
Multiple Incremental Decremental Learning of
Support Vector Machines

Masayuki Karasuyama and Ichiro Takeuchi
Department of Engineering, Nagoya Institute of Technology
Gokiso-cho, Syouwa-ku, Nagoya, Aichi, 466-8555, JAPAN

krsym@ics.nitech.ac.jp, takeuchi.ichiro@nitech.ac.jp

Abstract

We propose a multiple incremental decremental algorithm of Support Vector Ma-
chine (SVM). Conventional single incremental decremental SVM can update the
trained model efficiently when single data point is added to or removed from the
training set. When we add and/or remove multiple data points, this algorithm is
time-consuming because we need to repeatedly apply it to each data point. The
proposed algorithm is computationally more efficient when multiple data points
are added and/or removed simultaneously. The single incremental decremental
algorithm is built on an optimization technique called parametric programming.
We extend the idea and introduce multi-parametric programming for developing
the proposed algorithm. Experimental results on synthetic and real data sets indi-
cate that the proposed algorithm can significantly reduce the computational cost
of multiple incremental decremental operation. Our approach is especially useful
for online SVM learning in which we need to remove old data points and add new
data points in a short amount of time.

1 Introduction

Incremental decremental algorithm for online learning of Support Vector Machine (SVM) was pre-
viously proposed in [1], and the approach was adapted to other variants of kernel machines [2–4].
When a single data point is added and/or removed, these algorithms can efficiently update the
trained model without re-training it from scratch. These algorithms are built on an optimization
technique called parametric programming [5–7], in which one solves a series of optimization prob-
lems parametrized by a single parameter. In particular, one solves a solution path with respect to
the coefficient parameter corresponding to the data point to be added or removed. When we add
and/or remove multiple data points using these algorithms, one must repeat the updating operation
for each single data point. It often requires too much computational cost to use it for real-time online
learning. In what follows, we refer this conventional algorithm as single incremental decremental
algorithm or single update algorithm.

In this paper, we develop a multiple incremental decremental algorithm of the SVM. The proposed
algorithm can update the trained model more efficiently when multiple data points are added and/or
removed simultaneously. We develop the algorithm by introducing multi-parametric programming
[8] in the optimization literature. We consider a path-following problem in the multi-dimensional
space spanned by the coefficient parameters corresponding to the set of data points to be added or
removed. Later, we call our proposed algorithm as multiple incremental decremental algorithm or
multiple update algorithm.

The main computational cost of parametric programming is in solving a linear system at each break-
point (see Section 3 for detail). Thus, the total computational cost of parametric programming is
roughly proportional to the number of breakpoints on the solution path. In the repeated use of

1



single update algorithm for each data point, one follows the coordinate-wise solution path in the
multi-dimensional coefficient parameter space. On the other hand, in multiple update algorithm, we
establish a direction in the multi-dimensional coefficient parameter space so that the total length of
the path becomes much shorter than the coordinate-wise one. Because the number of breakpoints in
the shorter path followed by our algorithm is less than that in the longer coordinate-wise path, we
can gain relative computational efficiency. Figure 2 in Section 3.4 schematically illustrates our main
idea.

This paper is organized as follows. Section 2 formulates the SVM and the KKT conditions. In Sec-
tion 3, after briefly reviewing single update algorithm, we describe our multiple update algorithm.
In section 4, we compare the computational cost of our multiple update algorithm with the sin-
gle update algorithm and with the LIBSVM (the-state-of-the-art batch SVM solver based on SMO
algorithm) in numerical experiments on synthetic and real data sets. We close in Section 5 with
concluding remarks.

2 Support Vector Machine and KKT Conditions

Suppose we have a set of training data {(xi, yi)}ni=1, where xi ∈ X ⊆ Rd is the input and
yi ∈ {−1, +1} is the output class label. Support Vector Machines (SVM) learn the following
discriminant function:

f(x) = wT Φ(x) + b,

where Φ(x) denotes a fixed feature-space transformation. The model parameter w and b can be
obtained by solving an optimization problem:

min
1
2
||w||2 + C

n∑
i=1

ξi

s.t. yif(xi) ≥ 1− ξi, ξi ≥ 0, i = 1, · · · , n,

where C ∈ R+ is the regularization parameter. Introducing Lagrange multipliers αi ≥ 0, the
optimal discriminant function f : X → R can be formulated as f(x) =

∑n
i=1 αiyiK(x,xi) + b,

where K(xi,xj) = Φ(xi)T Φ(xj) is a kernel function. From the Karush-Kuhn-Tucker (KKT)
optimality conditions, we obtain the following relationships:

yif(xi) > 1 ⇒ αi = 0, (1a)
yif(xi) = 1 ⇒ αi ∈ [0, C], (1b)
yif(xi) < 1 ⇒ αi = C, (1c)
n∑

i=1

yiαi = 0. (1d)

Using (1a)-(1c), let us define the following index sets:
O = {i | yif(xi) > 1, αi = 0}, (2a)
M = {i | yif(xi) = 1, 0 ≤ αi ≤ C}, (2b)
I = {i | yif(xi) < 1, αi = C}. (2c)

In what follows, the subscription by an index set, such as vI for a vector v ∈ Rn, indicates a
subvector of v whose elements are indexed by I. Similarly, the subscription by two index sets,
such as MM,O for a matrix M ∈ Rn×n, denotes a submatrix whose rows are indexed by M
and columns are indexed by O. If the submatrix is the principal submatrix such as QM,M, we
abbreviate asQM.

3 Incremental Decremental Learning for SVM

3.1 Single Incremental Decremental SVM

In this section, we briefly review the conventional single incremental decremental SVM [1]. Using
the SV sets (2b) and (2c), we can expand yif(xi) as

yif(xi) =
∑
j∈M

Qijαj +
∑
j∈I

Qijαj + yib,

2



where Qij = yiyjK(xi,xj). When a new data point (xc, yc) is added, we increase the correspond-
ing new parameter αc from 0 while keeping the optimal conditions of the other parameters satisfied.
Let us denote the amount of the change of each variable with an operator ∆. To satisfy the equality
conditions (1b) and (1d), we need

Qic∆αc +
∑
j∈M

Qij∆αj + yi∆b = 0, i ∈M,

yc∆αc +
∑
j∈M

yj∆αj = 0.

Solving this linear system with respect to ∆αi, i ∈ M, and b, we obtain the update direction of the
parameters. We maximize the ∆αc under the constraint that no element moves acrossM, I and O.
After updating the index setsM, I andO, we repeat the process until the new data point satisfies the
optimality condition. Decremental algorithm can be derived similarly, in which the target parameter
moves toward 0.

3.2 Multiple Incremental Decremental SVM

Suppose we add m new data points and remove ℓ data points simultaneously. Let us denote the
index set of new adding data points and removing data points as

A = {n + 1, n + 2, · · · , n + m} andR ⊂ {1, · · · , n},

respectively, where |R| = ℓ. We remove the elements of R from the setsM, I and O (i.e. M ←
M\R, I ← I \R andO ← O\R). Let us define y = [y1, · · · , yn+m]⊤,α = [α1, · · · , αn+m]⊤,
and Q ∈ R(n+m)×(n+m), where (i, j)-th entry of Q is Qij . When m = 1, ℓ = 0 or m = 0, ℓ = 1,
our method corresponds to the conventional single incremental decremental algorithm. We initially
set αi = 0,∀i ∈ A. If we have yif(xi) > 1, i ∈ A, we can append these indices to O and remove
them from A because these points already satisfy the optimality condition (1a). Similarly, we can
append the indices {i | yif(xi) = 1, i ∈ A} toM and remove them from A. In addition, we can
remove the points {i | αi = 0, i ∈ R} because they already have no influence on the model. Unlike
single incremental decremental algorithm, we need to determine the directions of ∆αA and ∆αR.
These directions have a critical influence on the computational cost. For ∆αR, we simply trace the
shortest path to 0, i.e.,

∆αR = −ηαR, (3)

where η is a step length. For ∆αA, we do not know the optimal value of αA beforehand. To
determine this direction, we may be able to use some optimization techniques (e.g. Newton method).
However, such methods usually need additional computational burden. In this paper, we simply take

∆αA = η(C1−αA). (4)

This would become the shortest path if αi = C,∀i ∈ A, at optimality.

When we move parameters αi,∀i ∈ A ∪R, the optimality conditions of the other parameters must
be kept satisfied. From yif(xi) = 1, i ∈M, and the equality constraint (1d), we need∑

j∈A
Qij∆αj +

∑
j∈R

Qij∆αj +
∑
j∈M

Qij∆αj + yi∆b = 0, i ∈M, (5)

∑
j∈A

yj∆αj +
∑
j∈R

yj∆αj +
∑
j∈M

yj∆αj = 0. (6)

Using matrix notation, (5) and (6) can be written as

M

[
∆b

∆αM

]
+

[
y⊤
A y⊤

R
QM,A QM,R

] [
∆αA
∆αR

]
= 0, (7)

where

M =
[

0 y⊤
M

yM QM

]
.

3



From the definitions of the index sets in (2a)-(2c), the following inequality constraints must also be
satisfied:

0 ≤ αi + ∆αi ≤ C, i ∈M, (8a)
yi{f(xi) + ∆f(xi)} > 1, i ∈ O, (8b)
yi{f(xi) + ∆f(xi)} < 1, i ∈ I. (8c)

Since we removed the indices {i | f(xi) ≥ 1} from A, we obtain

yi{f(xi) + ∆f(xi)} < 1, i ∈ A. (9)

During the process of moving αi, i ∈ A, to C from 0, if the inequality (9) becomes equality for any
i, we can append the point to M and remove it from A. On the other hand, if (9) holds until αi

becomes C, the point moves to I. In the path following literature [8], the region that satisfies (8)
and (9) is called critical region (CR).

We decide update direction by the linear system (7) while monitoring inequalities (8) and (9). Sub-
stituting (3) and (4) to (7), we obtain the update direction[

∆b
∆αM

]
= ηϕ, where ϕ = −M−1

[
y⊤
A y⊤

R
QM,A QM,R

] [
C1−αA
−αR

]
. (10)

To determine step length η, we need to check inequalities (8) and (9). Using vector notation and the
hadamard product ⊙ (element-wise product [9]), we can write

y ⊙∆f = η ψ, where ψ = [ y Q:,M ] ϕ+Q:,A(C1−αA)−Q:,RαR, (11)

and the subscription ”:” ofQ denotes the index of all the elements {1, · · · , n + m}. Since (10) and
(11) are linear function of η, we can calculate the set of the largest step length ηs for each i at which
the inequalities (8) and (9) becomes equality for i. The size of such ηs is |M|× 2 + |O|+ |I|+ |A|
and we define this set asH. We determine the step length as follows:

η = min({η̃ | η̃ ∈ H, η̃ ≥ 0} ∪ {1}).
If η becomes 1, we can terminate the algorithm because all the new data points in A and existing
points in M,O and I satisfy the optimality conditions and αR is 0. Once we decide η, we can
update αM and b using (10), and αA and αR using (3) and (4). In the path-following literature,
the points at which the size of linear system (7) is changed are called breakpoints. If the ith data
point reaches bound of any one of the constraints (8) and (9) we need to updateM,O and I. After
updating, we re-calculate ϕ,ψ to determine the next step length.

3.3 Empty Margin

We need to establish the way of dealing with the empty marginM. In such case, we can not obtain
the bias from yif(xi) = 1, i ∈M. Then we can only obtain the interval of the bias from

yif(xi) > 1, i ∈ O,

yif(xi) < 1, i ∈ I ∪ A.

To keep these inequality constraints, the bias term must be in

max
i∈L

yigi ≤ b ≤ min
i∈U

yigi, (12)

where

gi = 1−
∑
i∈I

αiQij −
∑
i∈A

αiQij −
∑
i∈R

αiQij ,

and
L = {i | i ∈ O, yi = +1} ∪ {i | i ∈ I ∪ A, yi = −1},
U = {i | i ∈ O, yi = −1} ∪ {i | i ∈ I ∪ A, yi = +1}.

If this empty margin happens during the path-following, we look for the new data points which
re-enter the margin. When the setM is empty, equality constraint (6) becomes∑

i∈A

yi∆αi +
∑
i∈R

yi∆αi = ηδ(α) = 0, (13)

4



Figure 1: An illustration of the bias in empty margin case. Dotted lines represent yi(gi + ∆gi(η)),
for each i. Solid lines are the upper bound and the lower bound of the bias. The bias term is uniquely
determined when u(η) and l(η) intersect.

where

δ(α) =
∑
i∈A

yi(C − αi)−
∑
i∈R

yiαi.

We take two different strategies depending on δ(α).

First, if δ(α) ̸= 0, we can not simply increase η from 0 while keeping (13) satisfied. Then we need
new margin data point m1 which enables equality constraint to be satisfied. The index m1 is either

ilow = argmax
i∈L

yigi or iup = argmax
i∈U

yigi.

If ilow, iup ∈ O ∪ I, we can update b andM as follows:

δ(α) > 0 ⇒ b = yiupgiup , M = {iup},
δ(α) < 0 ⇒ b = yilow

gilow
, M = {ilow}.

By setting the bias terms as above, equality condition

ηδ(α) + ym1∆αm1 = 0

is satisfied. If ilow ∈ A or iup ∈ A, we can put either of these points to margin.

On the other hand, if δ(α) = 0, we can increase η while keeping (13) satisfied. Then, we consider
increasing η until the upper bound and the lower bound of the bias (12) take the same value (the bias
term can be uniquely determined). If we increase η, gi changes linearly:

∆gi(η) = −
∑
j∈A

∆αjQij −
∑
j∈R

∆αjQij = η
{
−

∑
j∈A

(C − αj)Qij +
∑
j∈R

αjQij

}
.

Since each yi(gi + ∆gi(η)) may intersect, we need to consider the following piece-wise linear
boundaries:

u(η) = max
i∈U

yi(gi + ∆gi(η)),

l(η) = min
j∈L

yj(gj + ∆gj(η)).

Figure 1 shows an illustration of these functions. We can trace the upper bound and the lower bound
until two bounds become the same value.

3.4 The number of breakpoints

The main computational cost of incremental decremental algorithm is in solving the linear system
(10) at each breakpoint (The cost is O(|M|2) because we use Cholesky factor update except the first
step). Thus, the number of breakpoints is an important factor of the computational cost. To simplify
the discussion, let us introduce the following assumptions:

• The number of breakpoints is proportional to the total length of the path.

• The path obtained by our algorithm is the shortest one.

5



final
path
breakpoints
borders of CR

initial

(a) Adding 2 data points. (b) Adding and Removing 1 data point

Figure 2: The schematic illustration of the difference of path length and the number of breakpoints.
Each polygonal region enclosed by dashed lines represents the region in which M, I,O and A
are constant (CR: critical region). The intersection of the path and the borders are the breakpoints.
The update of matrices and vectors at the breakpoints are the main computational cost of path-
following. In the case of Figure 2(a), we add 2 data points. If optimal α1 = α2 = C, our proposed
algorithm can trace shortest path to optimal point from the origin (left plot). On the other hand,
single incremental algorithm moves one coordinate at a time (right plot). Figure 2(b) shows the case
that we add and remove 1 data point, respectively. In this case, if α2 = C, our algorithm can trace
shortest path to α1 = 0, α2 = C (left plot), while single incremental algorithm again moves one
coordinate at a time (right plot).

The first assumption means that the breakpoints are uniformly distributed on the path. The second
assumption holds for the removing parameters αR because we know that we should move αR to 0.
On the other hand, for some of αA, the second assumption does not necessarily hold because we do
not know the optimal αA beforehand. In particular, if the point i ∈ A which was located inside the
margin before the update moved toM during the update (i.e. the equality (9) holds), the path with
respect to this parameter is not really the shortest one.

To simplify the discussion further, let us consider only the case of |A| = m > 0 and |R| = 0 (the
same discussion holds for other cases too). In this simplified scenario, the ratio of the number of
breakpoints of multiple update algorithm to that of repeated use of single update algorithm is

∥αA∥2 : ∥αA∥1,

where ∥ • ∥2 is ℓ2 norm and ∥ • ∥1 is ℓ1 norm. Figure 2 illustrates the concept in the case of m = 2.
If we consider only the case of αi = C,∀i ∈ A, the ratio is simply

√
m : m.

4 Experiments

We compared the computational cost of the proposed multiple incremental decremental algorithm
(MID-SVM) with (repeated use of) single incremental decremental algorithm [1] (SID-SVM) and
with the LIBSVM [10], the-state-of-the-art batch SVM solver based on sequential minimal opti-
mization algorithm (SMO).

In LIBSVM, we examined several tolerances for termination criterion: ε = 10−3, 10−6, 10−9.
When we use LIBSVM for online-learning, alpha seeding [11, 12] sometimes works well. The
basic idea of alpha seeding is to use the parameters before the update as the initial parameter. In
alpha seeding, we need to take care of the fact that the summation constraint α⊤y = 0 may not be
satisfied after removing αs inR. In that case, we simply re-distribute

δ =
∑
i∈R

αiyi

to the in-bound αi, i ∈ {i | 0 < αi < C}, uniformly. If δ cannot be distributed to in-bound αs, it is
also distributed to other αs. If we still can not distribute δ by this way, we did not use alpha-seeding.

For kernel function, we used RBF kernel K(xi,xj) = exp(−γ||xi − xj ||2). In this paper, we
assume that the kernel matrix K is positive definite. If the kernel matrix happens to be singular,
which typically arise when there are two or more identical data points inM, our algorithm may not
work. As far as we know, this degeneracy problem is not fully solved in path-following literature.
Many heuristics are proposed to circumvent the problem. In the experiments described below, we

6



−2 −1 0 1 2 3
−2

−1

0

1

2

3

4

x
1

x
2

Figure 3: Artificial data set. For graphical simplicity, we plot only a part of data points. The cross
points are generated from a mixture of two Gaussian while the circle points come from a single
Gaussian. Two classes have equal prior probabilities.

use one of them: adding small positive constant to the diagonal elements of kernel matrix. We set
this constant as 10−6. In the LIBSVM we can specify cache size of kernel matrix. We set this cache
size enough large to store the entire matrix.

4.1 Artificial Data

First, we used simple artificial data set to see the computational cost for various number of adding
and/or removing points. We generated data points (x, y) ∈ R2 × {+1,−1} using normal distri-
butions. Figure 3 shows the generated data points. The size of initial data points is n = 500. As
discussed, adding or removing the data points with αi = 0 at optimal can be performed with al-
most no cost. Thus, to make clear comparison, we restrict the adding and/or removing points as
those with αi = C at optimal. Figure 4 shows the log plot of the CPU time. We examined several
scenarios: (a) adding m ∈ {1, · · · , 50} data points, (b) removing ℓ ∈ {1, · · · , 50} data points, (c)
adding m ∈ {1, · · · , 25} data points and removing ℓ ∈ {1, · · · , 25} data points simultaneously.
The horizontal axis is the number of adding and/or removing data points. We see that MID-SVM
is significantly faster than SID-SVM. When m = 1 or ℓ = 1, SID-SVM and MID-SVM are identi-
cal. The relative difference of SID-SVM and MID-SVM grows as the m and/or ℓ increase because
MID-SVM can add or remove multiple data points simultaneously while SID-SVM merely iterates
the algorithm m + ℓ times. In this experimental setting, the CPU time of SMO does not change
largely because m and ℓ are relatively smaller than n. Figure 5 shows the number of breakpoints
of SID-SVM and MID-SVM along with the theoretical number of breakpoints of the MID-SVM in
Section 3.4 (e.g., for scenario (a), the number of breakpoints of SID-SVM multiplied by

√
m/m).

The results are very close to the theoretical one.

4.2 Application to Online Time Series Learning

We applied the proposed algorithm to a online time series learning problem, in which we update the
model when some new observations arrive (adding the new ones and removing the obsolete ones).
We used Fisher river data set in StatLib [13]. In this data set, the task is to predict whether the mean
daily flow of the river increases or decreases using the previous 7 days temperature, precipitation
and flow (xi ∈ R21). This data set contains the observations from Jan 1 1988 to Dec 31 1991.
The size of the initial data points is n = 1423 and we set m = ℓ = 30 (about a month). Each
dimension of x is normalized to [0, 1]. We add new m data points and remove the oldest ℓ data
points. We investigate various settings of the regularization parameter C ∈ {10−1, 100, · · · , 105}
and kernel parameter γ ∈ {10−3, 10−2, 10−1, 100}. Unlike previous experiments, we did not choose
the adding or removing data points by its parameter. Figure 6 shows the elapsed CPU times and
Figure 7 shows 10-fold cross-validation error of each setting. Each figure has 4 plots corresponding
to different settings of kernel parameter γ. The horizontal axis denotes the regularization parameter
C. Figure 6 shows that our algorithm is faster than the others, especially in large C. It is well
known that the computational cost of SMO algorithm becomes large when C gets large [14]. Cross-
validation error in Figure 7 indicates that the relative computational cost of our proposed algorithm
is especially low for the hyperparameters with good generalization performances in this application
problem.

7



0 10 20 30 40 50

10
−1.8

10
−1.6

10
−1.4

10
−1.2

m
C

P
U

 t
im

e
 (

s
e

c
)

MID−SVM
SID−SVM

SMO(ε=1e−3)

SMO(ε=1e−6)

SMO(ε=1e−9)

(a) Adding m data points.

0 10 20 30 40 50

10
−1.8

10
−1.6

10
−1.4

10
−1.2

l

C
P

U
 t

im
e

 (
s
e

c
)

MID−SVM
SID−SVM

SMO(ε=1e−3)

SMO(ε=1e−6)

SMO(ε=1e−9)

(b) Removing ℓ data points.

0 5 10 15 20 25
10

−1.9

10
−1.7

10
−1.5

10
−1.3

m and l

C
P

U
 t

im
e

 (
s
e

c
)

MID−SVM
SID−SVM

SMO(ε=1e−3)

SMO(ε=1e−6)

SMO(ε=1e−9)

(c) Adding m data points
and removing ℓ data points
simultaneously (m = ℓ).

Figure 4: Log plot of the CPU time (artificial data set)

0 10 20 30 40 50
0

100

200

300

400

500

600

m

th
e
 n

u
m

b
e
r 

o
f 
b
re

a
k
p
o
in

ts

MID−SVM
SID−SVM
Theoretical

(a) Adding m data points.

0 10 20 30 40 50
0

100

200

300

400

500

600

l

th
e
 n

u
m

b
e
r 

o
f 
b
re

a
k
p
o
in

ts

MID−SVM
SID−SVM
Theoretical

(b) Removing ℓ data points.

0 5 10 15 20 25
0

50

100

150

200

250

300

350

400

450

500

m and l

th
e
 n

u
m

b
e
r 

o
f 
b
re

a
k
p
o
in

ts

MID−SVM
SID−SVM
Theoretical

(c) Adding m data points
and removing ℓ data points
simultaneously (m = ℓ).

Figure 5: The number of breakpoints (artificial data set)

10
−2

10
0

10
2

10
4

10
6

10
−1

10
0

10
1

10
2

10
3

C

C
P

U
 t

im
e

 (
s
e

c
)

MID−SVM

SID−SVM

SMO(ε=1e−3)

SMO(ε=1e−6)

SMO(ε=1e−9)

(a) γ = 100

10
−2

10
0

10
2

10
4

10
6

10
−1

10
0

10
1

10
2

10
3

C

C
P

U
 t

im
e

 (
s
e

c
)

MID−SVM

SID−SVM

SMO(ε=1e−3)

SMO(ε=1e−6)

SMO(ε=1e−9)

(b) γ = 10−1

10
−2

10
0

10
2

10
4

10
6

10
−1

10
0

10
1

10
2

C

C
P

U
 t

im
e

 (
s
e

c
)

MID−SVM

SID−SVM

SMO(ε=1e−3)

SMO(ε=1e−6)

SMO(ε=1e−9)

(c) γ = 10−2

10
0

10
5

10
−0.5

10
−0.3

10
−0.1

10
0.1

C

C
P

U
 t
im

e
 (

s
e
c
)

MID−SVM
SID−SVM

SMO(ε=1e−3)

SMO(ε=1e−6)

SMO(ε=1e−9)

(d) γ = 10−3

Figure 6: Log plot of the CPU time (Fisher river data set)

10
−2

10
0

10
2

10
4

10
6

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

C
ro

s
s
 V

a
li
d
a
ti
o
n
 E

rr
o
r

C

(a) γ = 100

10
−2

10
0

10
2

10
4

10
6

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

C
ro

s
s
 V

a
li
d
a
ti
o
n
 E

rr
o
r

C

(b) γ = 10−1

10
−2

10
0

10
2

10
4

10
6

0.34

0.36

0.38

0.4

0.42

0.44

0.46

C
ro

s
s
 V

a
li
d
a
ti
o
n
 E

rr
o
r

C

(c) γ = 10−2

10
−2

10
0

10
2

10
4

10
6

0.34

0.36

0.38

0.4

0.42

0.44

0.46

C
ro

s
s
 V

a
li
d
a
ti
o
n
 E

rr
o
r

C

(d) γ = 10−3

Figure 7: Cross-validation error (Fisher river data set)

5 Conclusion

We proposed multiple incremental decremental algorithm of the SVM. Unlike single incremen-
tal decremental algorithm, our algorithm can efficiently work with simultaneous addition and/or
removal of multiple data points. Our algorithm is built on multi-parametric programming in the
optimization literature [8]. We previously proposed an approach to accelerate Support Vector Re-
gression (SVR) cross-validation using similar technique [15]. These multi-parametric programming
frameworks can be easily extended to other kernel machines.

8



References
[1] G. Cauwenberghs and T. Poggio, “Incremental and decremental support vector machine learning,” in

Advances in Neural Information Processing Systems (T. K. Leen, T. G. Dietterich, and V. Tresp, eds.),
vol. 13, (Cambridge, Massachussetts), pp. 409–415, The MIT Press, 2001.

[2] M. Martin, “On-line support vector machines for function approximation,” tech. rep., Software Depart-
ment, University Politecnica de Catalunya, 2002.

[3] J. Ma and J. Theiler, “Accurate online support vector regression,” Neural Computation, vol. 15, no. 11,
pp. 2683–2703, 2003.

[4] P. Laskov, C. Gehl, S. Kruger, and K.-R. Muller, “Incremental support vector learning: Analysis, imple-
mentation and applications,” Journal of Machine Learning Research, vol. 7, pp. 1909–1936, 2006.

[5] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu, “The entire regularization path for the support vector
machine,” Journal of Machine Learning Research, vol. 5, pp. 1391–1415, 2004.

[6] L. Gunter and J. Zhu, “Efficient computation and model selection for the support vector regression,”
Neural Computation, vol. 19, no. 6, pp. 1633–1655, 2007.

[7] G. Wang, D.-Y. Yeung, and F. H. Lochovsky, “A new solution path algorithm in support vector regression,”
IEEE Transactions on Neural Networks, vol. 19, no. 10, pp. 1753–1767, 2008.

[8] E. N. Pistikopoulos, M. C. Georgiadis, and V. Dua, Process Systems Engineering: Volume 1: Multi-
Parametric Programming. WILEY-VCH, 2007.

[9] J. R. Schott, Matrix Analysis For Statistics. Wiley-Interscience, 2005.

[10] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines,” 2001. Software available
at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

[11] D. DeCoste and K. Wagstaff, “Alpha seeding for support vector machines,” in Proceedings of the Inter-
national Conference on Knowledge Discovery and Data Mining, pp. 345–359, 2000.

[12] M. M. Lee, S. S. Keerthi, C. J. Ong, and D. DeCoste, “An efficient method for computing leave-one-out
error in support vector machines,” IEEE transaction on neural networks, vol. 15, no. 3, pp. 750–757,
2004.

[13] M. Meyer, “Statlib.” http://lib.stat.cmu.edu/index.php.

[14] L. Bottou and C.-J. Lin, “Support vector machine solvers,” in Large Scale Kernel Machines (L. Bottou,
O. Chapelle, D. DeCoste, and J. Weston, eds.), pp. 301–320, Cambridge, MA.: MIT Press, 2007.

[15] M. Karasuyama, I. Takeuchi, and R.Nakano, “Efficient leave-m-out cross-validation of support vector
regression by generalizing decremental algorithm,” New Generation Computing, vol. 27, no. 4, Special
Issue on Data-Mining and Statistical Science, pp. 307–318, 2009.

9


