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S.1 Introduction

We provide material supplementary to the the main paper. Much of this will be detailed proofs for
the propositions and corollaries. To distinguish from the equations in the main paper, the equations
here are prefixed with “S.”.

S.2 Proof for Proposition 5

In this section, we give the proof for Proposition 5 in the main text.

S.2.1 Proof for Proposition 5a

Recall from (3) that σ2
T (ρ) is given by

σ2
T (ρ) def= k∗∗ −

(
kx

T∗
ρkx

S∗

)T (
Kx

TT + σ2
nI ρKx

TS
ρKx

ST Kx
SS + σ2

nI

)−1 (
kx

T∗
ρkx

S∗

)
(S.1)

To perform the matrix inverse in the above equation, we use the following formula for inverting
block matrices:
Theorem S.1. Banachiewicz inversion formula (see e.g., [1]).(

A11 A12

A21 A22

)−1

=
(

A−1
11 + A−1

11 A12C
−1A21A

−1
11 −A−1

11 A12C
−1

−C−1A21A
−1
11 C−1

)
=

(
A−1

11 0
0 0

)
+

(
−A−1

11 A12

I

)
C−1

(
−A21A

−1
11 I

)
,

where C def= A22 −A21A
−1
11 A12.

The role of C in the above theorem is played by A(ρ) defined as

A(ρ) def= Kx
SS + σ2

nI − ρ2Kx
ST

(
Kx

TT + σ2
nI

)−1
Kx

TS . (S.2)

In addition, we let

v(ρ) def=
(
−ρKx

ST (Kx
TT + σ2

nI)−1 I
) (

kx
T∗

ρkx
S∗

)
= −ρKx

ST (Kx
TT + σ2

nI)−1kx
T∗ + ρkx

S∗

= ρ
(
kx

S∗ −Kx
ST (Kx

TT + σ2
nI)−1kx

T∗
)
. (S.3)
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Then

σ2
T (ρ) = k∗∗ −

(
kx

T∗
ρkx

S∗

)T (
(Kx

TT + σ2
nI)−1 0

0 0

) (
kx

T∗
ρkx

S∗

)
− v(ρ)T[A(ρ)]−1v(ρ) (S.4)

= k∗∗ − (kx
T∗)

T
(
Kx

TT + σ2
nI

)−1
kx

T∗ − v(ρ)T[A(ρ)]−1v(ρ) (S.5)

We can identify v(ρ) = ρv(1). If we also write v1 for v(1), then

σ2
T (ρ) = k∗∗ − (kx

T∗)
T

(
Kx

TT + σ2
nI

)−1
kx

T∗ − ρ2vT
1 [A(ρ)]−1

v1 (S.6)

By substituting 0 for ρ above, the first two terms on the right of the equation can be identified with
σ2

T (0). Thus

σ2
T (ρ) = σ2

T (0)− ρ2vT
1 [A(ρ)]−1

v1. (S.7)

Now, observe that Kx
ST (Kx

TT + σ2
nI)−1Kx

TS is positive semi-definite, since we can factorize it into
the form XXT for some matrix X . Proceeding from this, we have

Kx
ST (Kx

TT + σ2
nI)−1Kx

TS < 0

⇐⇒ (1− ρ2)Kx
ST (Kx

TT + σ2
nI)−1Kx

TS < 0 since ρ2 ∈ [0, 1]

⇐⇒ −ρ2Kx
ST (Kx

TT + σ2
nI)−1Kx

TS < −Kx
ST (Kx

TT + σ2
nI)−1Kx

TS

⇐⇒ Kx
SS + σ2

nI − ρ2Kx
ST (Kx

TT + σ2
nI)−1Kx

TS < Kx
SS + σ2

nI −Kx
ST (Kx

TT + σ2
nI)−1Kx

TS

i.e., A(ρ2) < A(1)

⇐⇒ [A(ρ2)]−1 4 [A(1)]−1

⇐⇒ vT
1 [A(ρ2)]−1v 6 vT[A(1)]−1v

⇐⇒ σ2
T (0)− ρ2vT

1 [A(ρ2)]−1v > σ2
T (0)− ρ2vT[A(1)]−1v

i.e., σ2
T (ρ2) > σ2

T (0)− ρ2vT[A(1)]−1v

We write A1 for A(1). To complete the proof, we use the identity vT
1 A−1

1 v1 = σ2
T (0)− σ2

T (1),
which is obtained by by substituting 1 for ρ into (S.7). Further re-grouping of terms leads to the
result.

Remark The expression for σ2
T (ρ) given by (S.7) can also be obtained by repeated conditioning.

Consider the following covariance matrix between the query fT
∗ , the noisy observations yS

S at XS

for task S, and the noisy observations yT
T at XT for task T ,

C

fT
∗

yS
S

yT
T

 =

 k∗∗ ρ(kx
S∗)

T (kx
T∗)

T

ρkx
S∗ Kx

SS + σ2
nI ρKx

ST
kx

T∗ ρKx
TS Kx

TT + σ2
nI

 . (S.8)

By conditioning on yT
T , we obtain

C
(

fT
∗

yS
S

∣∣∣∣ yT
T

)
=

(
σT (0) (v(ρ))T
v(ρ) A(ρ)

)
. (S.9)

Conditioning subsequently on yS
S gives

σ2
T (ρ) def= C(fT

∗ |yT
T ,yS

S) = σ2
T (0)− v(ρ)T[A(ρ)]−1v(ρ). (S.10)

To complete, we simply write ρv1 for v(ρ).

S.2.2 Proof for Proposition 5b

Recall that the exact posterior variance is

σ2
T (ρ) = σ2

T (0)− ρ2vT
1 [A(ρ)]−1

v1, (S.11)
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i.e., (S.7). Denote the lower bound by
¯
σ2

T (ρ). Then from the proof for Proposition 5a, we have

¯
σ2

T (ρ) = σ2
T (0)− ρ2vT

1 A−1
1 v1. (S.12)

Define the gap between the exact posterior variance and its lower bound as

g(ρ2) def= σ2
T (ρ)−

¯
σ2

T (ρ)

= −ρ2vT
1 [A(ρ)]−1v1 + ρ2vT

1 A−1
1 v1. (S.13)

Ignoring the first term, which is negative, gives

g(ρ2) 6 ρ2vT
1 A−1

1 v1

= ρ2
[
σ2

T (0)− σ2
T (1)

]
.

S.2.3 Proof for Proposition 5c

We rewrite the gap (S.13) between the exact posterior variance and its lower bound as

g(ρ2) = ρ2vT
1

[
A−1

1 −A(ρ))−1
]
v1. (S.14)

Next, express A(ρ) as

A(ρ) = A1 + (1− ρ2)Kx
ST (Kx

TT + σ2
nI)−1Kx

TS , (S.15)

so that we can use the Woodbury identity to expand its inverse in S.14, and write

g(ρ2) = vT
1 A−1

1 Kx
ST [B(ρ2)]−1Kx

TSA−1
1 v1, (S.16)

where B(ρ2) def= D(ρ2) +
1
ρ2

Kx
TSA−1

1 Kx
ST (S.17)

D(ρ2) def=
1

ρ2(1− ρ2)
(Kx

TT + σ2
nI). (S.18)

Notice that the dependence of g(ρ2) on ρ2 is only through B(ρ2). We differentiate g(ρ2) with
respect to ρ2:

dg

dρ2
= vT

1 A−1
1 Kx

ST [B(ρ2)]−1C(ρ2)[B(ρ2)]−1Kx
TSA−1

1 v1, (S.19)

where C(ρ2) def= − dB

dρ2
=

1− 2ρ2

ρ2(1− ρ2)
D +

1
ρ4

Kx
TSA−1

1 Kx
ST =

1
ρ2

B − 1
1− ρ2

D. (S.20)

Substituting the last expression for C(ρ2) back into (S.19) gives

dg

dρ2
=

1
ρ2

g − 1
1− ρ2

h, (S.21)

where h(ρ2) def= vT
1 A−1

1 Kx
ST [B(ρ2)]−1 D(ρ2) [B(ρ2)]−1Kx

TSA−1
1 v1. (S.22)

Put inequality D(ρ2) 4 B(ρ2) into h(ρ2) to give

h(ρ2) 6 vT
1 A−1

1 Kx
ST [B(ρ2)]−1 B(ρ2) [B(ρ2)]−1Kx

TSA−1
1 v1

= vT
1 A−1

1 Kx
ST [B(ρ2)]−1Kx

TSA−1
1 v1

= g(ρ2). (S.23)

Putting the above inequality into (S.21) leads to

dg

dρ2
> f(ρ2) g(ρ2), where f(ρ2) def=

1
ρ2

− 1
1− ρ2

. (S.24)

Since
¯
σ2

T (ρ) is a lower bound, g(ρ2) > 0 (also see the quadratic form in (S.16)). In addition, the mul-
tiplicative factor f(ρ2) is positive for ρ2 ∈ [0, 1/2[, zero at ρ2 = 1/2, and negative for ρ2 ∈]1/2, 1].
Thus dg/dρ2 > 0 for ρ2 ∈ [0, 1/2[. Therefore g is monotonically increasing within ρ2 ∈ [0, 1/2[,
and its maximum value must be at ρ̂2 > 1/2.
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S.3 Proof for Proposition 7

Recall that we seek an upper bound σ̄2
n for σ̃2

n such that ∆(ρ, σ2
n, σ̄2

n) 6 0 for all test locations,
where

∆(ρ, σ2
n, s2) def= (kx

∗)
T

[
(Σ(1, σ2

n, s2))−1 − (Σ(ρ, σ2
n, σ2

n))−1
]
kx
∗. (S.25)

For the derived bound to be applicable in general, it is necessary that the condition “for all test
locations” be equivalent to the condition “for all kx

∗ ∈ Rn”, which is easier to handle; we shall
remark on this later. Thus, we start from the requirement that ∆(ρ, σ2

n, σ̄2
n) 6 0 for all kx

∗ ∈ Rn:

∆(ρ, σ2
n, σ̄2

n) 6 0 ∀kx
∗ ∈ Rn (S.26a)

⇐⇒ (Σ(1, σ2
n, σ̄2

n))−1 − (Σ(ρ, σ2
n, σ2

n))−1 4 0 (S.26b)

⇐⇒ (Σ(1, σ2
n, σ̄2

n))−1 4 (Σ(ρ, σ2
n, σ2

n))−1 (S.26c)

⇐⇒ Σ(1, σ2
n, σ̄2

n) < Σ(ρ, σ2
n, σ2

n) (S.26d)

⇐⇒
(

Kx
TT Kx

TS
Kx

ST Kx
SS

)
+

(
σ2

nI 0
0 σ̄2

nI

)
<

(
Kx

TT Kx
TS

Kx
ST ρ−2Kx

SS

)
+

(
σ2

nI 0
0 ρ−2σ2

nI

)
(S.26e)

⇐⇒
(

0 0
0 βKx

SS

)
4

(
0 0
0 (σ̄2

n − ρ−2σ2
n)I

)
(S.26f)

⇐⇒ βKx
SS 4 (σ̄2

n − ρ−2σ2
n)I (S.26g)

⇐⇒ Kx
SS 4

σ̄2
n − ρ−2σ2

n

β
I (S.26h)

⇐⇒ λ̄ 6
σ̄2

n − ρ−2σ2
n

β
(S.26i)

⇐⇒ σ̄2
n > βλ̄ + ρ−2σ2

n = β(λ̄ + σ2
n) + σ2

n (S.26j)

Therefore we have the minimum of the upper bound is

¯̄σ2
n

def= β(λ̄ + σ2
n). (S.27)

The tightness of the bound is evident from the construction of ¯̄σ2
n.

Remark For the bound to hold in general, we have claimed in the above proof that the condition
“for all test locations” must be equivalent to the condition “for all kx

∗ ∈ Rn”. To show this, we
shall give a particular example that demands this equivalence. Consider input domain [−1, 1] and
kx(x, x′) = xx′. We fix x∗. If the observed locations are densely located on [−1, 1] \ {x∗}, then the
entries in kx

∗ are densely located on [−x∗, x∗] \ {x2
∗}. Since scaling kx

∗ does not effect the inequality
∆(ρ, σ2

n, σ̄2
n) 6 0, we have, equivalently, kx

∗ ∈ Rn.

S.4 Proof for Theorem 12

Theorem 12 upon which Proposition 13 is built depends on the Lemma 4 in Ferrari Trecate
et al. [2]. Before we examine a variant of that lemma, some additional notations are needed.
Let y def= (y1 . . . yn)T be the n values observed at the set of data locations X def= {x1, . . . ,xn}.
In addition to the matrix Φ defined in Theorem 12, we introduce an (infinite) vector function
φT(x) def= (φ1(x), φ2(x), . . .)T, and an (infinite) diagonal matrix Λκ with κi on the diagonals.1
Given the data, consider the space of functions

H0
def= {φT(x)Ly | L ∈ R∞×n}.

The aim is to use a function g from H0 to estimate the true function f? drawn from the GP with
covariance function kx(·, ·). The quality of this estimation may be evaluated using the following
variant of Lemma 4 from [2]:

1In [2], where the focus is on finite-dimensional approximation of GP, only m major eigenvalues and eigen-
functions are used. However, our focus is to obtain an upper bound on the learning curve, and so we follow [3]
and let m→∞.
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Lemma S.2. (cf. [2, Lemma 4]) The generalization error of a function g ∈ H0 is

ε(g ∈ H0, X) def=
〈
(f?(x)− g(x))2

〉
f?,y,x

=
∞∑

i=1

κi + tr
(
L

〈
yyT

〉
y

LT
)
− 2 tr

(
L

〈
〈yf?(x)〉f?,y φT(x)

〉
x

)
Proof.〈

(f?(x)− g(x))2
〉

f?,y,x

=
〈(

f?(x)− φT(x)Ly
)2

〉
f?,y,x

= 〈f?(x)f?(x)〉f?,x +
〈
φT(x)LyyTLTφ(x)

〉
y,x

− 2
〈
φT(x)L 〈yf?(x)〉f?,y

〉
x

= 〈kx(x,x)〉x + tr
(
L

〈
yyT

〉
y

LT
〈
φ(x)φT(x)

〉
x

)
− 2 tr

(
L

〈
〈yf?(x)〉f?,y φT(x)

〉
x

)
=

∞∑
i=1

κi + tr
(
L

〈
yyT

〉
y

LT
)
− 2 tr

(
L

〈
〈yf?(x)〉f?,y φT(x)

〉
x

)
We have used

〈
φ(x)φT(x)

〉
x

= I for the last expression.

To proceed further, it is necessary to specify how y is obtained. For the single-task GP with isotropic
noise, and under correct prior specification, each entry in y is generated via

y(x) ∼ N (f?(x), σ2
n). (S.28)

This is the setting considered in [2], where it is also shown that minimizing the generalization error
with respect to L leads to the GP mean predictor [2, Theorem 5]; see also [4], and [5, Proposi-
tion V.1]. The single-task FWO bound on the learning curve of the GP is obtained by minimizing
〈ε(g ∈ H0, X)〉X with respect to g within only the sub-space of functions

H1
def= {φT(x)DΦTy | D is a diagonal matrix}.

This results in an upper bound on the learning curve. This is because H1 ⊆ H0, so that minimizing
〈ε(g ∈ H0, X)〉X naturally gives predictors that cannot outperform the GP mean predictor. The
form of functions in H1 is motivated by Projected Bayes Regression [2, Definition 1], wherein the
L in H0 is constrained to be MΦT for a square matrix M .

Theorem 12, our variant of Ferrari Trecate et al.’s Theorem 6 for correlated noise γ2, for example
as defined by (14), uses

y(x) ∼ GP(f?(x), γ2(x,x′)) (S.29)

instead of (S.28). Generating y in this manner and further restricting g to be from H1 leads to the
following generalization error using Lemma S.2:

ε(g ∈ H1, X) =
∞∑

i=1

κi + tr
(
DΦTHΦD

)
− 2 tr

(
DΦTΦΛκ

)
, (S.30)

where
Hij

def= kx(xi,xj) + γ2(xi,xj). (S.31)

The right of (S.30) is quadratic in the diagonal entries of D. Minimizing 〈ε(g ∈ H1, X)〉X with
respect to D results in Theorem 12.

S.5 Proof for Proposition 13

We prove the expression for ci given by (15), which forms the crux of Proposition 13. In order to
present the proof, some notations are required. Recall that the cardinality of these sets are |X| = n,
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|XS | = nS and |XT | = nT , and that πS
def= nS/n. We partition the index set I def= {1 . . . n} into

IT
def= {1 . . . nT }, and IS

def= {(nT + 1) . . . n}. We enumerate and order the elements of X so that
X = {xi}n

i=1, XT = {xi | i ∈ IT }, and XS = {xi | i ∈ IS}. We shall represent by 〈· · · 〉X the
expectation over the set X , and write p(X)dX def=

∏n
i=1 p(xi)dxi, where the distributions over the

xis are identical; expressions 〈· · · 〉XS
and 〈· · · 〉XT

, and p(XS)dXS and p(XT )dXT have similar
meanings.

Recall the definition of eigenvalues and eigenfunctions using the integral equation and the orthogo-
nality of eigenfunctions:∫

kx(x,x′)φi(x′)p(x′)dx′ = κiφi(x)
∫

φi(x)φi(x)p(x)dx = 1. (S.32)

Using the these two equalities, we can show that∫
kx(x,x′)φi(x)φi(x′)p(x)p(x′)dxdx′ =

∫ (∫
kx(x,x′)φi(x′)p(x′)dx′

)
φi(x)p(x)dx

=
∫

(κiφi(x))φi(x)p(x)dx

= κi

∫
φi(x)φi(x)p(x)dx

= κi (S.33)

The next two equalities will be used in the main part of the proof:〈 ∑
p,q∈I

δpqφi(xp)φi(xq)

〉
X

=
∫ n∑

p=1

φi(xp)φi(xp)p(X)dX

=
n∑

p=1

∫
φi(xp)φi(xp)p(xp)dxp

= n

∫
[φi(x)]2 p(x)dx

= n (S.34)〈 ∑
p,q∈I

kx(xp,xq)φi(xp)φi(xq)

〉
X

=
∫ ∑

p,q∈I
kx(xp,xq)φi(xp)φi(xq)p(X)dX

=
∑

p,q∈I
p6=q

∫
kx(xp,xq)φi(xp)φi(xq)p(xp)p(xq)dxpdxq

+
n∑

p=1

∫
kx(xp,xp)φi(xp)φi(xp)p(xp)dxp

=
∑

p,q∈I
p6=q

κi +
n∑

p=1

∫
kx(x,x) [φi(x)]2 p(x)dx (∗)

= n(n− 1)κi + n

∫
kx(x,x) [φi(x)]2 p(x)dx, (S.35)

where (S.33) is used in getting to (∗). By similar arguments we can show equivalent results when
the summations and expectations are taken only over data points in XS and XT .

We now turn to the main part of the proof. The observation noise (co)variance for our upper bound
can be expressed as

γ2(xp,xq) def=


δpqσ

2
n if p ∈ IT and q ∈ IT

βkx(xp,xq) + ρ−2δpqσ
2
n if p ∈ IS and q ∈ IS

0 otherwise,
(S.36)

6



where δpq is the Kronecker delta function. In the definition of γ2, the first case is when both input
locations are for task T , and the second case is when both input locations are for task S. It follows
that〈 ∑

p,q∈I
γ2(xp,xq)φi(xp)φi(xq)

〉
X

=

〈 ∑
p,q∈IT

δpqσ
2
nφi(xp)φi(xq)

〉
XT

+

〈 ∑
p,q∈IS

(
βkx(xp,xq) + ρ−2δpqσ

2
n

)
φi(xp)φi(xq)

〉
XS

= σ2
n

〈 ∑
p,q∈IT

δpqφi(xp)φi(xq)

〉
XT

+ β

〈 ∑
p,q∈IS

kx(xp,xq)φi(xp)φi(xq)

〉
XS

+ ρ−2σ2
n

〈 ∑
p,q∈IS

δpqφi(xp)φi(xq)

〉
XS

= nT σ2
n + β

[
nS(nS − 1)κi + βnS

∫
kx(x,x) [φi(x)]2 p(x)dx

]
+ ρ−2nSσ2

n (∗)

= βnS(nS − 1)κi + βnS

∫
kx(x,x) [φi(x)]2 p(x)dx + nσ2

n + βnSσ2
n, (S.37)

where the XS and XT equivalents of (S.34) and (S.35) are applied to get (∗). We are now ready to
apply Theorem 12 to obtain ci:

ci =
1
n

〈(
ΦTHΦ

)
ii

〉
X

=
1
n

〈 ∑
p,q∈I

(
kx(xp,xq) + γ2(xp,xq)

)
φi(xp)φi(xq)

〉
X

=
1
n

〈 ∑
p,q∈I

kx(xp,xq)φi(xp)φi(xq)

〉
X

+
1
n

〈 ∑
p,q∈I

γ2(xp,xq)φi(xp)φi(xq)

〉
X

= (n− 1)κi +
∫

kx(x,x) [φi(x)]2 p(x)dx

+ βπS(nS − 1)κi + βπS

∫
kx(x,x) [φi(x)]2 p(x)dx + σ2

n + βπSσ2
n

(∗)

= [(n− 1) + βnS(nS − 1)]κi + (1 + βπS)
∫

kx(x,x) [φi(x)]2 p(x)dx + (1 + βπS)σ2
n

=
[
(1 + βπ2

S)n− (1 + βπS)
]
κi + (1 + βπS)

∫
kx(x,x) [φi(x)]2 p(x)dx + (1 + βπS)σ2

n

where (S.35) and (S.37) are used to obtain (∗).

Remark. Although we do not have the proof by Ferrari Trecate et al. [2] for their upper bound on
the learning curve for single-task GP with isotropic noise, it is conceivable that some variation of
the above proof has been used by them.

S.6 Simulations of learning curve, details

In this section, we give additional details for our simulations of the learning curve.

S.6.1 Continuation of εavg
T in πSn

Recall that εavg
T (ρ, σ2

n, πS , n) is only defined for values of πS and n such that πSn = nS ∈ N0. In
our simulations, however, we extend the domain to allow πSn ∈ R, so that smooth curves can be
plotted. For the theoretical bounds given by Propositions 11 and 13, this is done by simply using
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the respective expressions verbatim. For the experimental bounds, which require sampling over
X def= XT ∪XS , this is achieved in the manner described next.

For a given πS , we sample the sizes of the training sets XT and XS to satisfy

bπSnc 6 nS 6 dπSne and 〈nS〉 = πSn, (S.38)

where the expectation is taken over simulation runs. The first condition ensures that, within each
simulation run, the size nS of XS is πSn whenever the latter is an integer. The second condition
ensures that the ratio nS/n is consistent with πS when averaged over multiple simulation runs. For
each simulation run, the training set is constructed sequentially by randomly drawing additional
training locations. For each new location, we determine its task by using Algorithm 1.

Algorithm 1 Decide the task for a new input
Require: Ratio πS , required cardinality n of X , and and previous cardinality nold

S of XS .
1: if nold

S < bπSnc then
2: new input is for task S
3: else if nold

S = dπSne then
4: new input is for task T
5: else
6: new input is for task S with probability (πSn− bπSnc)

{or, equivalently, for task T with probability 1− (πSn− bπSnc)}
7: end if

S.6.2 Analytical averaging over test locations

The simulation study in section 5.3 uses the squared exponential (SE) covariance function with
normally distributed inputs. As claimed in section 3.4, the expectation over test locations can be
done analytically to obtain the generalization error εT exactly. In order to do this, we need to be able
to compute

Mpq
def=

∫
kx(xp,x∗) kx(xq,x∗) p(x∗)dx∗ =

∞∑
i=1

κ2
i φi(xp)φi(xq) (S.39)

for a fixed pair of input locations (xp,xq). In the one-dimensional case with the SE covariance
function and normally distributed inputs, i.e.,

kx(x, x′) def= exp− (x− x′)2

2l2
and p(x) def=

1√
2πσx

exp− x2

2σ2
x

, (S.40)

we can use the integral expression for Mpq to obtain

Mpq =
l√

2σ2
x + l2

exp−
σ2

x(xp − xq)2 + l2(x2
p + x2

q)
2l2(2σ2

x + l2)
. (S.41)

This can be easily generalized to input spaces of higher-dimensions. Note that the infinite sum
expression for Mpq is not useful in this case, even though analytic expressions for the eigenfunctions
are available [6]. This is because the eigenfunctions corresponding to the smaller eigenvalues exhibit
larger oscillations around zero in regions where p(x) is low, so that it is hard to determine when to
truncate the infinite sum for certain pairs of (xp, xq).
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