not change its decision rule. For this
reasonn(x) = fm(x) is referred to as theneutral predictor of a cascade ofm stages.

4 Boosting classifier cascades

In this section, we introduce a boosting algorithm for cascade design.

4.1 Boosting

Boosting algorithms combine weak learners to produce a complex decision boundary. Boost-
ing iterations are gradient descent steps towards the predictor f(x) of minimum risk for the loss
L[y, f(x)] = e−yf(x) [3]. Given a setU of weak learners, the functional derivative ofRL along the
direction of weak leanerg is

< δRL(f), g > =
1

|St|

∑

i

[

d

dǫ
e−yi(f(xi)+ǫg(xi))

]

ǫ=0

= −
1

|St|

∑

i

yiwig(xi), (28)

wherewi = e−yif(xi) is the weight ofxi. Hence, the best update is

g∗(x) = arg max
g∈U

< −δRL(f), g > . (29)

Letting I(x) be the indicator function, the optimal step size along the selected direction,g∗(x), is

c∗ = arg min
c∈R

∑

i

e−yi(f(xi)+cg∗(xi)) =
1

2
log

∑

i wiI(yi = g∗(xi))
∑

i wiI(yi 6= g∗(xi))
. (30)

The predictor is updated intof(x) = f(x) + c∗g∗(x) and the procedure iterated.

4.2 Cascade risk minimization

To derive a boosting algorithm for the design of detector cascades, we adopt the loss
L[y,F(f1, . . . , fm)(x)] = e−yF(f1,...,fm)(x), and minimize the cascade risk

RL(F) = EX,Y {e−yF(f1,...,fm)} ≈
1

|St|

∑

i

e−yiF(f1,...,fm)(xi).

Using (13) and (19),

< δRL(F(fk)), g >=
1

|St|

∑

i

[

d

dǫ
e−yi[a

k(xi)+ǫbk(xi)g(xi)]

]

ǫ=0

= −
1

|St|

∑

i

yiw
k
i b

k
i g(xi) (31)

wherewk
i = e−yia

k(xi), bki = bk(xi) andak, bk are given by (14), (18), and (20). The optimal
descent direction and step size for thekth stage are then

g∗k = arg max
g∈U

< −δRL(F(fk)), g > (32)

c∗k = arg min
c∈R

∑

i

wk
i e

−yib
k

i
cg∗

k
(xi). (33)

In general, because thebki are not constant, there is no closed form forc∗k, and a line search must
be used. Note that, sinceak(xi) = F(fk)(xi), the weighting mechanism is identical to that of
boosting, i.e. points are reweighed according to how well they are classified by the current cascade.
Given the optimalc∗, g∗ for all stages, the impact of each update in the overall cascade risk,RL, is
evaluated and the stage of largest impact is updated.

5

4.3 Adding a new stage

Searching for the optimal cascade configuration requires support for the addition of new stages,
whenever necessary. This is accomplished by including a neutral predictor as the last stage of the
cascade. If adding a weak learner to the neutral stage reduces the risk further than the corresponding
addition to any other stage, a new stage (containing the neutral predictor plus the weak learner) is
created. Since this new stage includes the last stage of the previous cascade, the process mimics the
design of an embedded cascade. However, there are no restrictions that a new stage should be added
at each boosting iteration, or consist of a single weak learner.

4.4 Incorporating complexity constraints

Joint optimization of speed and accuracy, requires the minimization of the Lagrangian of (4). This
requires the computation of the functional derivatives

< δRC(F(fk)), g >=
1

|S−

t |

∑

i

ys
i

{

d

dǫ
LC [C(F(fk + ǫg)(xi)]

}

ǫ=0

(34)

whereys
i = I(yi = −1). Similarly to boosting, which upper bounds the zero-one lossu(−yf) by

the exponential losse−yf , we rely on a loss that upper-bounds the true complexity. This upper-bound
is a combination of a boosting-style boundu(f+ǫg) ≤ ef+ǫg, and the boundC(f+ǫg) ≤ C(f)+1,
which follows from (24). Using (26),

LC [C(F(fk + ǫg)(xi)] = LC [αk + γkC(fk + ǫg) + βku(fk + ǫg)] (35)

= αk + γk(C(fk) + 1) + βkefk+ǫg (36)

and, since
{

d
dǫ
LC [C(F(fk + ǫg))]

}

ǫ=0
= βkefkg,

< δRC(F(fk)), g > =
1

|S−

t |

∑

i

ys
iψ

k
i β

k
i g(xi) (37)

with βk
i = βk(xi) andψk

i = efk(xi). The derivative of (4) with respect to thekth stage predictor is
then

< δL(F(fk)), g > = < δRL(F(fk)), g > +η < δRC(F(fk)), g > (38)

=
∑

i

(

−
yiw

k
i b

k
i

|St|
+ η

ys
iψ

k
i β

k
i

|S−

t |

)

g(xi) (39)

with wk
i = e−yia

k(xi) andak andbk given by (14), (18), and (20). Given a set of weak learnersU ,
the optimal descent direction and step size for thekth stage are then

g∗k = arg max
g∈U

< −δL(F(fk)), g > (40)

c∗k = arg min
c∈R

{

1

|St|

∑

i

wk
i e

−yib
k

i
cg∗

k
(xi) +

η

|S−

t |

∑

i

ys
iψ

k
i β

k
i e

cg∗

k
(xi)

}

. (41)

A pair (g∗k,1, c
∗
k,1) is found among the setO(fk) and another among the setU − O(fk) . The one

that most reduces (4) is selected as the best update for thekth stage and the stage with the largest
impact is updated. This gradient descent procedure is denotedFast Cascade Boosting (FCBoost).

5 Extensions

FCBoost supports a number of extensions that we briefly discuss in this section.

5.1 Cost Sensitive Boosting

As is the case for AdaBoost, it is possible to use cost sensitive risks in FCBoost. For exam-
ple, the risk ofCS-AdaBoost: RL(f) = EX,Y {yce−yf(x)} [12] or Asym-AdaBoost: RL(f) =

EX,Y {e−ycyf(x)} [8], whereyc = CI(y = −1) + (1 − C)I(y = 1) andC is a cost factor.

6

Train Set Test Set
Data Set pos neg pos neg

Face 9,000 9,000 832 832
Car 1,000 10,000 100 2,000

Pedestrian 1,000 10,000 200 2,000
0 10 20 30

0.24

0.28

0.32

0.36

R
C

R
L

Figure 2:Left: data set characteristics. Right: Trade-off between the error (RL) and complexity (RC) com-
ponents of the risk asη changes in (4).

Table 1:Performance of various classifiers on the face, car, and pedestriantest sets.

Face Car Pedestrian
Method RL RC L RL RC L RL RC L

AdaBoost 0.20 50 1.20 0.22 50 1.22 0.35 50 1.35
ChainBoost 0.45 2.65 0.50 0.65 2.40 0.70 .052 3.34 0.59

FCBoost (η = 0.02) 0.30 4.93 0.40 0.44 5.38 0.55 0.46 4.23 0.54

5.2 Bootstrapping

Bootstrapping is a procedure to augment the training set, byusing false positives of the current
classifier as the training set for the following [11]. This improves performance, but is feasible only
when the bootstrapping proceduredoes not affect previously rejected examples. Otherwise, the
classifier will forget the previous negatives while learning from the new ones. Since FCBoost learns
all cascade stages simultaneously, and any stage can changeafter bootstrapping, this condition is
violated. To overcome the problem, rather than replacing all negative examples with false positives,
only a random subset is replaced. The negatives that remain in the training set prevent the classifier
from forgetting about the previous iterations. This methodis used to update the training set whenever
the false positive rate of the cascade being learned reaches50%.

6 Evaluation

Several experiments were performed to evaluate the performance of FCBoost, using face, car, and
pedestrian recognition data sets, from computer vision. Inall cases, Haar wavelet features were used
as weak learners. Figure 2 summarizes the data sets.

Effect of η: We started by measuring the impact ofη, see (4), on the accuracy and complexity of
FCBoost cascades. Figure 2 plots the accuracy component of the risk,RL, as a function of the
complexity component,RC , on the face data set, for cascades trained with differentη. The leftmost
point corresponds toη = 0.05, and the rightmost toη = 0. As expected, asη decreases the cascade
has lower error and higher complexity. In the remaining experiments we usedη = 0.02.

Cascade comparison:Figure 3 (a) repeats the plots of the Lagrangian of the risk shown in Fig-
ure 1, for classifiers trained with50 boosting iterations, on the face data. In addition to AdaBoost
and ChainBoost, it presents the curves of FCBoost with (η = 0.02) and without (η = 0) com-
plexity constraints. Note that, in the latter case, performance is in between those of AdaBoost and
ChainBoost. This reflects the fact that FCBoost (η = 0) does produce a cascade, but this cascade
has worse accuracy/complexity trade-off than that of ChainBoost. On the other hand, the inclusion
of complexity constraints, FCBoost (η = 0.02), produces a cascade with the best trade-off. These
results are confirmed by Table 1, which compares classifiers trained on all data sets. In all cases, Ad-
aBoost detectors have the lowest error, but at a tremendous computational cost. On the other hand,
ChainBoost cascades are always the fastest, at the cost of the highest classification error. Finally,
FCBoost (η = 0.02) achieves the best accuracy/complexity trade-off: its cascade has the lowest risk
LagrangianL. It is close to ten times faster than the AdaBoost detector, and has half of the increase
in classification error (with respect to AdaBoost) of the ChainBoost cascade. Based on these results,
FCBoost (η = 0.02) was used in the last experiment.

7

0 10 20 30 40 50
0.4

0.5

0.6

0.7

0.8

Iterations

L
FCBoost η=0
FCBoost η=0.02
AdaBoost
ChainBoost

0 25 50 75 100 125 150
80

85

90

94

Number of False Positives

D
et

ec
tio

n
R

at
e

Viola & Jones
ChainBoost
FloatBoost
WaldBoost
FCBoost

(a) (b)

Figure 3:a) Lagrangian of the risk for classifiers trained with various boosting algorithms. b) ROC of various
detector cascades on the MIT-CMU data set.

Table 2:Comparison of the speed of different detectors.

Method VJ [13] FloatBoost [5] ChainBoost [15] WaldBoost [9] [8] FCBoost
Evals 8 18.9 18.1 10.84 15.45 7.2

Face detection:We finish with a face detector designed with FCBoost (η = 0.02), bootstrapping,
and130K Haar features. To make the detector cost-sensitive, we usedCS-AdaBoost with C = 0.99.
Figure 3 b) compares the resulting ROC to those of VJ [13], ChainBoost [15], FloatBoost [5] and
WaldBoost [9]. Table 2 presents a similar comparison for thedetector speed (average number of
features evaluated per patch). Note the superior performance of the FCBoost cascade in terms of
both accuracy and speed. To the best of our knowledge, this is the fastest face detector reported to
date.

A Recursive form of cascade predictor

Applying (9) recursively to (8)
F = f1u(−f1) + u(f1)F2 (42)

= f1u(−f1) + u(f1) [f2u(−f2) + u(f2)F3] (43)

= f1u(−f1) + f2u(f1)u(−f2) + u(f1)u(f2) [f3u(−f3) + u(f3)F4] (44)

=

k−1
∑

i=1

fiu(−fi)
∏

j<i

u(fj) + Fk

∏

j<k

u(fj) (45)

= T1,k + T2,kFk (46)

whereT1,k =
∑k−1

i=1 fiu(−fi)
∏

j<i u(fj) andT2,k =
∏

j<k u(fj) satisfy the recursions of (12).
Combining (46) and (9) then leads to (11). (10) follows from (46) and the initial conditionFm = fm.

B Recursive form of cascade complexity

Let C(fk) be the complexity of evaluatingfk. Then
C(F) = C(f1) + u(f1)C(F2) (47)

= C(f1) + u(f1)[C(f2) + u(f2)C(F3)] (48)

=

k−1
∑

i=1

C(fi)
∏

j<i

u(fj) + C(Fk)
∏

j<k

u(fj) (49)

= P1,k + P2,kC(Fk) (50)
with

P1,k+1 = P1,k + C(fk)P2,k P2,k+1 = P2,k u(fk) (51)
and initial conditionsP1,1 = 0, P2,1 = 1. The relationship of (47) is a special case of

C(Fk) = C(fk) + u(fk)C(Fk+1) (52)
with initial conditionsC(Fm) = C(fm) andC(Fm+1) = 0. Combining (52) with (50) leads to (21).

8

References

[1] S. C. Brubaker, M. D. Mullin, and J. M. Rehg. On the design of cascades of boosted ensembles
for face detection.International Journal of Computer Vision, 77:65–86, 2008.

[2] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting, 1997.

[3] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of
boosting.Annals of Statistics, 28:2000, 1998.

[4] X. Hou, C.-L. Liu, and T. Tan. Learning boosted asymmetric classifiers for object detection.
In IEEE Conference on Computer Vision and Pattern Recognition,, pages 330–338, 2006.

[5] S. Z. Li and Z. Zhang. Floatboost learning and statistical face detection. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 26(9):1112–1123, 2004.

[6] C. Liu and H.-Y. Shum;. Kullback-leibler boosting. InIEEE Conference on Computer Vision
and Pattern Recognition, pages 587–594, 2003.

[7] H. Luo. Optimization design of cascaded classifiers. InIEEE Conference on Computer Vision
and Pattern Recognition,, pages 480–485, 2005.

[8] H. Masnadi-Shirazi and N. Vasconcelos. High detection-rate cascades for real-time object
detection. InIEEE International Conference on Computer Vision, volume 2, pages 1–6, 2007.

[9] J. Sochman and J. Matas. Waldboost - learning for time constrained sequential detection. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 150–157, 2005.

[10] J. Sun, J. M. Rehg, and A. Bobick. Automatic cascade training with perturbation bias.IEEE
Conference on Computer Vision and Pattern Recognition, 2:276–283, 2004.

[11] K. K. Sung and T. Poggio. Example based learning for view-based human face detection.IEEE
Trans. on Pattern Analysis and Machine Intelligence, 20:39–51, 1998.

[12] P. Viola and M. Jones. Fast and robust classification using asymmetric adaboost and a detector
cascade. InAdvances in Neural Information Processing System, pages 1311–1318, 2001.

[13] P. Viola and M. Jones. Robust real-time object detection. International Journal of Computer
Vision, 57(2):137–154, 2004.

[14] J. Wu, S. Brubaker, M. D. Mullin, and J. M. Rehg. Fast asymmetric learning for cascade face
detection.IEEE Trans. on Pattern Analysis and Machine Intelligence, 3:369–382, 2008.

[15] R. Xiao, L. Zhu, and H.-J. Zhang. Boosting chain learning for object detection. InIEEE
International Conference on Computer Vision, pages 709–715, 2003.

9

