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Abstract

The replica method is a non-rigorous but widely-acceptelngue from statis-
tical physics used in the asymptotic analysis of large, oamdnonlinear prob-
lems. This paper applies the replica method to non-Gauss&atimum a pos-
teriori (MAP) estimation. It is shown that with random lineaeasurements and
Gaussian noise, the asymptotic behavior of the MAP estinfaten-dimensional
vector “decouples” as scalar MAP estimators. The result is a counterpartto Guo
and Verd('’s replica analysis of minimum mean-squared estimation.

The replica MAP analysis can be readily applied to many egtins used in
compressed sensing, including basis pursuit, lasso rlgganation with thresh-
olding, and zero norm-regularized estimation. In the cdskagso estimation
the scalar estimator reduces to a soft-thresholding operatd for zero norm-
regularized estimation it reduces to a hard-threshold. dgnather benefits, the
replica method provides a computationally-tractable meéttor exactly comput-
ing various performance metrics including mean-squareatr @nd sparsity pat-
tern recovery probability.

1 Introduction

Estimating a vectok € R™ from measurements of the form

y =®x+w, )
where® € R™*™ represents a knowmeasurement matriandw € R™ represents measurement
errors or noise, is a generic problem that arises in a range@fmstances. One of the most basic
estimators fok is the maximum a posteriori (MAP) estimate

%70 (y) = arg max g (x]y). “
xe n

which is defined assuming some prioronFor most priors, the MAP estimate is nonlinear and its
behavior is not easily characterizable. Even if the priorsxfandw are separable, the analysis of
the MAP estimate may be difficult since the matfixcouples thex unknown components of with
them measurements in the vectpr

The primary contribution of this paper—an abridged versidfil]—is to show that with certain
large randon® and Gaussiaw, there is arasymptotic decouplingf (1) inton scalar MAP estima-
tion problems. Each equivalent scalar problem has an apptescalar prior and Gaussian noise
with aneffective noise leveThe analysis yields the asymptotic joint distribution a€k component
z; of x and its corresponding estimatg in the MAP estimate vectax™*P(y). From the joint
distribution, various further computations can be madehsas the mean-squared error (MSE) of
the MAP estimate or the error probability of a hypothesis¢esnputed from the MAP estimate.

*This work was supported in part by a University of Califorfeesident’s Postdoctoral Fellowship and
National Science Foundation CAREER Award 0643836.



Replica Method. Our analysis is based on a powerful but non-rigorous tectanfcpm statistical
physics known as the replica method. The replica method wigsally developed by Edwards and
Anderson [2] to study the statistical mechanics of spinggasAlthough not fully rigorous from the
perspective of probability theory, the technique was ablgrovide explicit solutions for a range of
complex problems where many other methods had previouisylfE8].

The replica method was first applied to the study of nonlind&P estimation problems by
Tanaka [4] and Muller [5]. These papers studied the behafithe MAP estimator of a vector
x with i.i.d. binary components observed through linear meaments of the form (1) with a large
random® and Gaussiamv. The results were then generalized in a remarkable papembya@d
Verd( [6] to vectorsk with arbitrary distributions. Guo and Verdd's result wasoaable to incor-
porate a large class of minimum postulated MSE estimatongrevthe estimator may assume a
prior that is different from the actual prior. The main resnlthis paper is the corresponding MAP
statement to Guo and Verd(’s result. In fact, our resulieisved from Guo and Verd(’s by taking
appropriate limits with large deviations arguments.

The non-rigorous aspect of the replica method involves afsassumptions that include a self-
averaging property, the validity of a “replica trick,” arfietability to exchange certain limits. Some
progress has been made in formally proving these assunsptasurvey of this work can be found
in [7]. Also, some of the predictions of the replica methogtdhbeen validated rigorously by other
means [8]. To emphasize our dependence on these unprowengsms, we will refer to Guo and
Verd('s result as the Replica MMSE Claim. Our main resulijcli depends on Guo and Verd('s
analysis, will be called the Replica MAP Claim.

Applicationsto Compressed Sensing.  As an application of our main result, we will develop a few
analyses of estimation problems that arise in compressedingg[9-11]. Incompressed sensing
one estimates a sparse vectdrom random linear measurements. Generically, optimaihedgton

of x with a sparse prior is NP-hard [12]. Thus, most attentionfbessed on greedy heuristics such
as matching pursuit and convex relaxations such as basigip[ir3] or lasso [14]. While successful
in practice, these algorithms are difficult to analyze welgi

Recent compressed sensing research has provided scalisgtanumbers of measurements that
guarantee good performance of these methods [15-17]. Howese scaling laws are in general
conservative. There are, of course, notable exceptiohsdimg [18] and [19] which provide match-
ing necessary and sufficient conditions for recovery o€#yrisparse vectors with basis pursuit and
lasso. However, even these results only consider exacteecand are limited to measurements
that are noise-free or measurements with a signal-to-mafse(SNR) that scales to infinity.

Many common sparse estimators can be seen as MAP estimatbrsestain postulated priors.
Most importantly, lasso and basis pursuit are MAP estinsaé@suming a Laplacian prior. Other
commonly-used sparse estimation algorithms, includimgdr estimation with and without thresh-
olding and zero norm-regularized estimators, can also &e ae8 MAP-based estimators. For these
algorithms, the replica method provides—under the assiompf the replica hypotheses—not just
bounds, but the exact asymptotic behavior. This in turnefisrexact expressions for various per-
formance metrics such as MSE or fraction of support recovEmg expressions apply for arbitrary
ratiosk/n, n/m andSNR.

2 Estimation Problem and Assumptions

Consider the estimation of a random vectoe R™ from linear measurements of the form
y=®x+w=AS"%x + w, 3)

wherey € R™ is a vector of observation®, = AS'/2, A € R"*" is a measurement matri%, is
a diagonal matrix of positive scale factors,

S = diag (s1,...,84), s; >0, (4)

andw € R™ is zero-mean, white Gaussian noise. We consider a sequesweloproblems indexed
by n, withn — oco. For each, the problem is to determine an estimatef x from the observations
y knowing the measurement matik and scale factor matri.



The components; of x are modeled as zero mean and i.i.d. with some prior prolatitribution
po(z;). The per-component variance of the Gaussian noi&is |> = 02. We use the subscript
“0” on the prior and noise level to differentiate these qitaad from certain “postulated” values to
be defined later.

In (3), we have factored® = AS'/2? so that even with the i.i.d. assumption ors above and an
i.i.d. assumption on entries &, the model can capture variations in powers of the comparaint
x that are knowra priori at the estimator. Variations in the powerxothat are not known to the
estimator should be captured in the distributiorxof

We summarize the situation and make additional assumptmapecify the problem precisely as
follows:

(a) The number of measurements= m(n) is a deterministic quantity that varies withand
satisfies

nh_}rrgo n/m(n) =
for somes > 0. (The dependence af onn is usually omitted for brevity.)
(b) The components; of x are i.i.d. with probability distributiomq (x;).
(c) The noisew is Gaussian withw ~ N(0,031,,).
(d) The components of the matrix are i.i.d. zero mean with variandgm.
(e) The scale factors; are i.i.d. and satisfy; > 0 almost surely.
(f) The scale factor matri$, measurement matrix, vectorx and noisew are independent.

3 Review of the Replica MM SE Claim

We begin by reviewing the Replica MMSE Claim of Guo and Vef@u Suppose one is given a
“postulated” prior distributiorp, .« and a postulated noise IevegoSt that may be different from

the true valuep, ands?. We define theninimum postulated MSE (MPMSE&3timate of as
)A(mpmse(y) =E (X | Y 5 Ppost, Ugost) = /pr\y(x | Y i Ppost, Ugost) dX,

wherepy |y (x | y; g, o?) is the conditional distribution o giveny under thex distribution and
noise variance specified as parameters after the semicolon:

pxly(x |y q,0%) =C "exp (—%Ily - ASl/2X|2) (%),  qlx) = H q(x;), (5)

whereC' is a normalization constant.

The Replica MMSE Claim describes the asymptotic behavitn®postulated MMSE estimator via
an equivalent scalar estimator. Lgt:) be a probability distribution defined on some getC R.
Givenyu > 0, letp,.(z | z; ¢, 1) be the conditional distribution

-1
Pap(@ | 25 ¢, p) = U o(z —x; pa(x) dw] o(z —z; pg(z) (6)
zeX
whereg(-) is the Gaussian distribution
1 2
C) = = /) 7
The distributionp,,|. (|2 ; ¢, i) is the conditional distribution of the scalar random valéab ~
q(x) from an observation of the form
c=a+ v, (8)

wherev ~ N(0,1). Using this distribution, we can define the scalar cond&ldMMSE estimate,

PG ) = [ apGelss ) do ©
rE
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Also, given two distributionsgyo (z) andp, (z), and two noise levelgy, > 0 andu, > 0, define

mse(p1, po, H1, 10, Z) =/ |2 — 22 (25 p1, 1) *pay (2 | 25 po, o) da, (10)
reX

which is the mean-squared error in estimating the scafaom the variablez in (8) whenz has a
true distributionz ~ po(z) and the noise level is = 110, but the estimator assumes a distribution
x ~ p1(x) and noise levels = ;.

Replica MM SE Claim [6]. Consider the estimation problem in Section 2. k8P™*¢(y) be the

MPMSE estimator based on a postulated prigts; and postulated noise Ieve{gost. For each

n, letj = j(n) be some deterministic component index with) € {1,...,n}. Then there exist
effective noise levels; ando? _ ; such that:

(@) Asn — oo, the random vectorr;, s;, ;') converge in distribution to the random
vector(z, s, #) wherez, s, andv are independentwith ~ po(z), s ~ ps(s),v ~ N(0,1),
and

smimse

T = Iscalar(z; Ppost; ,LLp)y z=x+ \//_J/U. (11)
whereys — o2 /s and, = o2_q /.

(b) The effective noise levels satisfy the equations

Oeff O-g + BE [S mse(ppostapOa Hpy Ky Z)] (12a)
2

Gp—eff = G?)ost + BE [S mse(pp05t7pp05ta ,LLP7 MP’ Z)] 9 (12b)

where the expectations are taken oyer pg(s) andz generated by (11).

The Replica MMSE Claim asserts that the asymptotic behafidhe joint estimation of the:-
dimensional vectok can be described by equivalent scalar estimators. In the scalar estimation
problem, a component ~ py(z) is corrupted by additive Gaussian noise yielding a noisy-mea
surement. The additive noise variance js= o2; /s, which is the effective noise divided by the
scale factos. The estimate of that component is then described by thes(gy nonlinear) scalar
estimatorz(z ; ppost; ip)-

The effective noise levels; ando?_ ; are described by the solutions to fixed-point equations

(12). Note that?; ando—g_eﬂr appear implicitly on the left- and right-hand sides of thegaations
via the terms: andy,,. When there are multiple solutions to these equationsytieesblution is the
minimizer of a certain Gibbs’ function [6].

4 ReplicaMAP Claim

We now turn to MAP estimation. Let C R be some (measurable) set and consider an estimator of
the form

. 1 .

X"P(y) = argmin o~ |ly — ASY2x|3 + ) f(;), (13)
xXeEX™" 27 j=1

wherey > 0 is an algorithm parameter arfd: X — R is some scalar-valued, non-negative cost

function. We will assume that the objective function in (13 a unique essential minimizer for

almost ally.

The estimator (13) can be interpreted as a MAP estimatorcifigaly, for anyuw > 0, it can be
verified thatk™?P (y) is the MAP estimate

XM (y) = arg max pujy (X | ¥5 Pu, 03,
xeX’Vl

wherep, (x) ando? are the prior and noise level

-1

pad) = | [ ept-ufboyix| - es(-uf). ot =/ (14)
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where f(x) = Zj f(z;). To analyze this MAP estimator, we consider a sequence of IMS
estimators

X'(y) =E(x|y; puoy)- (15)
The proof of the Replica MAP Claim below (see [1]) uses a statidarge deviations argument to

show that
lim x*(y) = x™*(y)

uU—r 00
for all y. Under the assumption that the behaviors of the MMSE estirmare described by the
Replica MMSE Claim, we can then extrapolate the behavion@MAP estimator.

To state the claim, define the scalar MAP estimator

jmap (Z; )\) :argminF(:C,Z,/\), F(.I',Z,)\) = 2—1A|Z—1'|2+f($) (16)

scalar
zeX

where, again, we assume that (16) has a unique essentiahizgnifor almost all\ and almost all
z. We also assume that the limit

_ A2
o?(z,\) = lim 2 = 2]

e 2(F(z,2,\) — F(#,2,\))’

(z; A). We make the following additional assumptions:

(17)

exists where: = Z.o0
Assumption 1 Consider the MAP estimator (13) applied to the estimatiosbfgm in Section 2.
Assume:

(@) Forall u > 0 sufficiently large, assume the postulated prigrand noise lever? satisfy
the Replica MMSE Claim. Also, assume that for the corresiponeffective noise levels,
o2 (u) ando?_ g (u), the following limits exists:

= uli{{)lo oeg(u), = uli{]go UUg—cﬁ'(U)-
(b) Suppose for each, @} (n) is the MMSE estimate of the componentfor some index
j €{1,...,n} based on the postulated pripf, and noise levet2. Then, assume that the

following limits can be interchanged:

e g
30, % ) = g, Jin &5 (),

where the limits are in distribution.
(c) Assume thaf(z) is non-negative and satisfiggz)/ log |z| — oo as|z| — oo.

Item (@) is stated to reiterate that we are assuming the epIMSE Claim is valid. See [1, Sect.
IV] for additional discussion of technical assumptions.

Replica MAP Claim [1]. Consider the estimation problem in Section 2. X8tP(y) be the MAP
estimator (13) defined for sonféx) and~y > 0 satisfying Assumption 1. For eaehletj = j(n)
be some deterministic component index with) € {1,...,n}. Then:

~map

(@) Asn — oo, the random vectorsz;, s;, 2;"*") converge in distribution to the random
vector(z, s, ) wherez, s, andv are independentwith ~ py(z), s ~ ps(s),v ~ N(0,1),
and

E=a000 (2,)Np), 2=+ /uv, (18)

scalar

wherey = o /sand\, =,/s.

2

eff ,; map

(b) The limiting effective noise Ieven%ff,map and~, satisfy the equations

Olmap = 00+ PE [slz— 7] (19a)
Yp v+ BE [5‘72 (2, /\p)] ) (19b)

where the expectations are taken over po(x), s ~ pg(s), andv ~ N (0, 1), with # and
z defined in (18).



Analogously to the Replica MMSE Claim, the Replica MAP Classerts that asymptotic behavior
of the MAP estimate of any single componentxois described by a simple equivalent scalar esti-
mator. In the equivalent scalar model, the component ofrtheetectorx is corrupted by Gaussian
noise and the estimate of that component s given by a scald &timate of the component from
the noise-corrupted version.

5 Analysisof Compressed Sensing

Our results thus far hold for any separable distributionf@nd under mild conditions on the cost
function f. The role off is to determine the estimator. In this section, we first aeischoices of
f that yield MAP estimators relevant to compressed sensirgthéh additionally impose a sparse
prior for x for numerical evaluations of asymptotic performance.

Lasso Estimation. We first consider the lasso or basis pursuit estimate [13jitéh by
S-1asso : 1
£ (y) = argmin o—[ly — AS"*x]3 + x|, (20)
xeR” Y

wherey > 0 is an algorithm parameter. This estimator is identical ®NMAP estimator (13) with
the cost function
fx) =lzl.

With this cost function, the scalar MAP estimator in (16) igem by
Tentar (25 A) = T (2), (21)

whereT3°(2) is the soft thresholding operator

z—A, ifz> A
T (2) = { 0, if |z] <\ (22)
z4+ A, ifz< =M\
The Replica MAP Claim now states that there exists effectoise levelsrZ; . and, such that

for any component indey, the random vectofz;, s;, &;) converges in distribution to the vector
(z, s, %) wherex ~ po(x), s ~ ps(s), andz is given by

& =T (2), z =1z + \/uv, (23)
wherev ~ N(0,1), X\, = /s, andp = o2 ..,/5- Hence, the asymptotic behavior of lasso
has a remarkably simple description: the asymptotic thistion of the lasso estimate; of the

componentz; is identical tox; being corrupted by Gaussian noise and then soft-threstidtrle
yield the estimate:;.

To calculate the effective noise levels, one can perforrmpls calculation to show that?(z, ) in
(17) is given by

9 N iz >N
o*(2,3) —{ 0, if|z] <A (24)
Hence,
E [5‘72(27 )\p)] = E s\, Pr(|z] > A\p)] =7 Pr(|2] > 1p/5) (25)

where we have use the fact thgf = ~,/s. Substituting (21) and (25) into (19), we obtain the
fixed-point equations

afﬁ,ymap ag + SE {s|x — T;sft(zﬂz (26a)
Yo = v+ B Pr(lz] > /s), (26Db)

where the expectations are taken with respeat topy(z), s ~ ps(s), andz in (23). Again, while
these fixed-point equations do not have a closed-form swluthey can be relatively easily solved
numerically given distributions aof ands.



ZeroNorm-Regularized Estimation. Lasso can be regarded as a convex relaxation of zero norm-
regularized estimation

szero o1
x“"°(y) = argmin 2—||y—AS”2XH§+ [Ixlo, (27)
xeR” Y

where||x||o is the number of nonzero componentssof For certain strictly sparse priors, zero
norm-regularized estimation may provide better perforoeahan lasso. Whileomputingthe zero
norm-regularized estimate is generally very difficult, véa aise the replica analysis to provide a
simple characterization of ifgerformance This analysis can provide a bound on the performance
achievable by practical algorithms.

The zero norm-regularized estimator is identical to the Mé&BEmator (13) with the cost function
0, ifx=0;
f(“’)—{ 1, ifz#0. (28)
Technically, this cost function does not satisfy the cdodg of the Replica MAP Claim. To avoid
this problem, we can consider an approximation of (28),

_J 0, it <d
fom(x) = { 1, if |z| € [§, M],

which is defined on the sét = {z : |2| < M}. We can then take the limits— 0 andM — oc.
To simplify the presentation, we will just apply the ReplMd&P Claim with f(x) in (28) and omit
the details in taking the appropriate limits.

With f(x) given by (28), the scalar MAP estimator in (16) is given by

AP (0 N) =T (z), =2, (29)

scalar

whereT 4 is the hard thresholding operator,
T} (z) = { SNz (30)

Now, similar to the case of lasso estimation, the Replica MA&m states there exists effective
noise levelss? and-, such that for any component indgxthe random vectofz;, s;, ;)

eff ,; map

converges in distribution to the vectgr, s, &) wherex ~ po(x), s ~ ps(s), andi is given by
& =TPard(y), z=a+ /1w, (31)

wherev ~ N(0,1), \p = 7p/8, }t = 0l map/ 5 @Nd

t=1/2), = 1\/29/s. (32)

Thus, the zero norm-regularized estimation of a vegt@ equivalent tan scalar components cor-
rupted by some effective noise level; ..., and hard-thresholded based on a effective noise level

Tp-
The fixed-point equations for the effective noise Ie\@fgmap and-~, can be computed similarly to

the case of lasso. Specifically, one can verify that (24) @bjldre both satisfied for the hard thresh-
olding operator as well. Substituting (25) and (29) into)(Me obtain the fixed-point equations

: = 0p + BE [s|a — T} ()], (33a)

Ueff,map

Yo = v+ By Pr(lz] > 1), (33b)

where the expectations are taken with respeat to po(z), s ~ ps(s), z in (31), andt given by
(32). These fixed-point equations can be solved numerically
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Figure 1: MSE performance prediction with the Replica MARi@I. Plotted is the median nor-
malized SE for various sparse recovery algorithms: lineM3¥& estimation, lasso, zero norm-
regularized estimation, and optimal MMSE estimation. &&fies show the asymptotic predicted
MSE from the Replica MAP Claim. For the linear and lasso estors, the circles and triangles
show the actual median SE over 1000 Monte Carlo simulations.

Numerical Simulation. To validate the predictive power of the Replica MAP Claim fimite
dimensions, we performed numerical simulations where thraponents ofx are a zero-mean
Bernoulli-Gaussian process. Specifically,

_ N(0,1), with prob.0.1;
ti~ 0, with prob.0.9.

We took the vectok to haven = 100 i.i.d. components, and we used ten valueswato vary 8 =
n/m from 0.5 to 3. For each problem size, we simulated the lasddirr@ar MMSE estimators over
1000 independent instances with noise levels chosen satththSNR with perfect side information
is 10 dB. Each set of trials is represented by its median sglugnror in Fig. 1.

The simulated performance is matched very closely by thepsytic values predicted by the replica
analysis. (Analysis of the linear MMSE estimator using tleplita MAP Claim is detailed in [1];
the Replica MMSE Claim is also applicable to this estimatoraddition, the replica analysis can be
applied to zero norm-regularized and optimal MMSE estimsatioat are computationally infeasible
for large problems. These results are also shown in Figluktihting the potential of the replica
method to quantify the precise performance losses of palctlgorithms.

Additional numerical simulations in [1] illustrate congemnce to the replica MAP limit, applicability
to discrete distributions fax, effects of power variations in the components, and aceymadiction
of the probability of sparsity pattern recovery.

6 Conclusions

We have shown that the behavior of vector MAP estimators laitle random measurement matri-
ces and Gaussian noise asymptotically matches that of &detoupled scalar estimation problems.
We believe that this equivalence to a simple scalar modébwén up numerous doors for analysis,
particularly in problems of interest in compressed sensige can use the model to dramatically
improve upon existing performance analyses for sparsitgparecovery and MSE. Also, the tech-
nigue is sufficiently general to study effects of dynamia@n
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