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Abstract

Many studies have explored the impact of response variability on the quality of
sensory codes. The source of this variability is almost always assumed to be in-
trinsic to the brain. However, when inferring a particular stimulus property, vari-
ability associated with other stimulus attributes also effectively act as noise. Here
we study the impact of such stimulus-induced response variability for the case of
binocular disparity inference. We characterize the response distribution for the
binocular energy model in response to random dot stereograms and find it to be
very different from the Poisson-like noise usually assumed. We then compute the
Fisher information with respect to binocular disparity, present in the monocular
inputs to the standard model of early binocular processing, and thereby obtain an
upper bound on how much information a model could theoretically extract from
them. Then we analyze the information loss incurred by the different ways of
combining those inputs to produce a scalar single-neuron response. We find that
in the case of depth inference, monocular stimulus variability places a greater
limit on the extractable information than intrinsic neuronal noise for typical spike
counts. Furthermore, the largest loss of information is incurred by the standard
model for position disparity neurons (tuned-excitatory), that are the most ubiqui-
tous in monkey primary visual cortex, while more information from the inputs is
preserved in phase-disparity neurons (tuned-near or tuned-far) primarily found in
higher cortical regions.

1 Introduction

Understanding how the brain performs statistical inference is one of the main problems of theoreti-
cal neuroscience. In this paper, we propose to apply the tools developed to evaluate the information
content of neuronal codes corrupted by noise to address the question of how well they support sta-
tistical inference. At the core of our approach lies the interpretation of neuronal response variability
due to nuisance stimulus variability as noise.

Many theoretical and experimental studies have probed the impact of intrinsic response variability on
the quality of sensory codes ([1, 12] and references therein). However, most neurons are responsive
to more than one stimulus attribute. So when trying to infer a particular stimulus property, the
brain needs to be able to ignore the effect of confounding attributes that also influence the neuron’s
response. We propose to evaluate the usefulness of a population code for inference over a particular
parameter by treating the neuronal response variability due to nuisance stimulus attributes as noise
equivalent to intrinsic noise (e.g. Poisson spiking).

We explore the implications of this new approach for the model system of stereo vision where the
inference task is to extract depth from binocular images. We compute the Fisher information present
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Figure 1: Left: Example random dot stereogram (RDS). Right: Illustration of bincular energy model
without (top) and with (bottom) phase disparity.
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in the monocular inputs to the standard model of early binocular processing and thereby obtain an
upper bound on how precisely a model could theoretically extract depth. We compare this with the
amount of information that remains after early visual processing. We distinguish the two principal
model flavors that have been proposed to explain the physiological findings. We find that one of the
two models appears superior to the other one for inferring depth.

We start by giving a brief introduction to the two principal flavors of the binocular energy model. We
then retrace the processing steps and compute the Fisher information with respect to depth inference
that is present: first in the monocular inputs, then after binocular combination, and finally for the
resulting tuning curves.

2 Binocular disparity as a model system

Stereo vision has the advantage of a clear separation between the relevant stimulus dimension —
binocular disparity — and the confounding or nuisance stimulus attributes — monocular image struc-
ture ([9]). The challenge in inferring disparity in image pairs consists in distinguishing true from
false matches, regardless of the monocular structures in the two images. The stimulus that tests this
system in the most general way are random dot stereograms (RDS) that consist of nearly identical
dot patterns in either eye (see Figure 1). The fact that parts of the images are displaced horizontally
with respect to each other has been shown to be sufficient to give rise to a sensation of depth in
humans and monkeys ([5, 4]). Since RDS do not contain any monocular depth cues (e.g. size or
perspective) the brain needs to correctly match the monocular image features across eyes to compute
disparity.

The standard model for binocular processing in primary visual cortex (V1) is the binocular energy
model ([5, 10]). It explains the response of disparity-selective V1 neurons by linearly combining the
output of monocular simple cells and passing the sum through a squaring nonlinearity (illustrated in
Figure 1).

Teven = (U +1V3)° + (0 +12)% = £ + 027 + 87 + 087 + 2000k +viR). (D)
where 1§ is the output of an even-symmetric receptive field (RF) applied to the left image, v is
the output of an odd-symmetric receptive field (RF) applied to the right image, etc. By pairing
an even and an odd-symmetric RF in each eye', the monocular part of the response of the cell
ve? + vp? + v5? + v3? becomes invariant to the monocular phase of a grating stimulus (since
sin? 4 cos? = 1) and the binocular part is modulated only by the difference (or disparity) between
the phases in left and right grating — as observed for complex cells in V1. The disparity tuning curve
resulting from the combination in equation (1) is even-symmetric (illustrated in Figure 1 in blue)
and is one of two primary types of tuning curves found in cortex ([5]). In order to model the other,
odd-symmetric type of tuning curves (Figure 1 in red), the filter outputs are combined such that the
output of an even-symmetric filter is always combined with that of an odd-symmetric one in the
other eye:

Toad = (V] + 1/1'—_3{)2 + (v + 1/%)2 = I/E2 + l/i’2 + Vﬁz + Vﬁz + 2(VpvR + VLVR)- 2)

"'WLOG we assume the quadrature pair to consist of a purely even and a purely odd RF.



Note that the two models are identical in their monocular inputs and the monocular part of their
output (the first four terms in equations 1 and 2) and only vary in their binocular interaction terms
(in brackets). The only way in which the first model can implement preferred disparities other than
zero is by a positional displacement of the RFs in the two eyes with respect to each other (the
disparity tuning curve achieves its maximum when the disparity in the image matches the disparity
between the RFs). The second model, on the other hand achieves non-zero preferred disparities by
employing a phase shift between the left and right RF (90 deg in our case). It is therefore considered
to be phase-disparity model, while the first one is called a position disparity one.”

3 Results

How much information the response of a neuron carries about a particular stimulus attribute depends
both on the sensitivity of the response to changes in that attribute and to the variability (or uncer-
tainty) in the response across all stimuli while keeping that attribute fixed. Fisher information is the
standard way to quantify this intuition in the context of intrinsic noise ([6], but also see [2]) and we
will use it to evaluate the binocular energy model mechanisms with regard to their ability to extract
the disparity information contained in the monocular inputs arriving at the eyes.

3.1 Response variability

Figure 2 shows the mean of the binocular response of the two models. response
The variation of the response around the mean due to the variation in
monocular image structure in the RDS is shown in Figure 3 (top row)
for four exemplary disparities: —1, 0, 1 and uncorrelated (+00), indi-
cated in Figure 2. Unlike in the commonly assumed case of intrinsic
n0ise, Phinoc(r|d) — the stimulus-conditioned response distribution — vfd
is far from Poisson or Gaussian. Interestingly, its mode is always at

zero — the average response to uncorrelated stimuli — and the fact that
the mean depends on the stimulus disparity is primarily due to the
disparity-dependence of the skew of the response distribution (Figure
3).> The skew in turn depends on the disparity through the disparity- Figure 2:  Binocular re-
dependent correlation between the RF outputs as illustrated in Figure sponses for even (blue) and
3 (bottom row). Of particular interest are the response distributions 0dd (red) model.

at the zero disparity #, the disparities at which 7,44 takes its minimum and maximum, respectively,
and the uncorrelated case (infinite disparity). In the case of infinite disparity, the images in the two
eyes are completely independent of each other and hence the outputs of the left and right RFs are
independent Gaussians. Therefore, v, VR ~ Ppinoc(7|d = 00) is symmetric around 0. In the case of
zero disparity (identical images in left and right eye), the correlation is 1 between the outputs of left
and right RFs (both even, or both odd). It follows that v;,ur ~ 7 and hence has a mean of 1. What
is also apparent is that the binocular energy model with phase disparity (where each even-symmetric
RF is paired with an odd-symmetric one) never achieves perfect correlation between the left and
right eye and only covers smaller values.

-1 0] 1

3.2 Fisher information

3.2.1 Fisher information contained in monocular inputs

First, we quantify the information contained in the inputs to the energy model by using Fisher in-
formation. Consider the 4D space spanned by the outputs of the four RFs in left and right eye:
(vf,v9,vh,vR). Since the v are drawn from identical Gaussians®, the mean responses of the

>We use position disparity model and even-symmetric tuning interchangeably, as well as phase disparity
model and odd-symmetric tuning. Unfortunately, the term disparity is used for both disparities between the
RFs, and for disparities between left and right images (in the stimulus). If not indicated otherwise, we will
always refer to stimulus disparity for the rest of the paper.

3The RF outputs are Normally distributed in the limit of infinitely many dots (RFs act as linear filters +
central limit theorem). Therefore the disparity-conditioned responses p(r|d) correspond to the off-diagonal
terms in a Wishart distribution, marginalized over all the other matrix elements.

*WLOG we assume the displacement between the RF centers in the left and right eye to be zero.

>The model RFs have been normalized by their variance, such that var[v] = 1 and v ~ N(0, 1).



Figure 3: Response distributions p(r|d) for varying d. Top row: histograms for values of interaction
terms vf vy (blue) and vf v (red). Bottom row: distribution of corresponding RF outputs vg, vs
vR. lo curves are shown to indicate correlations. Blue (¢f vs vg) and red (vf, vs vR) colors refer
to the model with even-symmetric tuning curve and odd-symmetric tuning curve, respectively. The
disparity value for each column is 00, —1, 0 and 1 corresponding to those highlighted in Figure 2.

monocular inputs do not depend on the stimulus and hence, the Fisher information is given by

Z(d) = $tr(C~1C’"C~1C") where C is the covariance matrix belonging to (vf, 10, Vg, v ):

1 0 a(d)  c(d)
0 1 c(—d) a(d)

C=1 a@d =) 1 0
c(d)  a(d) 0 1
where we model the interaction terms a(d) := (vfry) = (VLrR) and ¢(d) = (vfrR) as Gabor

functions® since Gabors functions have been shown to provide a good fit to the range of RF shapes
and disparity tuning curves that are empirically observed in early sensory cortex ([5]).” a(d) and
¢(d) are illustrated by the blue and red curves in Figure 2, respectively. Because the binocular part
of the energy model response, or disparity tuning curve, is the convolution of the left and right RFs,
the phase of the Gabor describing the disparity tuning curve is given by the difference between the
phases of the corresponding RFs. Therefore ¢(d) is odd-symmetric and ¢(—d) = —c(d). We obtain

2

Iinputs (d) = m [(1 + (12 - CZ)GIQ + (1 + 02 - CL2)CI2 + 4aca’c'] (3)
where we omitted the stimulus dependence of a(d) and ¢(d) for clarity of exposition and where ’
denotes the 1st derivative with respect to the stimulus d. The denominator of equation (3)) is given
by det C and corresponds to the Gaussian envelope of the Gabor functions for a(d) and ¢(d):

2
detC=1—-0a*>-c*=1 —exp(—%).
o

In Figure 4B (black) we plot the Fisher information as a function of disparity. We find that the Fisher
information available in the inputs diverges at zero disparity (at the difference between the centers
of the left and right RFs in general). This means that the ability to discriminate zero disparity from

%A Gabor function is defined as cos(27 fd — ¢) exp[—%] were f is spatial frequency, d is disparity,
¢ is the Gabor phase, d, is the envelope center (set to zero here, WLOG) and o the envelope bandwidth.

"The assumption that the binocular interaction can be modeled by a Gabor is not important for the principal
results of this paper. In fact, the formulas for the Fisher information in the monocular inputs and in the disparity
tuning curves derived below hold for other (reasonable) choices for a(d) and ¢(d) as well.
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Figure 4: A: Disparity tuning curves for the model using position disparity (even) and phase disparity
(odd) in blue and red, respectively. B: Black: Fisher information contained in the monocular inputs.
Blue: Fisher information left after combining inputs from left and right eye according to position
disparity model. Red: Fisher information after combining inputs using phase disparity model. Note
that the black and red curves diverge at zero disparity. C: Fisher information for the final model
output/neuronal response. Same color code as previously. Solid lines correspond to complex, dashed
lines to simple cells. D: Same as C but with added Gaussian noise in the monocular inputs.

nearby disparities is arbitrarily good. In reality, intrinsic neuronal variability will limit the Fisher
information at zero.3

3.2.2 Combination of left and right inputs

Next we analyze the information that remains after linearly combining the monocular inputs in the
energy model. It follows that the 4-dimensional monocular input space is reduced to a 2-dimensional
binocular one for each model, sampled by (vf + v5, v +vR) and (v + Vg, 1§ + VR ), respectively.
Again, the marginal distributions are Gaussians with zero mean independent of stimulus disparity.
This means that we can compute the Fisher information for the position disparity model from the
covariance matrix C' as above:

B (400D A0+ )+ )
Coven = <<<vﬁ+5§>(u§+u§>> Nt )

. 2+ 2a 0
n 0 2+ 2a

Here we exploited that (vf 1) = (virR) = 0 since the even and odd RFs are orthogonal and that

(vgv}) = —(vRvf). The Fisher information follows as
a’(d)2
Teven(d) = ——F+55 - 4

The dependence of Fisher information on d is shown in Figure 4B (blue). The total information
(as measured by integrating Fisher information over all disparities) communicated by the position-
disparity model is greatly reduced compared to the total Fisher information present in the inputs.
a(d) is an even-symmetric Gabor (illustrated in Figure 2) and hence the Fisher information is great-
est on either side of the maximum where the slopes of a(d) are steepest, and zero at the center
where a(d) has its peak. We note here that the Fisher information for the final tuning curve for
the position-disparity model is the same as in equation (4) and therefore we will postpone a more
detailed discussion of it until section 3.2.3.

8E.g. additive Gaussian noise with variance o™~ on the monocular filter outputs eliminates the singularity:
2 2
detC =140 —a? -2 >N



On the other hand, when combining the monocular inputs according to the phase disparity model,
we find:

Coas = ( (W +R)%) {0E+ R0+ vR) )
((f +vR) (L +vR)) ((f +2R)%)
o 2+2¢ 2a
o 2a 2-12c
since again (Vf1f) = (vgry) = 0and (vfv}) = —(VRVf) = c. The Fisher information in this case
follows as
1
Toaa(d) (e [(1+a®—c?)a? + (14 & —a®)® + dacd ']
1
= izinputs(d)

Zoda(d) is shown in Figure 4B (red). While loosing 50% of the Fisher information present in the
inputs, the Fisher information after combining left and right RF outputs is much larger in this case
than for the position disparity model explored above. How can that be? Why are the two ways of
combining the monocular outputs not symmetric? Insight into this question can be gained by looking
at the binocular interaction terms in the quadratic expansion of the feature space for the two models.’
For the position disparity model we obtain the 3-dimensional space (vf Vg, VR, VE v + Py ) of
which the third dimension cannot contribute to the Fisher information since vfvg + vfvg = 0. In
the phase-disparity model, however, the quadratic expansion yields (vfvR, VeV, vSvg + VRVR).
Here, all three dimensions are linearly independent (although correlated), each contributing to the
Fisher information. This can also explain why Z,q4(d) is symmetric around zero, and independent
of the Gabor phase of ¢(d). While this is not a rigorous analysis yet of the differences between the
models at the stage of binocular combination, it serves as a starting point for a future investigation.

3.2.3 Disparity tuning curves

In order to collapse the 2-dimensional binocular inputs into a scalar output that can be coded in the
spike rate of a neuron, the energy model postulates a squaring output nonlinearity after each linear
combination and summing the results. Since the (v, + vr)? are not Normally distributed and their
means depend on the stimulus disparity, we cannot employ the above approach to calculate Fisher
information but instead use the more general

(aadmp(r;@)Q} = [ st (jdlnpmd))? dr ®

where p(r; d) is the response distribution for stimulus disparity d. Because the v are drawn from a
Gaussian with variance 1, vf + vf, and v§ + vg, are drawn from N[0, 2(1 + a(d))] since we defined
a(d) = (V£vg) = (¥Pvg). Conditioned on d, (£ + vg)? and (1 + vg)? are independent and it
follows for the model with an even-symmetric tuning function that

I(d) = E

1 (&) (<) (o] (e}
m [(VL +R)* + (1f + VR)Q] ~ X3 and
rd) = — —eplo—"__lpu) @
Porent 0T A+ a@] “P U 4+ a(d)]
where H (r) is the Heaviside step function.!” Substituting equation (6) into equation (5) we find!!
"(d)? o T 2 T
Icomplex d _ a ( / d -1 _ __
even - (4) Mra@pP Sy " |11+ a(d)] U A0+ ald)]
! d 2
A ()
[1+ a(d)]

By quadratic expansion of the feature space we refer to expanding a 2-dimensional feature space (f1, f2)
to a 3-dimensional one ( fZ, f3, f1f2) by considering the binocular interaction terms in all quadratic forms.

""We see that (r),,,..(ra) = 4[1 + a(d)] and hence we recover the Gabor-shaped tuning function that we
introduced in section 3.2.1 to model the empirically observed relationship between disparity d and mean spike
rate r.

[ dz (z/a — 1) exp(—z/a) = afora > 0.



Remarkably, this is exactly the same amount of information that is available after summing left and
right RFs (see equation 4), so none is lost after squaring and combining the quadrature pair. We show
Zoven(d) in Figure 4C (blue). It is also interesting to note that the general form for Zoyen (d) differs
from the Fisher information based on the Poisson noise model (and ignoring stimulus variability as
considered here) only by the exponent of 2 in the denominator. Since 1 + a(d) > 0 this means
that the qualitative dependence of Z on d is the same, the main difference being that the Fisher
information favors small over large spike rates even more. Conversely, it follows that when Fisher
information only takes the neuronal noise into consideration, it greatly overestimates the information
that the neuron carries with respect to the to-be-inferred stimulus parameter for realistic spike counts
(of greater than two). Furthermore, unlike in the Poisson case, a scaling up of the tuning function
1 + a(d) does not translate into greater Fisher information. Fisher information with respect to
stimulus variability as considered here is invariant to the absolute height of the tuning curve.'?
Considering the phase-disparity model, (vf +vg)? and (vf + v )? are drawn from N[0, 2(1+c(d))]
and N[0, 2(1+ ¢(d))], respectively, since c(d) = (vfv) = —(vPvg). Unfortunately, since vf + v
and vf, + v have different variances depending on d, and are usually not independent of each other,
the sum cannot be modeled by a x?—distribution. However, we can compute the Fisher information
for the two implied binocular simple cells instead.'? It follows that

o ey (R ~ o and

simple /. _ 1 iex . r -
Poaa' (1id) = o0(1/2)\/1 + ¢(d) VT p{ 4[1+C(d)]}H( )

and'*

simple _ 1 cl(d)z > L r _1 ’ e _#
Toaa () = a7 ms/o dr r[4[1+0(d)] 2] ep{ 4[1+c<d>}}

15 The dependence of Izggple on disparity is shown in Figure 4C (red dashed). Most of the Fisher
information is located in the primary slope (compare Figure 4A) followed by secondary slope to
its left. The reason for this is the strong boost Fisher information gets when responses are lowest.
We also see that the total Fisher information carried by a phase-disparity simple cell is significantly
higher than that carried by a position-disparity simple cell (compare dashed red and blue lines)
raising the question of what other advantages or trade-offs there are that make it beneficial for the
primate brain to employ so many position-disparity ones. Intrinsic neuronal variability may provide
part of the answer since the difference in Fisher information between both models decreases as
intrinsic variability increases. Figure 4D shows the Fisher information after Gaussian noise has been
added to the monocular inputs. However, even in this high intrinsic noise regime (noise variance of
the same order as tuning curve amplitude) the model with phase disparity carries significantly more
total Fisher information.

2What is outside of the scope of this paper but obvious from equation (7) is that Fisher information is
maximized when the denominator, or the tuning function is minimal. Within the context of the energy model,
this occurs for neither the position-disparity model, nor the classic phase-disparity one, but for a model where
the left and right RFs that are linearly combined, are inverted with respect to each other (i.e. phase-shifted by
7). In that case a(d) is a Gabor function with phase 7 and becomes zero at zero disparity such that the Fisher
information diverges. Such neurons, called tuned-inhibitory (TI, [11]) make up a small minority of neurons in
monkey V1.

BThe energy model as presented thus far models the responses of binocular complex cells. Disparity-
selective simple cells are typically modeled by just one combination of left and right RFs (v§ + v2)? or
(9 + v&)?, and not the entire quadrature pair.

T da VI N z/a —1/2) exp(—z/a) = /T/a/2 for a > 0.

5This derivation equally applies to the Fisher information of simple cells with position disparity by sub-
stituting a(d) for c(d) and we obtain THEP®(d) = § %= This function is shown in Figure 4C (blue
dashed).



4 Discussion

The central idea of our paper is to evaluate the quality of a sensory code with respect to an inference
task by taking stimulus variability into account, in particular that induced by irrelevant stimulus
attributes. By framing stimulus-induced nuisance variability as noise, we were able to employ the
existing framework of Fisher information for evaluating the standard model of early binocular pro-
cessing with respect to inferring disparity from random dot stereograms.

We started by investigating the disparity-conditioned variability of the binocular response in the ab-
sence of intrinsic neuronal noise. We found that the response distributions are far from Poisson or
Gaussian and — independent of stimulus disparity — are always peaked at zero (the mean response
to uncorrelated images). The information contained in the correlations between left and right RF
outputs are translated into a modulation of the neuron’s mean firing rate primarily by altering the
skew of the response distribution. This is quite different from the case of intrinsic noise and has
implications for comparing different codes. It is noteworthy that these response distributions are
entirely imposed by the sensory system — the combination of the structure of the external world with
the internal processing model. Unlike the case of intrinsic noise which is usually added ad-hoc after
the neuronal computation has been performed, in our case the computational model impacts the use-
fulness of the code beyond the traditionally reported tuning functions. This property extends to the
case of population codes, the next step for future work. Of great importance for the performance of
population codes are interneuronal correlations. Again, the noise correlations due to nuisance stim-
ulus parameters are a direct consequence of the processing model and the structure of the external
input.

Next we compared the Fisher information available for our inference task at various stages of binoc-
ular processing. We computed the Fisher information available in the monocular inputs to binocular
neurons in V1, after binocular combination and after the squaring nonlinearity required to translate
binocular correlations into mean firing rate modulation. We find that despite the great stimulus vari-
ability, the total Fisher information available in the inputs diverges and is only bounded by intrinsic
neuronal variability. The same is still true after binocular combination for one flavor of the model
considered here — that employing phase disparity (or pairing unlike RFs in either eye), not the other
one (position disparity), which has lost most information after the initial combination. At this point,
our new approach allows us to ask a normative question: In what way should the monocular inputs
be combined so as to lose a minimal amount of information about the relevant stimulus dimension?
Is the combination proposed by the standard model to obtain even-symmetric tuning curves the only
one to do so or are they others that produce a different tuning curve, with a different response dis-
tribution that is more suited to inferring depth? Conversely, we can compare our results for the
model stages leading from simple to complex cells and compare them with the corresponding Fisher
information computed from empirically observed distributions, to test our model assumptions.

Recently, Fisher information has been criticized as a tool for comparing population codes ([3, 2]).
We note that our approach can be readily adapted to other measures like mutual information or
their framework of neurometric function analysis to compare the performance of different codes in
a disparity discrimination task.

Another potentially promising avenue of future research would to investigate the effect of thresh-
olding on inference performance. One reason that odd-symmetric tuning curves had higher Fisher
information in the case we investigated was that odd-symmetric cells produce near-zero responses
more often in the context of the energy model. However, it is known from empirical observations
that fitting even-symmetric disparity tuning curves requires an additional thresholding output non-
linearity. It is unclear at this point to what extend such a change to the response distribution helps or
hinders inference.

And finally, we suggest that considering the different shapes of response distributions induced by
the specifics of the sensory modality might have an impact on the discussion about probabilistic
population codes ([7, 8] and references therein). Cue-integration, for instance, has usually been
studied under the assumption of Poisson-like response distributions, assumptions that do not appear
to hold in the case of combining disparity cues from different parts of the visual field.
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