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Abstract

We consider an online decision problem over a discrete space in which the loss
function is submodular. We give algorithms which are computationally efficient
and are Hannan-consistent in both the full information and bandit settings.

1 Introduction

Online decision-making is a learning problem in which one needs to choose a decision repeatedly
from a given set of decisions, in an effort to minimize costs over the long run, even in the face of
complete uncertainty about future outcomes. The performance of an online learning algorithm is
measured in terms of its regret, which is the difference between the total cost of the decisions it
chooses, and the cost of the optimal decision chosen in hindsight. A Hannan-consistent algorithm is
one that achieves sublinear regret (as a function of the number of decision-making rounds). Hannan-
consistency implies that the average per round cost of the algorithm converges to that of the optimal
decision in hindsight.

In the past few decades, a variety of Hannan-consistent algorithms have been devised for a wide
range of decision spaces and cost functions, including well-known settings such as prediction from
expert advice [10], online convex optimization [15], etc. Most of these algorithms are based on
an online version of convex optimization algorithms. Despite this success, many online decision-
making problems still remain open, especially when the decision space is discrete and large (say,
exponential size in the problem parameters) and the cost functions are non-linear.

In this paper, we consider just such a scenario. Our decision space is now the set of all subsets of
a ground set of n elements, and the cost functions are assumed to be submodular. This property
is widely seen as the discrete analogue of convexity, and has proven to be a ubiquitous property in
various machine learning tasks (see [4] for references). A crucial component in these latter results
are the celebrated polynomial time algorithms for submodular function minimization [7].

To motivate the online decision-making problem with submodular cost functions, here is an example
from [11]. Consider a factory capable of producing any subset from a given set of n products E.
Let f : 2E 7→ R be the cost function for producing any such subset (here, 2E stands for the set of
all subsets of E). Economics tells us that this cost function should satisfy the law of diminishing
returns: i.e., the additional cost of producing an additional item is lower the more we produce.
Mathematically stated, for all sets S, T ⊆ E such that T ⊆ S, and for all elements i ∈ E, we have

f(T ∪ {i})− f(T ) ≥ f(S ∪ {i})− f(S).
Such cost functions are called submodular, and frequently arise in real-world economic and other
scenarios. Now, for every item i, let pi be the market price of the item, which is only determined in
the future based on supply and demand. Thus, the profit from producing a subset S of the items is
P (S) =

∑
i∈S pi − f(S). Maximizing profit is equivalent to minimizing the function −P , which

is easily seen to be submodular as well.

The online decision problem which arises is now to decide which set of products to produce, to max-
imize profits in the long run, without knowing in advance the cost function or the market prices. A

1



more difficult version of this problem, perhaps more realistic, is when the only information obtained
is the actual profit of the chosen subset of items, and no information on the profit possible for other
subsets.

In general, the Online Submodular Minimization problem is the following. In each iteration, we
choose a subset of a ground set of n elements, and then observe a submodular cost function which
gives the cost of the subset we chose. The goal is to minimize the regret, which is the difference
between the total cost of the subsets we chose, and the cost of the best subset in hindsight. Depending
on the feedback obtained, we distinguish between two settings, full-information and bandit. In the
full-information setting, we can query each cost function at as many points as we like. In the bandit
setting, we only get to observe the cost of the subset we chose, and no other information is revealed.

Obviously, if we ignore the special structure of these problems, standard algorithms for learning
with expert advice and/or with bandit feedback can be applied to this setting. However, the com-
putational complexity of these algorithms would be proportional to the number of subsets, which is
2n. In addition, for the submodular bandits problem, even the regret bounds have an exponential
dependence on n. It is hence of interest to design efficient algorithms for these problems. For the
bandit version an even more basic question arises: does there exist an algorithm with regret which
depends only polynomially on n?

In this paper, we answer these questions in the affirmative. We give efficient algorithms for both
problems, with regret which is bounded by a polynomial in n – the underlying dimension – and
sublinearly in the number of iterations. For the full information setting, we give two different ran-
domized algorithms with expected regret O(n

√
T ). One of these algorithms is based on the follow-

the-perturbed-leader approach [5, 9]. We give a new way of analyzing such an algorithm. This
analysis technique should have applications for other problems with large decision spaces as well.
This algorithm is combinatorial, strongly polynomial, and can be easily generalized to arbitrary dis-
tributive lattices, rather than just all subsets of a given set. The second algorithm is based on convex
analysis. We make crucial use of a continuous extension of a submodular function known as the
Lovász extension. We obtain our regret bounds by running a (sub)gradient descent algorithm in the
style of Zinkevich [15].

For the bandit setting, we give a randomized algorithm with expected regret O(nT 2/3). This algo-
rithm also makes use of the Lovász extension and gradient descent. The algorithm folds exploration
and exploitation steps into a single sample and obtains the stated regret bound. We also show that
these regret bounds hold with high probability. Note that the technique of Flaxman, Kalai and
McMahan [1], when applied to the Lovász extension, gives a worse regret bound of O(nT 3/4).

2 Preliminaries and Problem Statement

Submodular functions. The decision space is the set of all subsets of a universe of n elements,
[n] = {1, 2, . . . , n}. The set of all subsets of [n] is denoted 2[n]. For a set S ⊆ [n], denote by χS its
characteristic vector in {0, 1}n, i.e. χS(i) = 1 if i ∈ S, and 0 otherwise.

A function f : 2[n] → R is called submodular if for all sets S, T ⊆ [n] such that T ⊆ S, and for all
elements i ∈ E, we have

f(T + i)− f(T ) ≥ f(S + i)− f(S).

Here, we use the shorthand notation S + i to indicate S ∪ {i}. An explicit description of f would
take exponential space. We assume therefore that the only way to access f is via a value oracle, i.e.
an oracle that returns the value of f at any given set S ⊆ [n].

Given access to a value oracle for a submodular function, it is possible to minimize it in polynomial
time [3], and indeed, even in strongly polynomial time [3, 7, 13, 6, 12, 8]. The current fastest strongly
polynomial algorithm are those of Orlin[12] and Iwata-Orlin [8], which takes time O(n5EO + n6),
where EO is the time taken to run the value oracle. The fastest weakly polynomial algorithm is that
of Iwata [6] and Iwata-Orlin [8] which runs in time Õ(n4EO + n5).

Online Submodular Minimization. In the Online Submodular Minimization problem, over a
sequence of iterations t = 1, 2, . . ., an online decision maker has to repeatedly chose a subset

2



St ⊆ [n]. In each iteration, after choosing the set St, the cost of the decision is specified by a
submodular function ft : 2[n] → [−1, 1]. The decision maker incurs cost ft(St). The regret of the
decision maker is defined to be

RegretT :=
T∑

t=1

ft(St)− min
S⊆[n]

T∑
t=1

ft(S).

If the sets St are chosen by a randomized algorithm, then we consider the expected regret over the
randomness in the algorithm.

An online algorithm to choose the sets St will be said to be Hannan-consistent if it ensures that
RegretT = o(T ). The algorithm will be called efficient if it computes each decision St in poly(n, t)
time. Depending on the kind of feedback the decision maker receives, we distinguish between two
settings of the problem:

• Full information setting. In this case, in each round t, the decision maker has unlimited
access to the value oracles of the previously seen cost function f1, f2, . . . ft−1.

• Bandit setting. In this case, in each round t, the decision maker only observes the cost of
her decision St, viz. ft(St), and receives no other information.

Main Results. In the setup of the Online Submodular Minimization, we have the following results:

Theorem 1. In the full information setting of Online Submodular Minimization, there is an efficient
randomized algorithm that attains the following regret bound:

E[RegretT ] ≤ O(n
√

T ).

Furthermore, RegretT ≤ O((n +
√

log(1/ε))
√

T ) with probability at least 1− ε.

Theorem 2. In the bandit setting of Online Submodular Minimization, there is an efficient random-
ized algorithm that attains the following regret bound:

E[RegretT ] ≤ O(nT 2/3).

Furthermore, RegretT ≤ O(nT 2/3
√

log(1/ε)) with probability at least 1− ε.

Both of the theorems above hold against both oblivious as well as adaptive adversaries.

The Lovász Extension. A major technical construction we need for the algorithms is the Lovász
extension f̂ of the submodular function f . This is defined on the Boolean hypercubeK = [0, 1]n and
takes real values. Before defining the Lovász extension, we need the concept of a chain of subsets
of [n]:

Definition 1. A chain of subsets of [n] is a collection of sets A0, A1, . . . , Ap such that

A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Ap.

A maximal chain is one where p = n. For a maximal chain, we have A0 = ∅, An = [n], and there is
a unique associated permutation π : [n] → [n] such that for all i ∈ [n], we have Aπ(i) = Aπ(i)−1+i.

Now let x ∈ K. There is a unique chain A0 ⊂ A2 ⊂ · · ·Ap such that x can be expressed as a
convex combination x =

∑p
i=0 µiχAi

where µi > 0 and
∑p

i=0 µi = 1. A nice way to construct this
combination is the following random process: choose a threshold τ ∈ [0, 1] uniformly at random,
and consider the level set Sτ = {i : xi > τ}. The sets in the required chain are exactly the level
sets which are obtained with positive probability, and for any such set Ai, µi = Pr[Sτ = Ai]. In
other words, we have x = Eτ [χSτ ]. This follows immediately by noting that for any i, we have
Prτ [i ∈ Sτ ] = xi. Of course, the chain and the weights µi can also be constructed deterministically
simply by sorting the coordinates of x.

Now, we are ready to define1 the Lovász extension f̂ :

1Note that this is not the standard definition of the Lovász extension, but an equivalent characterization.
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Definition 2. Let x ∈ K. Let A0 ⊂ A2 ⊂ · · ·Ap such that x can be expressed as a convex
combination x =

∑p
i=0 µiχAi where µi > 0 and

∑p
i=0 µi = 1. Then the value of the Lovász

extension f̂ at x is defined to be

f̂(x) :=
p∑

i=0

µif(Ai).

The preceding discussion gives an equivalent way of defining the Lovász extension: choose a thresh-
old τ ∈ [0, 1] uniformly at random, and consider the level set Sτ = {i : xi > τ}. Then we have

f̂(x) = Eτ [f(Sτ )].

Note that the definition immediately implies that for all sets S ⊆ [n], we have f̂(χS) = f(S).

We will also need the notion of a maximal chain associated to a point x ∈ K in order to define
subgradients of the Lovász extension:
Definition 3. Let x ∈ K, and let A0 ⊂ A2 ⊂ · · ·Ap be the unique chain such that x =

∑p
i=0 µiχAi

where µi > 0 and
∑p

i=0 µi = 1. A maximal chain associated with x is any maximal completion of
the Ai chain, i.e. a maximal chain ∅ = B0 ⊂ B1 ⊂ B2 ⊂ · · ·Bn = [n] such that all sets Ai appear
in the Bj chain.

We have the following key properties of the Lovász extension. For proofs, refer to Fujishige [2],
chapter IV.

Proposition 3. The following properties of the Lovász extension f̂ : K → R hold:

1. f̂ is convex.

2. Let x ∈ K. Let ∅ = B0 ⊂ B1 ⊂ B2 ⊂ · · ·Bn = [n] be an arbitrary maximal chain
associated with x, and let π : [n] → [n] be the corresponding permutation. Then, a
subgradient g of f̂ at x is given as follows:

gi = f(Bπ(i))− f(Bπ(i)−1).

3 The Full Information Setting

In this section we give two algorithms for regret minimization in the full information setting, both of
which attain the same regret bound of O(n

√
T ). The first is a randomized combinatorial algorithm,

based on the “follow the leader” approach of Hannan [5] and Kalai-Vempala [9], and the second is
an analytical algorithm based on (sub)gradient descent on the Lovász extension.

Both algorithms have pros and cons: while the second algorithm is much simpler and more efficient,
we do not know how to extend it to distributive lattices, for which the first algorithm readily applies.

3.1 A Combinatorial Algorithm

In this section we analyze a combinatorial, strongly polynomial, algorithm for minimizing regret in
the full information Online Submodular Minimization setting:

Algorithm 1 Submodular Follow-The-Perturbed-Leader
1: Input: parameter η > 0.
2: Initialization: For every i ∈ [n], choose a random number ri ∈ [−1/η, 1/η] uniformly at

random. Define R : 2[n] → R as R(S) =
∑

i∈S ri.
3: for t = 1 to T do
4: Use the set St = arg minS⊆[n]

∑t−1
τ=1 fτ (S) + R(S), and obtain cost ft(St).

5: end for

Define Φt : 2[n] → R as Φt(S) =
∑t−1

τ=1 fτ (S) + R(S). Note that R is a submodular function, and
Φt, being the sum of submodular functions, is itself submodular. Furthermore, it is easy to construct
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a value oracle for Φt simply by using the value oracles for the fτ . Thus, the optimization in step 3
is poly-time solvable given oracle access to Φt.

While the algorithm itself is a simple extension of Hannan’s [5] follow-the-perturbed-leader algo-
rithm, previous analysis (such as Kalai and Vempala [9]), which rely on linearity of the cost func-
tions, cannot be made to work here. Instead, we introduce a new analysis technique: we divide the
decision space using n different cuts so that any two decisions are separated by at least one cut, and
then we give an upper bound on the probability that the chosen decision switches sides over each
such cut. This new technique may have applications to other problems as well. We now prove the
regret bound of Theorem 1:

Theorem 4. Algorithm 1 run with parameter η = 1/
√

T achieves the following regret bound:

E[RegretT ] ≤ 6n
√

T .

Proof. We note that the algorithm is essentially running a “follow-the-leader” algorithm on the
cost functions f0, f1, . . . , ft−1, where f0 = R is a fictitious “period 0” cost function used for
regularization. The first step to analyzing this algorithm is to use a stability lemma, essentially
proved in Theorem 1.1 of [9], which bounds the regret as follows:

RegretT ≤
T∑

t=1

ft(St)− ft(St+1) + R(S∗)−R(S1).

Here, S∗ = arg minS⊆[n]

∑T
t=1 ft(S).

To bound the expected regret, by linearity of expectation, it suffices to bound E[f(St) − f(St+1)],
where for the purpose of analysis, we assume that we re-randomize in every round (i.e. choose a
fresh random function R : 2[n] → R). Naturally, the expectation E[f(St) − f(St+1)] is the same
regardless of when R is chosen.

To bound this, we need the following lemma:

Lemma 5.
Pr[St 6= St+1] ≤ 2nη.

Proof. First, we note the following simple union bound:

Pr[St 6= St+1] ≤
∑

i∈[n]

Pr[i ∈ St and i /∈ St+1] + Pr[i /∈ St and i ∈ St+1]. (1)

Now, fix any i, and we aim to bound Pr[i ∈ St and i /∈ St+1]. For this, we condition on the
randomness in choosing rj for all j 6= i. Define R′ : 2[n] → R as R′(S) =

∑
j∈S,j 6=i rj , and

Φ′t : 2[n] → R as Φ′t(S) =
∑t−1

τ=1 fτ (S) + R′(S). Note that if i /∈ S, then R′(S) = R(S) and
Φ′t(S) = Φt(S). Let

A = arg min
S⊆[n]:i∈S

Φ′(S) and B = arg min
S⊆[n]:i/∈S

Φ′(S).

Now, we note that the event i ∈ St happens only if Φ′t(A) + ri < Φ′t(B), and St = A. But if
Φ′t(A) + ri < Φ′t(B)− 2, then we must have i ∈ St+1, since for any C such that i /∈ C,

Φt+1(A) = Φ′t(A) + ri + ft(A) < Φ′t(B)− 1 < Φ′t(C) + ft(C) = Φt(C).

The inequalities above use the fact that ft(S) ∈ [−1, 1] for all S ⊆ [n]. Thus, if v := Φ′t(B) −
Φ′t(A), we have

Pr[i ∈ St and i /∈ St+1 | rj , j 6= i] ≤ Pr[ri ∈ [v − 2, v] | rj , j 6= i] ≤ η,

since ri is chosen uniformly from [−1/η, 1/η]. We can now remove the conditioning on rj for
j 6= i, and conclude that

Pr[i ∈ St and i /∈ St+1] ≤ η.

Similarly, we can bound Pr[i /∈ St and i ∈ St+1] ≤ η. Finally, the union bound (1) over all choices
of i yields the required bound on Pr[St 6= St+1].
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Continuing the proof, we have

E[f(St)− f(St+1)] = E[f(St)− f(St+1) | St 6= St+1] · Pr[St 6= St+1]
≤ 0 + 2 · Pr[St 6= St+1]
≤ 4nη.

The last inequality follows from Lemma 5. Now, we have R(S∗)−R(S1) ≤ 2n/η, and so

E[RegretT ] ≤
T∑

t=1

E[f(St)− f(St+1)] + E[R(S∗)−R(S1)]

≤ 4nηT + 2n/η

≤ 6n
√

T ,

since η = 1/
√

T .

3.2 An Analytical Algorithm

In this section, we give a different algorithm based on the Online Gradient Descent method of
Zinkevich [15]. We apply this technique to the Lovász extension of the cost function coupled with a
simple randomized construction of the subgradient, as given in definition 2. This algorithm requires
the concept of a Euclidean projection of a point in Rn on to the set K, which is a function ΠK :
Rn → K defined by

ΠK(y) := arg min
x∈K

‖x− y‖.
Since K = [0, 1]n, it is easy to implement this projection: indeed, for a point y ∈ Rn, the projection
x = ΠK(y) is defined by

xi =





yi if yi ∈ [0, 1]
0 if yi < 0
1 if yi > 1

Algorithm 2 Submodular Subgradient Descent
1: Input: parameter η > 0. Let x1 ∈ K be an arbitrary initial point.
2: for t = 1 to T do
3: Choose a threshold τ ∈ [0, 1] uniformly at random, and use the set St = {i : xt(i) > τ} and

obtain cost ft(St).
4: Find a maximal chain associated with xt, ∅ = B0 ⊂ B1 ⊂ B2 ⊂ · · ·Bn = [n], and use

ft(B0), ft(B1), . . . , ft(Bn) to compute a subgradient gt of f̂t at xt as in part 2 of Proposi-
tion 3.

5: Update: set xt+1 = ΠK(xt − ηgt).
6: end for

In the analysis of the algorithm, we need the following regret bound. It is a simple extension of
Zinkevich’s analysis of Online Gradient Descent to vector-valued random variables whose expec-
tation is the subgradient of the cost function (the generality to random variables is not required for
this section, but it will be useful in the next section):

Lemma 6. Let f̂1, f̂2, . . . , f̂T : K → [−1, 1] be a sequence of convex cost functions over the cube
K. Let x1, x2, . . . , xT ∈ K be defined by x1 = 0 and xt+1 = ΠK(xt − ηĝt), where ĝ1, ĝ2, . . . , ĝT

are vector-valued random variables such that E[ĝt|xt] = gt, where gt is a subgradient of f̂t at xt.
Then the expected regret of playing x1, x2, . . . , xT is bounded by

T∑
t=1

E[f̂t(xt)]−min
x∈K

T∑
t=1

f̂T (x) ≤ n

2η
+ 2ηn

∑
t

E[‖ĝt‖2].

Since this Lemma follows rather easily from [15], we omit the proof in this extended abstract.

We can now prove the following regret bound:
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Theorem 7. Algorithm 2, run with parameter η = 1/
√

T , achieves the following regret bound:

E[RegretT ] ≤ 3n
√

T .

Furthermore, with probability at least 1− ε, RegretT ≤ (3n +
√

2 log(1/ε))
√

T .

Proof. Note that be Definition 2, we have that E[ft(St)] = f̂t(xt). Since the algorithm runs Online
Gradient Descent (from Lemma 6) with ĝt = gt (i.e. no randomness), we get the following bound
on the regret. Here, we use the bound ‖ĝt‖2 = ‖gt‖2 ≤ 4n.

E[RegretT ] =
T∑

t=1

E[ft(St)]− min
S⊆[n]

T∑
t=1

f(S) ≤
T∑

t=1

f̂t(xt)−min
x∈K

T∑
t=1

f̂T (x) ≤ n

2η
+ 2ηnT.

Since η = 1/
√

T , we get the required regret bound. Furthermore, by a simple Hoeffding bound, we
also get that with probability at least 1− ε,

T∑
t=1

ft(St) ≤
T∑

t=1

E[ft(St)] +
√

2T log(1/ε),

which implies the high probability regret bound.

4 The Bandit Setting

We now present an algorithm for the Bandit Online Submodular Minimization problem. The algo-
rithm is based on the Online Gradient Descent algorithm of Zinkevich [15]. The main idea is use
just one sample for both exploration (to construct an unbiased estimator for the subgradient) and
exploitation (to construct an unbiased estimator for the point chosen by the Online Gradient Descent
algorithm).

Algorithm 3 Bandit Submodular Subgradient Descent
1: Input: parameters η, δ > 0. Let x1 ∈ K be arbitrary.
2: for t = 1 to T do
3: Find a maximal chain associated with xt, ∅ = B0 ⊂ B1 ⊂ B2 ⊂ · · ·Bn = [n], and let

π be the associated permutation as in part 2 of Proposition 3. Then xt can be written as
xt =

∑n
i=0 µiχBi , where µi = 0 for the extra sets Bi that were added to complete the

maximal chain for xt.
4: Choose the set St as follows:

St = Bi with probability ρi = (1− δ)µi +
δ

n + 1
.

Use the set St and obtain cost ft(St).
5: If St = B0, then set ĝt = − 1

ρ0
ft(St)eπ(1), and if St = Bn then set ĝt = 1

ρn
ft(St)eπ(n).

Otherwise, St = Bi for some i ∈ [2, n − 1]. Choose εt ∈ {+1,−1} uniformly at random,
and set:

ĝt =





2
ρi

ft(St)eπ(i) if εt = 1

− 2
ρi

ft(St)eπ(i+1) if εt = −1

6: Update: set xt+1 = ΠK(xt − ηĝt).
7: end for

Before launching into the analysis, we define some convenient notation first. For a random variable
Xt defined in round t of the algorithm, define Et[Xt] (resp. VARt[Xt]) to be the expectation (resp.
variance) of Xt conditioned on all the randomness chosen by the algorithm until round t.

A first observation is that on the expectation, the regret of the algorithm above is almost the same
as if it had played xt all along and the loss functions were replaced by the Lovász extensions of the
actual loss functions.
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Lemma 8. For all t, we have E[f(St)] ≤ E[f̂t(xt)] + 2δ.

Proof. From Definition 2 we have that f̂(xt) =
∑

i µif(Bi). On the other hand, Et[f(St)] =∑
i ρif(Bi), and hence:

Et[f(St)]− f̂t(xt) =
n∑

i=0

(ρi − µi)f(Bi) ≤ δ
n∑

i=0

[
1

n + 1
+ µi

]
|f(Bi)| ≤ 2δ.

The lemma now follows by taking the expectation of both sides of this inequality with respect to the
randomness chosen in the first t− 1 rounds.

Next, by Proposition 3, the subgradient of the Lovász extension of ft at point xt corresponding to
the maximal chain B0 ⊂ B1 ⊂ · · · ⊂ Bn is given by gt(i) = f(Bπ(i)) − f(Bπ(i)−1). Using this
fact, it is easy to check that the random vector ĝt is constructed in such a way that E[ĝt|xt] = gt.
Furthermore, we can bound the norm of this estimator as follows:

Et[‖ĝt‖2] ≤
n∑

i=0

4
ρ2

i

ft(Bi)2 · ρi ≤ 4(n + 1)2

δ
≤ 16n2

δ
. (2)

We can now remove the conditioning, and conclude that E[‖ĝt‖2] ≤ 16n2

δ .

Theorem 9. Algorithm 3, run with parameters δ = n
T 1/3 , η = 1

T 2/3 , achieves the following regret
bound:

E[RegretT ] ≤ 12nT 2/3.

Proof. We bound the expected regret as follows:
T∑

t=1

E[ft(St)]− min
S⊆[n]

T∑
t=1

ft(S) ≤ 2δT +
T∑

t=1

E[f̂t(xt)]−min
x∈K

T∑
t=1

f̂t(x) (By Lemma 8)

≤ 2δT +
n

2η
+

η

2

T∑
t=1

E[‖ĝt‖2] (By Lemma 6)

≤ 2δT +
n

2η
+

8n2ηT

δ
. (By (2))

The bound is now obtained for δ = n
T 1/3 , η = 1

T 2/3 .

4.1 High probability bounds on the regret

The theorem of the previous section gave a bound on the expected regret. However, a much stronger
claim can be made that essentially the same regret bound holds with very high probability (expo-
nential tail). In addition, the previous theorem (which only bounds expected regret) holds against an
oblivious adversary, but not necessarily against a more powerful adaptive adversary. The following
gives high probability bounds against an adaptive adversary.
Theorem 10. With probability 1 − 4ε, Algorithm 3, run with parameters δ = n

T 1/3 , η = 1
T 2/3 ,

achieves the following regret bound:

RegretT ≤ O(nT 2/3
√

log(1/ε)).

The proof of this theorem is deferred to the full version of this paper.

5 Conclusions and Open Questions

We have described efficient regret minimization algorithms for submodular cost functions, in both
the bandit and full information settings. This parallels the work of Streeter and Golovin [14] who
study two specific instances of online submodular maximization (for which the offline problem is
NP-hard), and give (approximate) regret minimizing algorithms. An open question is whether it is
possible to attain O(

√
T ) regret bounds for online submodular minimization in the bandit setting.
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