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Abstract

By adding a spatial regularization kernel to a standard loss function formulation
of the boosting problem, we develop a framework for spatially informed boosting.
From this regularized loss framework we derive an efficient boosting algorithm
that uses additional weights/priors on the base classifiers. We prove that the pro-
posed algorithm exhibits a “grouping effect”, which encourages the selection of
all spatially local, discriminative base classifiers. The algorithm’s primary advan-
tage is in applications where the trained classifier is used to identify the spatial
pattern of discriminative information, e.g. the voxel selection problem in fMRI.
We demonstrate the algorithm’s performance on various data sets.

1 Introduction

When applying off-the-shelf machine learning algorithms to data with spatial dimensions (images,
geo-spatial data, fMRI, etc) a central question arises: how to incorporate prior information on the
spatial characteristics of the data? For example, if we feed a boosting or SVM algorithm with
individual image voxels as features, the voxel spatial information is ignored. Indeed, if we randomly
shuffled the voxels, the algorithm would not notice any difference. Yet in many cases the spatial
arrangement of the voxels together with prior information about expected spatial characteristics of
the data may be very helpful. We are particularly interested in the situation when the trained classifier
is used to identify relevant spatial regions. To make this more concrete, consider the problem of
training a classifier to distinguish two different brain states based on fMRI responses. Successful
classification suggests that the voxels used are important in discriminating between the two classes.
Hence we could use a successful classifier to learn a set of discriminative voxels. We expect that
these voxels will be spatially compact and clustered. How can this prior knowledge be incorporated
into the training of the classifier? In summary, our primary objective is improving the ability of
the trained classifier to usefully identify the spatial pattern of discriminative information. However,
incorporating spatial information into boosting may also improve classification accuracy.

Our key contribution is the development of a framework for spatially regularized boosting. We
do this by adding a spatial regularization kernel to the standard loss minimization formulation of
boosting. We then design an associated boosting algorithm by using coordinate descent on the
regularized loss. We show that the algorithm minimizes the regularized loss function and has a
natural interpretation of boosting with additional adaptive priors/weights on both spatial locations
and training examples. We also show that it exhibits a natural grouping effect on nearby spatial
locations with similar discriminative power.

We believe our contributions are fundamental and relevant to a variety of applications where base
classifiers are attributed with a known auxiliary variable and prior information is known about this
auxiliary variable. However, since our study is motivated by the particular problem of voxel selection
in fMRI analysis, we briefly review the state of the art in this domain so as to put our contribution
into a concrete context.



Briefly, the fMRI voxel selection problem is to use the fMRI signal to identify a subset of voxels
that are key in discriminating between two stimuli. One expects such voxels to be spatially compact
and clustered. Traditionally this is done by thresholding a statistical univariate test score on each
voxel [1]. Spatial smoothing prior to this analysis is commonly employed to integrate activity from
neighboring voxels. An extreme case is hypothesis testings on clusters of voxels rather than on
voxels themselves [2]. The problem with these methods is that they greatly sacrifice the spatial
resolution of the results and averaging could hide fine patterns in data. An alternative is to spatially
average the univariate test scores, e.g. thresholding in some transformed domain (e.g. wavelet
domain) [3, 4]. However, this also compromises the spatial accuracy of the result because one
selects discriminating wavelet components, not voxels. A more promising spatially aware approach
selects voxels with tree-based spatial regularization of a univariate statistic [5, 6]. This can achieve
both spatial precision and smoothness but uses a complex regularization method. Our proposed
method also selects single voxels with the help of spatial regularization but operates in a multivariate
classifier framework using a simpler form of regularization.

Recent research has suggested that multivariate analysis has potential advantages over univariate
tests [7, 8], e.g. it brings in machine learning algorithms (such as boosting, SVM, etc.) and there-
fore might capture more intricate activation patterns involving multiple voxels. To ensure spatial
clustering of selected voxels, one can run a searchlight (a spherical mask) [9] to pre-select clustered
informative features. In each searchlight location, a multivariate analysis is performed to see whether
the masked area contains informative data. One can then train a classifier on the pre-selected voxels.
A variant of this two-stage framework is to train classifiers on a few predefined masks, and then
aggregate these classifiers by boosting [10, 11]. This is faster but assumes detailed prior knowledge
to select the predefined masks. Unlike two-stage approaches, [12] directly uses AdaBoost to train
classifiers with “rich features” (features involving the values of several adjacent voxels) to capture
spatial structure in the data. Although exhibiting superior performance, this method selects “rich
features” rather than individual discriminating voxels. Moreover, there is no control on the spatial
smoothness of the results. Our method is similar to [12] in that we combine the feature selection
and classification into one boosting process. But our algorithm operates on single voxels and uses
simple spatial regularization to incorporate spatial information.

The remainder of the paper is organized as follows. After introducing notation in §2, we formu-
late our spatial regularization approach in §3 and derive an associated spatially regularized boosting
algorithm in §4. We prove an interesting property of the algorithm in §5 that guarantees the simulta-
neous selection of equivalent locations that are spatially close. In §6, we test the algorithm on face
gender detection, OCR image classification, and fMRI experiments.

2 Boosting Preliminaries

In a supervised learning setting, we are given m training instances X = {x; € R",i = 1,...,m}
and corresponding binary labels ) = {y; = +1,i = 1,...,m}. Using the training instances X', we
select a pool of base classifiers H = {h;: R — {—1,+1},j =1,...,p}. Our objective is to train
a composite binary classifier of the form hq (z;) = sgn(Z?zl ajh;(z;)). We can further assume
that h; € H = —h; € 'H, thus all values in « can be assumed to be nonnegative. Boosting is a
technique for constructing from X', ) and H the weight o of a composite classifier to best predict
the labels. This can be done by seeking o to minimize a loss function of the form:

LX)V, 0) = Zl(yi,ham)). (1)

Various boosting algorithms can be derived as iterative greedy coordinate descent procedures to
minimize (1) [13]. In particular, AdaBoost [14] is of this form with I(y;, he,(2;)) = e~ ¥ile (i),

The result of a conventional boosting algorithm is determined by the m x p matrix M = [y;h;(z;)]
[15]. Under a component permutation #; = P;, the base classifiers become h; = h; - P~1; so

M = [y;h;(i;)] = [yih;(x;)] = M. Hence training on {Px;, y;} or {x;,y;} yields the same a,
i.e., the arrangement of the components can be arbitrary as long as it is consistent.

The weights o of a composite classifier not only indicate how to construct the classifier, but also
the relative reliance of the classifier on each of the n instance components. To see this, assume each



h; depends on only a single component of x € R", i.e., for some standard basis vector ey, and
function g;: R — {—1,+1}, h;(z) = g;(ef z) (the base classifiers are decision stumps). To make
the association between base cla551ﬁers and components explicit, let s be the function s(j) = k if
hj(z) = gj(elz) and Q = [gx;] be the n x p matrix with g;; = 1(s(j)=#]- Then the vector 8 = Qa
indicates the relative importance the classifier assigns to each instance component. Although we
used decision stumps above for simplicity, more complex base classifiers such as decision trees could
be used with proper modification of mapping from « to 3. We call 3 the component importance
map. Suppose the instance components reflect spatial structure in the data, e.g. the components are
samples along an interval or pixels in an image. Then the component importance map is indicating
the spatial distribution of weights that the classifier employs. Presumably a good classifier distributes
the weights in accordance with the discriminative power of the components; in which case, the
map is indicating how discriminative information is spatially distributed. It is in this aspect of the
classifier that we are particularly interested. Now as shown above, conventional boosting ignores
spatial information. Our objective, pursued in the next sections, is to incorporated prior information
on spatial structure, e.g. a prior on the component importance map, into the boosting problem.

3 Adding Spatial Regularization

To incorporate spatial information we add spatial regularization of the form BT K3 to the loss (1)
where the kernel K € R’} is positive definite. For concreteness, we employ the exponential loss

Wyisha(z;)) = e~ Viha (i) Thus the regularized loss is:

LX), Zexp ~yi Zaj )+ 8" KB )

= Z exp(—y; Z oih; )+ 2T QTKQa. 3)

The term 87 K3 imposes a spatial smoothness constraint on 3. To see this, consider the eigen-
decomposition K = UXU T where the columns {uj} of U are the orthonormal eigenvectors, o
is the eigenvalue of u; and ¥ = diag(o1,09,...,0,). Then the regularizing term can be rewrit-

ten as \|| 22 U7 8|2 where U3 is the “spectrum” of B under the orthogonal transformation U7 .
Rather than standard Tikhonov regularization with ||3||3 = ||U? B||3, we penalize the variation in
direction u; proportional to the eigenvalue o;. By doing so we are encouraging 3 to be close to the
eigenvectors u; with small eigenvalues. This encodes our prior spatial knowledge.
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Figure 1: Each graph is the eigenimage of size d X d corresponding to an eigenvector of K = ul — G.

As an example, consider the kernel K = pI — G, where G is a Gaussian kernel matrix:

Gij = e*%l\vrvjlli/ri 4)
with v; the spatial location of component j, lv; — ijQ the Euclidean distance (other distances
can also be used) between components ¢ and j, and r the radius parameter of the Gaussian kernel.
For the 2D case, i = (i1, i) ranges over (1,1),(1,2),...,(d,d). j = (j1, j2) ranges over the same
coordinates. So G is a size d? x d2 matrix. We plot the 6 eigenimages of K with smallest eigenvalues
in Figure 1. The regularization imposes a spatial smoothness constraint by encouraging (3 to give
more weight to the eigenimages with smaller eigenvalues, e.g. the patterns shown in Figure 1.

4 A Spatially Regularized Boosting Algorithm

We now derive a spatially regularized boosting algorithm (abbreviated as SRB) using coordinate
descent on (3). In particular, in each iteration we choose a coordinate of @ with the largest negative



gradient and increase the weight of that coordinate by step size €. This results in an algorithm similar
to AdaBoost, but with additional consideration of spatial location.

To begin, we take the partial derivative of (3) w.r.t. ot

0]
—Tcﬁgg (X, )« Zyz (x;) exp( yzz% QeT)\QTKQa

Here e/ is the j’-th standard basis vector, so eT )\QTKQa is the j’-th element of A\Q” KQa. By
the definition of @, (e TQT))\K Qo is the s(j ) th element of AK Qa. Therefore if we define « to
bey = —2AKB, and w; = exp(—y; _7_, ajh;(x;)) (1 < i < m) to be the unnormalized weight
on training instance x;, then the partial derlvatlve in (4) can be written as:

a exr
_Tﬁreg X Y, a Zyz xz wW; +'Ys(j )

The term >, y;hjs (x;)w; is the welghted performance of base classifier h;, on the training ex-
amples. Normally, we choose hj to maximize this term. This corresponds to choosing the best
base classifier under the current weight distribution. However, here we have an additional term: the
performance of base classifier /. is enhanced by a weight ~,(;+) on its corresponding component
s(j"). We call ~ the spatial compensation weight. To proceed, we choose a base classifier i/ to
maximize the sum of these two terms and then increase the weight of that base classifier by a step
size €. This gives Algorithm 1 shown in Figure 2. The key differences from AdaBoost are: (a) the
new algorithm maintains a new set of “spatial compensation weights” ~y; (b) the weights on training
examples w; are not normalized at the end of each iteration.

Algorithm 1 The SRB algorithm Algorithm 2 SRB algorithm with backward steps
Iw«—1,1<:<m Iw; «—1,1<i<m
2. a0 2: a0
3: fort =1to T do 3: fort =1to T do
4: B Qo 4: B+ Qu
50 g+« —2\Kp 50 oy« —2)\Kp3
6:  find the “best” base classifier in the fol- ~ 6:  find the “best” base classifier in the follow-
lowing sense: ing sense:
j' + arg max; {Q w) + ys(j)} j' + arg max; {Q(hj, w) + %(j)}
7:  choose a step size ¢, aj/ — oy +e 7. choose a step size €1, ajr «— oy + €1
8:  adjust weights: 8:  adjust weights:
wies  if yihy (z;) = —1 wiet if yihy(x;) = —1
Wi = { we” ¢ ifyih;/ (x;) =1 Wi = we=erif ylhjf(acl) =1
forl<i<m 9:  find the “worst” active classifier in the fol-
9: end for lowing sense:
10: Output result: ho(z) = Z?:r ajh;(x) j" — argmin;,, g {Q(hj, w) + 750y }
10: Qjrr < Qi — 72
11:  adjust weights again:
In both algorithms, Q(h;, w) is defined to be: Wi wie=2/? if yihjo(w;) = —1
v wiesz/Q 1fyzh]u(xl) =1
forl1 <i<m
Q(hy,w) = Zy’ (@3)ws, 12: end for

13: Output result: hq () = 3°7_) ajh;(z)
which is a performance measure of classifier h; un-
der weight distribution w on training examples.

Figure 2: The SRB (spatially regularized boosting algorithms).

To elucidate the effect of the compensation weights, consider the kernel K’ = pJ —G, with G defined
in (4). In this case, v = 2A\(8 — puB) where 3 = G is the Gaussian smoothing of 3 . Therefore,



a component receives a high compensation weight 7, = 2\(8), — 1) if some neighboring spatial
locations have already been selected (i.e., made “active”) by the composite classifier. On the other
hand, the weight of a component is reduced (proportional to the magnitude of parameter p) if it
is already “active”, i.e., O > 0. So the algorithm encourages the selection of base classifiers
associated with “inactive” locations that are close to “active” locations.

We can enhance the algorithm by including a backward step each iteration: o~ «— i — €', where

m
j” = argmin yihj (@) wi +75(5) ¢ - ©)
1<j<p,a;>0 ;2

This helps remove prematurely selected base classifiers [16, 17]. This is Algorithm 2 in Figure 2.
Spatial regularization brings no significant computational overhead: Compared to AdaBoost, SRB

has additional steps 4,5, which can be computed in time O(n) every iteration. Adaptive weight ~
incurs no additional complexity for step 6 in our current implementation.

We now briefly discuss the choice of step size € in Algorithm 1 (¢; and 5 in Algorithm 2 can be
chosen similarly). € could be a fixed (small) step size at each iteration. This is not greedy but may
necessitate a large number of iterations. Alternatively, one can be greedy and select ¢ to minimize
the value of the loss function (3) after the change o « oy +€:

W_ef + Wie =+ A(B +eep) K(B +eer), (6)

where W_ = Zi:yihj/(:ri)zfl eXp(_yihOL(wi))’ W+ = Ei:yihj/(xi):l exp(_yiha(xi)) and k' =
s(j"). Setting the derivative of (6) to 0 yields:
W_e® — W+€_E — Vi + 2Xe Ky = 0. (7)

. . . ~ Wi —W_ ) . .
Using e*® ~ 1 + ¢ gives the solution ¢ = MW—M, which can be used as a step size.
- k'k

However, for the following slightly more conservative step size we can prove algorithm convergence:

~ . (W+—W_) Wy —W_ + vy
€ =minq 3 , ,
Wiy +136W_" Wi +W_ + 2 Ky

(®)
Theorem 1. The step size (8) ensures convergence of Algorithm 1.

Proof. (6) is convex, so its minimum point £* is the unique solution of (7): f1(e*) + f2(¢*) =0
where f1(e) = W_e® — Wie ¢ and fa(e) = 2AK}/ e — . We have the inequality chain:

J1(E) + f2(6) € g1(6) + f2(6) < g1(€) + f2(€) = 0 = f1(e™) + fa(eT), 9

where g1(¢) = W_(1+¢)—W,(1—¢). So £ is on the descending slope of (6), which is a sufficient
condition for € to reduce the objective (6). Since the objective (3) is nonnegative and each iteration
of the algorithm reduces (3), the algorithm converges. The second inequality in (9) uses monoticity
while the first inequality in (9) uses the following lemma proved in the supplementary material:

Lemma: If 0 < e < min{?)%, 1}, then fi(e) — ga1(e) < 0. O

S The Grouping Effect: Asymptotic Analysis

Recall our objective of using the component importance map of the trained classifier to ascertain
the spatial distribution of informative components in the data. Ideally, we would like 3 to faithfully
represent this information. In general, however, a boosting algorithm will select a sufficient but
incomplete collection of base classifiers (and hence components) to accomplish the classification.
For example, after selecting one base classifier h;, AdaBoost will adjust the weights of training
examples to make the weighted training error of h; exactly % (totally uninformative), thus preventing
the selection of any classifiers similar to h; in the next iteration. In fact, for AdaBoost we can prove
that in the optimal solution oc*, we can transfer coefficient weights between any two equivalent base
classifiers without impacting optimality. So minimizing the loss function (1) does not require any
particular distribution among the 3 coefficients of identical components. This is the content of the
following proposition.



Proposition 1. Assume h;, and hjz, J1 < Jo, are base classifiers with s(j1) # s(j2), and hjl(xz) =
hj, (x;) for all z; € X. If o* minimizes the loss function (1), then for any n in [0, min{cj , o7, }],
a' also minimizes loss function (1) where a = o* —nej, +ne;j, where e; denotes the j-th standard

basis vector in RP.
Proof. hj, (x;) = hj,(x;) implies that h- (z;) = hot(x;) forall z; € X. O

What is desirable is a “grouping effect”, in which components with similar behavior under H receive
similar 3 weights. We will prove that asymptotically, SRB exhibits a “grouping effect”. In particular,
for kernel K = pl — G, G defined in (4), we will look at the minimizer 3* = Qa* of the loss
function (2), and in the spirit of [18], establish a bound on the difference | 3}; — 37| of the coefficients
on two similar components.

To proceed, let a* minimize (3) with: 3" = Qa*, v* = —2AK 3", and the corresponding training
instance weight w*. Let H};, denote the subset of base classifiers acting on component k, i.e., Hy =
{h; € H: s(j) = k}. The following lemma is proved in the supplementary material:

Lemma: For any k, 1 < k < n, —v; > maxy, e, »iey yihy(z;)w] with equality if 5; > 0.
Assuming K = I — G, G defined in (4), we have the following result:
Theorem 2. Let 3* = G3* be the smoothed version of vector 3*. Then for any ki and k:

* * 1 % % 1
1Bk — Bral < ;W}ﬂ — Bral + md(khkz)v (10)
where d(ky1, k2) = | maxp, er,, Doy yihy () w] — maxy; e, ey yihj(zi)wy|.

Proof. We prove the following three cases separately:

(1). By and (3], are both positive. In this case, using the lemma on <}, and ~;, yields:

|(2AB51 — 2AuB5,) — (2ABis — 2MuB4s)| = Vi1 — Vial = d(vk1, vk2). We can then use the tri-
angle inequality on the LHS to obtain the result.

(2). One of ﬁ* and 3}, is zero the other is positive. WLOG assume 3;; = 0. Then —v}; >
Maxy; ¢, Zz LYihy(zi)w] and =y}, = maxp; ep,, D oieq Yihy (2;)w;. This gives:

m m

<maxz xw—maxz j(x)w; < d(vki, vee
Y1~ Ve hy€Hia £ vl (@i h; €M 4 yih; (i) (V1 Vi2)-

Substituting the definition of v: v = 2AGB — 2 uB8 = 2AB3 — 2AuB, yields (2A\3;; — 2Au0) —
(2ABfy — 2Auffs) < d(vg1, vie). Therefore 2)\u6k2 (2Aﬂk2 2X00%,) + d(vk1, vg2). Using the
triangle inequality on the right hand side of the previous expression yields the result.

(3) B, = Bj5 = 0. In this case, the inequality is obvious. O

The theorem upper bounds the difference in the importance coefficient of two components by the
sum of two terms: the first, | 35, — 5/, takes into account the importance weight of nearby locations.
This term is small when the two locations are spatially close, or when they are in two neighborhoods
that contain a similar amount of important voxels. The second term reflects the dissimilarity between
two voxels. This term measures the difference in the weighted performances of a location’s best base
classifier. Clearly, d(k1, k2) = 0 when components k7 and ko are identical under H over the training
instances. More generally, we can sort all the training examples by the activation level on a single
component. If sorting on locations &, and ko yields the same results, then d(k1, k2) = 0.

6 Experiments

The first experiment is gender classification using features located on 58 annotated landmark points
in the IMM face data set [19] (Figure 3(a)). For each point we extract the first 3 principal components
of a 15x 15 window as features. We randomly choose 7 males and 7 females to do leave-one-out 7-
fold cross-validation for 100 trials. AdaBoost yields an average classification accuracy of 7="78.8%



with a standard deviation of 0 =19.9%. SRB (A=0.1, » =10 pixel-length) achieves 7 =280.5% and
o = 18.7%. The component importance map 3 of SRB reveals both eyes as discriminating areas
and demonstrates the grouping effect. (All experiments in this section use ;1 = max; (>, Gi;). By
(10), a larger i will make this grouping effect more dominant). The 3 for AdaBoost is less smooth
and less interpretable with the most important component on the left chin (Figure 3(b,c)).
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Figure 4: Experiment 2. (a-d): example im-
ages; (e): example training image with noise;
(f): ground truth of discriminative pixels; (g-h):
pixels selected by (g) AdaBoost and (h) SRB.

Figure 3: Experiment 1. (a): an example showing annotated
points; (b-c): the average component importance map 3 (in-
dicated by sizes of the circles) after running (b) AdaBoost
and (c) SRB for 50 iterations.

The second experiment is a binary image classification task. Each image contains the handwritten
digits 1,1,0,3 and a random digit, all in fixed locations. Digits 0 and 1 are swapped between the
classes (Figure 4(a-d)). The handwritten digit images are from the OCR digits data set [20]. To
obtain the training/testing instances we add noise to the images (Figure 4(e)). We test the ability
of several algorithms to: (a) find the discriminating pixels, and (b) if a classification algorithm, ac-
curately classify the classes. The quality of pixel selection is measured by a precision-recall curve,
with ground truth pixels (Figure 4(f)) selected by a t-test on the two classes of noiseless images. This
curve is plotted for the following methods: (1) SRB (A = 0.5, r = % pixel-length) (2) AdaBoost;
(3) thresholding the univariate t-test score; (4) thresholding the first one or two principle compo-
nent(s); (5) thresholding the pixel coefficients in an LDA model with diagonal covariance (Gaussian
naive bayes classifier); (6) level-set method [6] on a Z-statistics map. We plot the precision-recall
curve by varying the number of iterations (for (1),(2)) or the value of the threshold (for (3)-(6)). We
also tried all methods with Gaussian spatial pre-smoothing as a preprocessing step. The classifica-
tion accuracies are measured for methods (1), (2) and (5) on separate test data.

The results, averaged over 100 noise realizations, are plotted in Figure 5. SRB showed no loss of
classification accuracy nor convergence speed (usually within 100 iterations), and achieved the best
pixel selection among all methods. It is better than Gaussian naive Bayes and PCA methods, even
when the noise matches the i.i.d. Gaussian assumption of these methods (Figure 5(a,d)). In all cases,
local spatial averaging deteriorates the classification performance of boosting.

In the third experiment, subjects watch a movie during the fMRI scan. The classification task is
to discriminate two types of scenes (faces and objects) based on the fMRI responses. Each fMRI
responses is a single TR scan of the brain volume. We divide the data (14 subjects, 26 face and
18 object fMRI responses) into 10 cross validation groups and average the classification accuracies.
SRB (A = 0.1, » = 5 voxel-length) trained for 100 iterations yields accuracy 7 = 73.3% with
o = 9.3% across 14 subjects. AdaBoost yields 7 = 75.5% with 0 = 4.9%. To make sure this
is significant, we repeated the training with shuffled labels. After shuffling, 7 = 49.7%, with
o = 4.6%, which is effectively chance. We note that spatially regularized boosting yields a more
clustered and interpretable selection of voxels. The result for one subject (Figure 6) shows that
standard boosting (AdaBoost) selects voxels scattered in the brain, while SRB selects clustered
voxels and nicely highlights the relevant FFA area [21] and posterior central sulcus [22, 23].

7 Conclusions

The proposed SRB algorithm is applicable to a variety of situations in which one needs to boost
the performance of base classifiers with spatial structure. The mechanism of the algorithm has a
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Figure 5: Experiment 2. (a-c): test classification accuracy: (a) i.i.d. Gaussian noise, (b) poisson noise, (c)
spatially correlated Gaussian noise. (b,c) share the legend of (a). (d-f): pixel selection performances: (d) i.i.d.
Gaussian noise, (€) poisson noise, (f) spatial correlated Gaussian noise. (e,f) share the legend of (d).

Figure 6: Experiment 3: an example: sets of voxels selected by (a) univariate t-test (b) AdaBoost and (c) SRB

natural interpretation: in each iteration, the algorithm selects a base classifier with the best perfor-
mance evaluated under two sets of weights: weights on training examples (as in AdaBoost) and
weights on locations. The additional set of location weights encourages or discourages the selection
of certain base classifiers based on the spatial location of base classifiers that have already been se-
lected. Computationally, SRB is as effective as AdaBoost. We demonstrated the effectiveness of the
algorithm both by providing a theoretical analysis of the “grouping effect” and by experiments on
three data sets. The grouping effect is clearly demonstrated in the face gender detection experiment.
In the OCR classification experiment, the algorithm shows superior performance in pixel selection
accuracy without loss of classification accuracy. The algorithm matches the performance of the
state-of-the-art set estimation methods [6] that use a more complex spatial regularization and cycle
spinning technique. In the fMRI experiment, the algorithm yields a clustered selection of voxels in
positions relevant to the task. An alternative approach, being explored, is to combine searchlight [9]
with a strong learning algorithm (e.g. SVM) to integrate spatial locality and accurate classification.
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