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A Supplementary materials

This document gives the proof for Lemma 1 in the main paper, and fills in the details of the proofs
of Theorem 3 and Theorem 4 in the main paper.

Lemma 1. Forany \ € (0,1), foranyn > 4\72 + 1,
P{x? <n(1-X}< ;6*%(/\71%‘(1%\)) )
T A/m(n—1)
Remark 1. We note that some lower bound on n is intuitively necessary in order to be able to bound
the ‘left tail’, because the mode of the Xi distribution is at x = n — 2 (for n > 2). If X is very close
to zero, then the ‘left tail’ (x2 € [0,n(1 — \)]) actually includes the mode z = n — 2 < n(1 — \);
therefore, we could not hope to get an exponentially small probability for being in the tail. However,

this intuitive explanation suggests that we should have n > O(A™!); perhaps the bound in this
lemma could be tightened.

We first prove a preliminary lemma:
Lemma A.1. Forany \ > 0, foranyn > 4\72 + 1,
P{xp < (n+ 1)1 =N} < P{xq <n(l-N)} .

Proof. Let f,, denote the density function for x2, and let fn denote the density function for %L X2.
Then, using y = z/n, we get:
1
= 72 y
21/21(n/2)

s () v

First, note that ye™¥ is an increasing function for y < 1, and therefore

1 ~
_ n/2—1_—x/2 n/2—1_-ny/2, n/2

So,
fn-&-l(y) = ]En(y) X

2
ye0,1-A = ye ¥ <(1- /\)e_(l_” <e ! (1 — /\2>

(Here the last inequality is from the Taylor series). Next, since log I'(x) is a convex function (where

z > 0), and since I'((n + 1)/2) = I'((n — 1)/2) x 251, we see that

T((n+1)/2) _ [n=1
T2 =V 2 -

Finally, it is a fact that (1 + %)" < e. Putting the above bounds together, and assuming that

y € ]0,1 — A], we obtain
n+1 2 . A2
2 \/n—1\/g\/6 <12>]

fn-&-l(y) S fn(y) X




= an(y) X

n+1 | 1 A2
n—1 2|
Since we require n > 4\~2 + 1, the quantity in the brackets is at most 1, and so

For1(y) < fuly) Yy € 0,1 =N .

Therefore,

Plapda<a-nfsr{ia<a-»]

n+1

Now we prove Lemma 1.

Proof. First suppose that n is even. Let f,, denote the density function of the x?2 distribution. From
Cai [10] (as cited in the paper), if n > 2,

P{x} <a} =1=2fu(x) — P{x5_o > a} = =2fn(x) + P{x}_o <z} .

Iterating this identity, we get

PUE <o} = PUE <o) —2n(e) = 2 ale) — o — 2fs(0)
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Now set x = n(1 — \) for A € (0,1). We obtain
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P{x; <z} o

k=n/2

B SN
T 2,

EICEES) (n/2)"/2 (1 — \)"/2
(n/2)! A

By Stirling’s formula,
(/2" _ 3
(n/2)! = /mn ’




and so,
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This is clearly sufficient to prove the desired bound in the case that n is even. Next we turn to the
odd case; let n be odd. First observe that if A > 1, the statement is trivial, while if A < 1, then
n > 4XA"2 4+ 1 > 5, therefore n — 1 is positive. By Lemma A.1 and the expression above,

P{x; <n(1-N}<P{xp 1 < (n -1 - N} < A7T(ln—l)

et (Atlog(1-X))

O

Next we turn to the theorems in the paper. Recall the assumptions made in the paper: we assume the
following, where €g, 1 > 0, C > 02, ,, A\naz»> & = log,, p, and y9 = v — (1 — ﬁ):

2 1 )\2 1
(p-l- q) ogp « m2ax S , (1)
p 62 = 3200max{1 + 0, (1+ ) C?}
log'1 + log(4+/T + +1
2yTH 70— 1) - BBV T 0 +1 5 @

2logp

Lemmas A.2 and A.3 below are sufficient to fill in the details of Theorem 3 in the paper.

X .1 - 1 —e1 logp . .
Lemma A.2. With probability at least 1 NG , the following holds for all edges e in
the complete graph:

(Sn(eo))i < 60’731(11(2 + el)nlogp .

Proof. Fix some edge e = {j, k}. Then

n

(50000 = 5 (S0l = 5 X7 X = =5 3 (X )u(Xe)s — (o)) -
i=1

ﬁfit" Y = ((Z0)ji) ' X0 Yi = ((Zo)wr) ™' Xiw p = ((20)55(Z0)kr) ™ (Zo)jx = corr(Yj, V).

(520007 = =5 (So)ss (So)us D (V)il0i)i = p)

By Lemma 2 in the paper, there are some independent A, B ~ x? such that

(50 (@) say = =5 E0ss ol | (52) (4 =m) = (152 (8- )

There are (2) < lp2 edges in the complete graph. Therefore, by the union bound, it will suffice to
2 2 g p grap y

show that, with probability at least 1 — (1p?)~? \/#gpe*“ logp,

%a;‘;m Kl;”) (A—n) - <1_2p) (B - n)} 2 <6070, (2 + €1)nlogp

Suppose this bound does not hold. Then
(5572) | > vo@ramiors or |(*52) (5~
Since p € [—1, 1], this implies that
|A—n|>/6(2+e)nlogp or [B—n|>/62+e)nlogp .
Since A 2 B, it will suffice to show that with probability at least 1 — p~2 ——L—e—€1 108,

7 log p
|[A—n| <+/6(2+¢€)nlogp .

> /6(2+¢€1)nlogp .




Write A = 4/6(2 + 61)105‘7) . Observe that, by assumption (1), A < % and n > 3; therefore (by

Taylor series),
A28 A2
;L()\log(1+)\))zg()zg~ =(2+e€1)logp , and

3
—1 —1 (N 2
O tos(1 - ) 2 (*)z’;-A _ (24 e)logp -

Furthermore,

-1
)\\/n—1:\/6(2+61)10gp><n > /logp .
n
By (CSB) from the paper,

P{A—n>/6(2+e)nlogp} = P{A>n(1+)\)} < L -30-1080143)

)\\/7m6
1 1
< e~ (2+e)logp e~ (2te)logp
T A/w(n—1) ~ V/mlogp
and also,
1 n—1
P{A—n < —\/6(2+e)nlogp} = P{A <n(l = \)} < ———e'z OFloel=2)
Ay/m(n—1)
< ;6*(%%1)10%? < ;6*(2+61)10gp )
T AYw(n—1) ~ Vmlogp
This gives the desired result. O

Lemma A.3. Recall that, in the proof of Theorem 3 in the paper, we showed that

1
10(8) = 1n(80) < /63 (p +20) x 67t (2 + 1) logp — S0 X 5 (2Amas) 2

Then this implies that

n

2
1n(0) = 1,(80) < —2¢(logp)(1 +70) -
Proof. 1t is sufficient to show that

1 n _
\/93(1) +2q) x 60t ,.(2+€e1)nlogp — 598 X 5(2/\,%95) 2< —(p+2q)(logp)(1 4+ o) .
We rewrite this as
1
VA X 1208020607, (2 + 1) — S03 %

where

g(zx,m)—2 < —Axnx02A2 (1+7) ,

2
4o Pt2d)logp Amzaz .
n 05

Using C' > 02, Amaa, it’s sufficient to show that

max

1
VA X n2080,6C2(2 + €1) — SO3 X S (2hmar) 2 < —Ax X G2, (14 %)

Dividing out common factors, the above is equivalent to showing that

\/A><6C12(2+61)—iS—AX(1+’}/0) .

16
By assumption (1), we know:

1
Ax (1 < -
X (147) < 3555
and also,
A x 6C%(2 <12 )
X 6C%(2+ 1) <12 x oo
Therefore,
(e s AT < b [ L
o V= 3200 " V3200 " 16 °

as desired. O



Lemma A.4 below is sufficient to fill in the details of Theorem 4 in the paper.
Lemma A.4. Recall that, in the proof of Theorem 4 in the paper, we showed that, stochastically,
R N n 1
l,(© —1,(© <X —————x2 .
( (S)) ( (SO))— 2 n_m_IXm
Then this implies that

R . 1 m <
— > < = ~F@A0+FP)logp)
Pl1a(O(8) ~ 1(B(s0)) > 201+ hmlog(p)} < 1~

Proof. First, we show that "_T‘/E_l >(1+ 'yo)_%. By assumption (2) we see that:

<4(/T4+7 1) .

logp —

Now turn to assumption (1). We see that the right-hand side of (1) is < \/ﬁ On the left-hand
side of (1), by definition, A2, > 62. Therefore,

(P +29)logp _ 1

n T 4/T+y
Therefore,
\/2q+1<p+2q<4(\/1+70—1):1_ 1
n - n T 4/1+ VIt
and so,
—2q—1
VI (1)

Therefore, using the stochastic inequality in the statement in the lemma,

P{1,(6(s)) = 1a(O(s0)) = 2(1+~0)mlog(p)}

—v2q—1
< PG 2401+ q0)mlogp x )
< P{x, =41 +omlogp} .

Now we apply Cai’s [10] (CSB) as cited in the paper, and obtain that

1 m
P{x2 >4y/1+~vmlogp} < e~ B (4T log p~1-log(4v/THy0 log p))
tm 2 IO} S e gy~ 1)
Since m > 1 and @ < 4(y/T+ ~p — 1), we obtain that the upper bound is at most

1 e~ 5 (4v/T+70 log p—1—log(4v/T+70 log p))

4/ logp
— L e~ 2 (4VT+70 log p—(log log p+log(4v/T+70)+1))
4/ logp

L % (2logp)(2vTT0—(loglog ptlog(4yTT70)+1)/(210g )
4/ logp

By assumption (2), we may further bound this expression from above as

e~ % (2logp)(2+eo) _ e~ 340+ P) logp

1 1
4\/mlogp 4/ logp



