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A Proof of theorem 2

Theorem 2 (Multivariable version of lhara’s formula)Let C'(V') be the set of functions di. We
define two linear operators ofi(V') by

ONG) = (3 ) @), (AN@) = Y = f(ole)), wheref € C(V).

< 1 — ueug < 1 — ueug

ec eceE
t(e)=1 t(e)=
Then we have

(gc(u)*l - ) det(I —UM) = det(I +D — A) J] (1 — uweue).

le]leE

Proof. First, we define three linear operatafs: C(V) — C(E), T* : C(E) — C(V), and
1 : C(E) — C(E) as follows:

(Of)(e) = flo(e), (T*9)(@):=_ gle), (9)(e):=g(e) wheref e C(V)andg e C(E).

e€E,t(e)=i

We see that\f = OT™* — ., because

(0T =vg)e)= > g(¢) —g(e) = (Mg)(e) forge C(E).

Then we have
det(I — UM) = det (I —UOT*(I + ub)*l) det(I + Us)
= det (1 — T+ ub)—luo) det(I + Us).
In the second equality, we usédt(I,, — AB) = det(I,, — BA) for n x m andm x n matrices

A andB ([S1], Lemma 8.2.4). The linear operatois a block diagonal matrix with standard basis.
The (e, €) block of I + U is

1 ue

Ue 1]

Therefore, we havéet (I +Ut) = [[ (e p(1 — veue).

Finally, we check that™ (I + 1)~ 'UO = A — D. The matrix(I + ¢:)~" is a block diagonal
matrix with (e, &) block

1 [1 _f] (A.1)

1 —ueusz |~ Ue



For f € C(V), we have

(Tra+uytuor)iy = 3 ((+u)uos)e)

eEE,t(e):i

- ¥ l_zu7Qu0ﬁgg—u4MOﬁ@D
ecE t(e)=i e

— Z . 72 - (uef(o(e)) UelUe (0(6)))
ecE,t(e)=i e

= (Af) (@) = (DS)(@).

B Proof of theorem 3

B.1 Explicit formula of derivatives of the Bethe free energy

In the proof of theorem 3, the gragh = (V, E) is assumed to be a simple graph, i.e., there is no

multiple edges and loop-edge

For the proof, we need explicit expressions of the second derivatives of the Bethe free energy. We

list them below.

The first derivatives of the Bethe Free Energy are

oF

8mi :L‘ii:tl
OF 1

aXl] 4 mi,zj::tl

1 1
=—h;+(1- dz)i Z z; log b;(z;) + 1 Z Z x; log b (x4, xy),

kEN; x;,xp=%1

Z XTiTj log b” (.Z’i, .Z'7>

The second derivatives of the Bethe Free Energy are

1 1 1 e .
62F (1 o dl) 1—mf + 4 ZkENi in,xk 1+m;xi+mETre+XikTiTk if i = Js
omiom, ) 1 Yovi; Trmaem e xom, i iandj are adjacenti # j),
0 otherwise,
1 Zj ifl—
O2F 4 Zl’i@j 1+mizi+m z;+XxijT:T; if k= Z,
=10 L if k=
8mk8XU - 4 Ti,Tj 14+mxi+m x;+XijTiT; =7
0 otherwise,
2 1 1 PN
a F — 4 Z.LL.LJ 1+mixi+m xj+XijTiT; if 1) = k’l,
OXijOXHk 0 otherwise.
We use notations
1 1
= 5 2 T gy T g
Ti,T; My T+ ML Xij Tij
1 xT;
J
8ij = 4 ;
4 llz;] T+ miz; +mjx; + XijT:x;
1 inj
tij == .
4 1+mzxz+m]$J +Xij$ixj

TirTj

Note thatr;; = r;; andt;; = t;;, buts;; # s;; in general.
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B.2 Detailed proof of theorem 3

Theorem 3(Main Formula) The following equality holds at any point 6f{G):
(gc(u)—lz) det(I —UM) = det(V2F) T[] [ bis(wivay) [T T bola)t % 22N+,
ijeR .’E,‘,,frj::l:l 1€V xi==%1

Whereb,;j(:zr,;,zj) = %(1 +m;x; + m;x; + XijSCin), lh(l‘,) = %(1 —+ mi), and

J

Proof. First, note that the Hessian of the Bethe free energy is a square matrix of siz&/:

( 92F ) ( i )
2 . Om;0m Om;Ox st
\Y F({miaxij}) = 92F ’ 5*F
(axuvamj ) (axuu8Xst )

Recall thatV is the number of vertices and’ is the number of undirected edges.

Stepl Computation of Y
From (B.5), the (E,E)-block of the Hessian is a diagonal matrix given by
0’F
OXijOXki
Using this diagonal block, we erase (V,E)-block and (E,V)-block of the Hessian. Thus, we obtain a
square matrixX such thatlet X = 1 and

= i, kiTij-

XT(V2F)X =

Y 0
9*F .
0 (OXij OX ki )
Applying an identity

L0 2\ fw ty sy 1 0 0 wi— B gy JZJJ 0

0 1 ;SJ1 tz] wy 531 —91']' _;lji ? = tij _ s,ijs‘ji w; — l 0
0 0 1 — I

for each edge, we have

s2 .
(1- di)1—1mz + 2 ken; (rie — 7£) ifi=,
(Y)ij =4 tij — % if i andj are adjacent
0 otherwise.
The elements oY are represented in terms pf;, x;, } as follows:

Fhiim eyt S a2 L)
ii= T3 Tip — =% — ———
K 1 —m? P e 1—m2
4 kEN; i
1 (Xik — mimy)?
= and,
1—m? + k;\f (1 =m2)(1 —m? —m3 + 2mimuXik — X5,)

8185
(V)ij =tij — ==

—(xig — mim;) o ant and
= for adjacent andj.
(1 —mZ —m? 4 2mm;xi; — X3;)

i

Step2 Computation offy +D — A
From the definition (B.9) ofi;_,;, we see that
WimjUj—i (xij — mim;)?

T ) o o2y
1—wisjujs; (1—m; mi 4 2mim;xi; Xij)

Ui (1 —m)(xij — mimy)

1— Uj—jUj—i (1 — mz2 — m? + 2mimjxij — X%J) '




Therefore, the diagonal element is

A ~ Uj—s ke Uk—si
(UN+D—A)i=(In+D)yi =1+ Y — T r

1 — Ui kUk—i

kEN;
ka — mymy,)?
—1+
k;\/ 1 —m? —mi + 2mimpXik — X5,)

and for adjacent andy,
~ ~ ~ —Uj—j
I +D—Ai':—¢4i':¢
( N ) 3] ( ) 3] 1— ut—)_ju_]—ﬂ
—(1 = m3)(xij — mim;)
(L —mZ —m? + 2mimjxi; — X3;)

Combining the results of step 1 and 2, we have

1—m3 0 0
. 0 1-m3 ... 0
IN+D-A=Y . . .
0 0 1—mb
Step3 Final step
We see that
Co(u)™! = det(I —UM) (B.10)
=det(Iy +D - A) J] (1 - ueue) (B.11)
[e]eE
=det(Y) [J1 = m?) J] (1 —veue)
i€V le]eE
1-— Uj—s i Uj—3q
= det(V2F) [[ (1 = m) H 7;7 =
eV ijeEE
— i ujsi) (1 —m2)(1 —m?2)
_ 2p yL-di g ! 2. B.12
= det(V >21€IV HE (B.12)

From (B.10) to (B.11), we used the edge zeta version of lhara’s formula (theorem 3).
Furthermore, with a straightforward computation we see that
(1 — winjujni) (1 = mi)(1 —m3)
Tij

(1 o m?)lfdl _ 2272di H bi(xi)lidia

r;=+1

=4t ] bilaiay),

xi,x;==%1

Wherebij(xi,xj) = i(l + m;r; +mizT; + Xij(EiLCj) aﬂdbl(l‘l) = %(1 + ml)

Therefore,
(B.12)= 22 iev (2-2di) 44M gop V2 H H bi(z;) 1 di H H bij (i, x;)
i€V z;=+1 iJEE xi,x;=
= 92N+AM ot V2 H H bi(x;) 1 di H H bi; x“xj
i€V x;=+1 ijeEE xy,x;==%1



C Proof of corollary 2

Here, we prove the limit formula in corollary 2.
Corollary 2. Let{m;(t) := 0, x;;(t) :=t} € L(G) for t < 1. Then we have

lim det(V2F())(1 — t)MTN=1 = o= M=N+1(pr _ N)k(G),
e
wherex(G) is the number of spanning treesGh

Proof. We can easily check that_, ; () = ¢,

H H bij(xi,x;) =471 —)*M(14+1)*M | and

iJEE Ti,xj=

H H bi( 961 —di _ 9—2N+4M

eV x;=

on this interval. Therefore
lim det(V2E(t))(1 — )MV =1 = lim (o (u(t) 71 (1 — )M TN 1
t—1 t—1
(4—4M(1 _ t)QM(l n t)2A12—2N+4M22N+4M) -1
= lim CG(t)fl(l _ t)fj\lJerleQM
t—1
—(M — N)r(G)2~M-N+1,
On the final equality, we used Hashimoto’s formula:
lim Cou) (1 —u) MEN=L — oM=NH¥L(Ar  N)k(G).
u—

We refer to [S2—4] for this formula. O

D Transformation of messages and proof of theorem 5

D.1 Transformation of messages

First, we make an easy observation on the LBP update.

Proposition D.1. Let {m,_,,;} be any set of messages. We define a transformation from messages
{ii,;} to messagesi_,} by

t
~t p’i*}j(xj)
Hiyj(Xj) X ————. (D.1)
We also define transformation from functions;;, ¢; } to functionS{1§ij’ 1/l-} by
7 Yij (@i, ;)
wi’ TjyTj) X : ) (D2)
o0 5) i (T5) Wi (%)
i) oc (@) [ maosi(aa). (D.3)
kEN;
Then the update
lu‘filj Zd’]z Lj,Ts Vi(4) H :uk—n i), (D.4)
kEN;\J
is equivalent to
/’Lfi]:] Z%z Tj, T wz xi) H :ukaz x;). (D.5)
kEN;\j

Proof. The equivalence of (D.4) and (D.5) is easily checked by (D.1), (D.2), and (D.3). O



Symbolically, proposition D.1 implies that
HoToll ' =T, (D.6)
wherell is the transformation of the messagesmy, ;, T is the LBP update wit{;;, v;}, and

T is the LBP update witr{u}-j, @Zl-} . Differentiation of this relation gives the transformation of the
linearization matrix.

If we choose{m;,;} asm;—;(z;) = pi2,;(x;), then (D.1), (D.2) and (D.3) becomes

il () o Zo.jgj; (©.7)
~ b1(IL',,Z')

This is the transformation used in the paper.

D.2 Proof of theorem 5

Theorem 5([S5], Proposition 4.5) At a LBP fixed poiny>, the linearizationZ” (n°°) is similar
toUM, i.e. UM = PT'(n>) P~ with an invertible matrixP.

Proof. Let {1, ;(z;)} be the set of messages at the fixed point andllée the transformation

of messages defined by the fixed point messages. We parameterize the messagggjs by
uﬁﬁj(ﬂ/uﬁﬁj(—). It is enough to prove the ass_er'gion _after_the_ transfo_rmation and in this pa-
rameterization, because these operations cause similar linearization matrices.

After the transformation, the LBP update is given in termg a& follows:
e o Vi ) i) Te g Ansi(:)

i—j Do, 'J}ji(_,l'i)’(/;i(.%‘i> HkGNi\j fisi(25)
b/'i(+7+) ~ b/'i("!‘,—)
_ T Lkewny i) + 7555
b b

b5 (—) ) [leenj —i@i) + 2

Let7°° :=II(n°°), then>® = 1 forall e € E. We can computé” (77>°) as follows:

L ontl
c—
_ (i) b= )Y
=(my ey M
_ Xij — miij

— .3
1mj

=1

i—j,k—1-

E Idea and proof of theorem 7

E.1 Idea of theorem 7

In theorem 7, we show that the sum of indexes is equal to one. This is not so special. The simplest
example that illustrate the idea of the theorem is sketched in figure E.1. For each stationary point,
plus or minus sign is assigned depending on the sign of the second derivative. When we deform the
function, the sum is still equal to one as long as the outward gradients are positive at the boundaries.
(See figure E.2.)

Lemma 1, combined with lemma 2, describes the behavior of the Bethe free energy near the bound-
ary of L(G).



v

Figure E.1: The sum of indexes is one. Figure E.2: The sum of indexes is still one.

E.2 Proofof lemma 1

Lemma 1. If a sequencdq,} C L(G) converges to a point. € 0L(G), then||VF(q,)| — oo,
wheredL(G) is the boundary of (G) c RN +M
Proof. First, note that it is enough to prove the assertion whes 0 andJ;; = 0.

We prove by contradiction. Assume thi7F'(¢,)|| / oo. Then, there exist® > 0 such that
IVF(g,)|| < R for infinitely manyn. Let By(R) be the closed ball of radiuB centered at the
origin. Taking subsequences, if necessary, we can assume that

VF(g) (f?) € Bo(R), E1)

because of the compactnessiif( R). Let bg;” (xi,25) andbE”)(xi) be the pseudomarginals corre-
sponding tag,. Sinceg,, — ¢. € OL(G), there exisij € E, z; andx; such that

bEJ)(xZ,xJ) — 0.

Without loss of generality, we assume that= +1 andz; = +1. From (E.1), we have

VF(Qn)ij = —log i

Thereforeb(")( —) = 0or b( )(=,+) — 0 holds; we assumégy)(Jr, —) — 0 without loss of
generality. Ij\low we have

b () = b (4, =) 8 () 0.

In this situation, the following claim holds.

Claim. Letk € N;. In the limit ofn — oo,

(E.2)
converges to a finite value.
proof of claim. Fromb{™ (+) — 0, we have

B (4+,-), b0 (+,4) — 0 and B (=) — 1.

Case 1:5) (=, +) — by (—, +) # 0 andbly) (-, —) — by (=, —) #0.
Inthesamewayas (E.2),

VF(qn)ik = ~ log —& — Nk



Therefore
B (+,4)

b(n)( o
ik +
Then we see that (E.2) converges to a finite value.

— I £0.

case 2:b\7) (—,+) — 1andb{y) (—,—) — 0.
Similar to the case 1, we have
by (+, )b (=, )

b(.n)( _) — I #0.

G (o)

Therefore” A

— 0. This implies that-2 Ve

W — 1. Then we see that (E.2) converges to a

finite value.
Case 3:b§2’)(7, +) —0 andbﬁg)(—, -) — L
Same as the case 2. O

Now let us get back to the proof of lemma 1. We rewrite (B.1) as

)
Lo () (_ (i, xp,)
VF(q”)i = 5 IOg bz ( ) logb Z Z T IOg b(n)( )
kGN zi,rr==+1
From (E.1), this value convergesgp The second and the third terms in (E.2) converges to a finite
value, while the first value converges to infinite. This is a contradiction. O

E.3 Detailed proof of theorem 7
Theorem 7. If det V2F(q) # 0 for all ¢ € (VF)~1(0) then

Z sgn (det V?F(q)) =1, wheresgn(z) :
¢:VF(q)=0

(E.3)

1 ifxz>0,
—1lifz <O.

We call each summand,which4d or —1, index ofF at q.

Proof. Define a magpb : L(G) — RVN+M py

O(q); = (1— dz)% Z x; log bi(z;) Z Z x; log bix (x;, x1), (E.4)

r;==%1 keN x;,xp=21
<I>(q)ij = — Z xixj lOg bij(aci, xj), (ES)
937;,13]'::‘:1
whereb; ;(z;,z;) andb;(z;) are given byg = {m;, x;;} € L(G). Therefore, we hav& F' =
® — (%) andV® = V2F. Then following claim holds.

Claim. The set2b~1((%)), 71(0) C L(G) are finite and

Z sgn(det Vo(q)) = Z sgn(det V®(q)), (E.6)

qed—1(") 9€®=1(0)

holds.

Before the proof of this claim, we prove theorem 7 under the claim.

From (E.4) and (E.5), it is easy to see tigly) = 0 & ¢ = {m; = 0,x;; = 0}. At this point,

we can easily check th&T® = V2F is a positive definite matrix. Therefore the right hand side

of (E.6) is equal to one. The left hand side of (E.6) is equal to the left hand side of (E.3), because
g€ @ '((%) & VF(q) = 0. Then the assertion of theorem 7 is proved. O



Figure F.1: The graphy. A
Figure F.2: The grapty.

Proof of the claim.First, we prove thab*l((’})) = (VF)~1(0) is afinite set. If not, we can choose

a sequencéq, } of distinct points from this set. Lekt(G) be the closure of.(G). SinceL(G) is

compact, we can choose a subsequence that converges to someg. poiit G). From lemma 1,
¢« € L(G) andVF(q.) = 0 hold. By the assumption in theorem 7, we hakve V2F(q.) # 0.
This implies thatV F'(q) # 0 in some neighborhood a@f.. This is a contradiction becaugg — ¢..

Secondly, we prove the equality (E.6) using lemma 2. Define a sequence of compact convex sets
Cn = {q € L(G)| Xoijep >u, .2, —logbi; < n}, which increasingly converges #(G). Since
®~1(0) and @*1(3) are finite, they are included i@0,, for sufficiently largen. Take X' > 0 and
¢ > 0to satisfyK — e > || (). From lemma 1, we see th@(9C,,) N By(K) = ¢ for sufficiently

largen. Letn, be such a large number. LBt : R¥+M — By(K) be a smooth map that is identity
on By(K — €), monotonically increasing ojz||, andIl, (z) = £z for ||| > K. Then we obtain

: Tl
a composition mag := 1l o ¢ : Cy,, — Bo(K) that satisfyd(0C,,) C 9Bo(K). By definition,
we haved~1(0) = &~1(0) and®~! (%) = =1 (%). Therefore, botit and (%) are regular values
of ®. From lemma 2, we have

Z sgn(det VO®(q)) = Z sgn(det VO&(q)).
g€d-1(}) q€®=1(0)

Then, the assertion of the claim is proved. O

F Proof of corollary 4

F.1 Detailed proof of example 2
In this subsection we prove the assertion of corollary 4 for the graph of example 2, which is displayed
in figure F.1. Thet and— signs represent that of two body interactions.

It is enough to check thatet(I — BM) > 0 for arbitrary0 < i3, a3, f14, 834 < 1 and—1 <
B12 < 0. The graphG in figure F.2 is obtained by erasing vertic2snd4 in G. To compute
det(I — BM), itis enough to considet. In fact

det(I — BM) = (a(B) ™

= [[ -9 (F.1)
peEP

=T —-9k) (F.2)
pep

= (a(B)7! = det(I — BM),

Where@e1 = 512623, Bez = 613, 663 = 614ﬂ34 andBei = Béi' The equa”ty between (Fl) and
(F.2) is obtained by the one to one correspondence between prime cy¢lesnolG.



€1

€2

(&) €3

Figure F.3: Two other types of graphs.

+ - - - + _
(1) (2) (3) (4) (5)

Figure F.4: List of interaction types.

By definition, we have

0 0 0 0 B B ]
0 0 0 B, 0 B,
- 0 0 0 8 0
BM = A A e3 e3 7
0 /381 /381 0 0 0
ﬁeg 0 ﬁez 0 0 0
| Bey By O 0 0 0 |

where the rows and columns are indexectbye,, e3, €1, é; andez. Then the determinant is

o= (£ 8 ) (£ 1 %)
det(I—BM)=det [I—=| Bey 0 fey ||det|I+| By 0 P
Bes Bes 0 Bes Bes 0
= (1= By Ber — BerBes — BesBes — 2Ber Bes Bes)
(1= Bey Bey = BerBes — Bes Bey + 2Ber Bes Bes)-

Since—1 < f,, < 0and0 < f,,, ., < 1, we conclude that this is positive.

F.2 Other cases

There are two operations on graphs that do not change the set of prime cycles. The first one is adding
or removing a vertex of degree two on any edge. The second one is adding or removing an edge
with a vertex of degree one. With these two operations, all graphs that have two linearly independent
cycles are reduced to three types of graphs. The first type is in figure F.2. The other types are in

figure F.3.

Up to equivalence of interactions, all types of signs of two body interactions are listed in figure F.4
except for the attractive case. We check the uniqueness for each case in order.

Case (1):Proved in example 2.

10



Case (2):In this case,

By O 0 0 B,
By O 0 By, O
0 Bey By 0 0
0 0 0 B B
0 0 B, 0 0 B,
0 B, O 0 0 &,

where rows and columns are labeleddyyes, es, €1, é; andés. Then the determinant is
det(I - BM) = (1 - Bﬁ)(l - /863)(1 - 661 - Bea + 561663 - 4661 32663)' (FS)

[N en i en i an]

BM =

This is positive whe) < 3., 8., < land—1 < B, < 0.
Case (3):The determinant (F.3) is also positive whert 5., < 1 and—1 < fe,, Be, < 0.
Case (4):In this case,

Ber Ber 0 B,
0

| B B B
BM=\"¢g" 5. By |

Be,
682 0 682 6@2
where rows and columns are labeleddyye,, ¢; ande;. Then we have
det(I - BM) = (1 - 661)(1 - 562)(1 - 661 - 662 - 3661562>' (F4)
This is positive whe) < 3., < 1and—1 < 8., < 0.
Case (5):The determinant (F.4) is positive wherl < f.,, 8e, < 0.
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