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Abstract

Continuous-time Markov chains are used to model systems in which transitions
between states as well as the time the system spends in each state are random.
Many computational problems related to such chains have been solved, including
determining state distributions as a function of time, parameter estimation, and
control. However, the problem of inferring most likely trajectories, where a tra-
jectory is a sequence of states as well as the amount of time spent in each state,
appears unsolved. We study three versions of this problem: (i) an initial value
problem, in which an initial state is given and we seek the most likely trajectory
until a given final time, (ii) a boundary value problem, in which initial and final
states and times are given, and we seek the most likely trajectory connecting them,
and (iii) trajectory inference under partial observability, analogous to finding max-
imum likelihood trajectories for hidden Markov models. We show that maximum
likelihood trajectories are not always well-defined, and describe a polynomial time
test for well-definedness. When well-definedness holds, we show that each of the
three problems can be solved in polynomial time, and we develop efficient dy-
namic programming algorithms for doing so.

1 Introduction

A continuous-time Markov chain (CTMC) is a model of a dynamical system which, upon entering
some state, remains in that state for a random real-valued amount of time (called the dwell time or
occupancy time) and then transitions randomly to a new state. CTMCs are used in a wide variety of
domains. In stochastic chemical kinetics, states may correspond to the conformation of a molecule
such as a protein, peptide or nucleic acid polymer, and transitions correspond to conformational
changes (e.g., [1]). Or, the state may correspond to the numbers of different types of molecules in
an interacting system, and transitions are the result of chemical reactions between molecules [2].
In phylogenetics, the states may correspond to the genomes of different organisms, and transitions
to the evolutionary events (mutations) that separate those organisms [3]. Other application domains
include queueing theory, process control and manufacturing, quality control, formal verification, and
robot nagivation.

Many computational problems associated with CTMCs have been solved, often by generalizing
methods developed for discrete-time Markov chains (DTMCs). For example, stationary distribu-
tions for CTMCs can be computed in a manner very similar to that for DTMCs [4]. Estimating the
parameters of a CTMC from fully observed data involves estimating state transition probabilities,
just as for DTMCs, but adds estimation of the state dwell time distributions. Estimating parameters
from partially observed data can be done by a generalization of the well-known Baum-Welch algo-
rithm for parameter estimation for hidden Markov models [5] or by Bayesian methods [6, 7]. When
the state of a CTMC is observed periodically through time, but some transitions between observa-
tion times may go unseen, the parameter estimation problem can also be solved through embedding

1



techniques [8]. In scenarios such as manufacturing or robot navigation, one may assume that the
state transitions or dwell times are under at least partial control. When control choices are made
once for each state entered, dynamic programming and related methods can be used to develop opti-
mal control strategies [9]. When control choices are made continuously in time, methods for hybrid
system control are more appropriate [10].

Another fundamental and well-studied problem for CTMCs is to compute, given an initial state and
time, the state distribution or most likely state at a later time. These problems are readily solved for
DTMCs by dynamic programming [11], but for the CTMCs, solutions have a somewhat different
flavor. One approach is based on the forward Chapman-Kolmogorov equations [4], called the Mas-
ter equation in the stochastic chemical kinetics literature [12]. These specify a system of ordinary
differential equations the describe how the probabilities of being in each state change over time.
Solving the equations, sometimes analytically but more often numerically, yields the entire state
distribution as a function of time. Alternatively, one can uniformize the CTMC, which produces
a DTMC along with a probability distribution for a number of transitions to perform. The process
obtained by choosing the number of transitions, and then producing a trajectory with that many tran-
sitions from the DTMC, has the same state distribution as the original CTMC. This representation
allows particularly efficient computation of the state distribution if that distribution is only required
at one or a smaller number of different times. Finally, especially in the chemical kinetics commu-
nity, stochastic simulation algorithms are popular [13]. These approaches act by simply simulating
trajectories from the CTMC to produce empirical, numerical estimates of state distributions or other
features of the dynamics.

Despite the extensive work on a variety of problems related to to CTMCs, to the best of our knowl-
edge, the problem of finding most likely trajectories has not been addressed. With this paper, we
attempt to fill that gap. We propose dynamic programming solutions to three variants of the problem:
(i) an initial value problem, where a starting state and final time are given, and we seek the most
likely sequence of states and dwell times occurring up until the final time, (ii) a boundary value
problem, where initial and final states and times are given, and we seek the most likely intervening
trajectory, and (iii) a problem involving partial observability, where we have a sequence of “obser-
vations” that may not give full state information, and we want to infer the most likely trajectory that
the system followed in producing the observations.

2 Definitions

A CTMC is defined by four things: (i) a finite state set S, (ii) initial state probabilities, Ps for s ∈ S,
(iii) state transition probabilities Pss′ for s, s′ ∈ S, and (iv) state dwell time parameters λs for each
s ∈ S. Let St ∈ S denote the state of the system at time t ∈ [0,+∞). The rules for the evolution
of the system are that it starts in state S0, which is chosen according to the distribution Ps. At any
time t, when the system is in state St = s, the system stays in state s for a random amount of time
that is exponentially distributed with parameter λs. When the system finally leaves state s, the next
state of the system is s′ 6= s with probability Pss′ .

A trajectory of the CTMC is a sequence of states along with the dwell times in all but the
last state U = (s0, t0, s1, t1, . . . , sk−1, tk−1, sk). The meaning of this trajectory is that the
system started in state s0, where it stayed for time t0, then transitioned to state s1, where it
stayed for time t1, and so on. Eventually, the system reaches state sk, where it remains. Let
Ut = (s0, t0, s1, t1, . . . , skt−1, tkt−1, skt

) be a random variable describing the trajectory of the
system up until time t. In particular, this means that there are kt state transitions up until time t
(where kt is itself a random variable), the system enters state skt

sometime at or before time t, and
remains in state skt

until sometime after time t.

Given the initial state, S0, and a time t, the likelihood of a particular trajectory U is

l(Ut = U|S0) =

{
0 if s0 6= S0 or

∑k−1
i=0 ti > t(

Πk−1
i=0 λsie

−λsi
tiPsisi+1

) (
e−λsk(t−

∑
i
ti)
)

otherwise
(1)

When
∑
i ti > t, the likelihood is zero, because it means that the specified transitions have not

completed by time t. Otherwise, the terms inside the first parentheses account for the likelihood of
the dwell times and the state transitions in the sequence, and the term inside the second parentheses
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accounts for the probability that the dwell time in the final state does not complete before time t.
With this notation, the initial value problem we study is easily stated as

arg max
U

l(Ut = U|S0 = s) , (2)

where s ∈ S and t > 0 are both given. The boundary value problem we study is

arg max
U

l(Ut = U|S0 = s, St = s′). (3)

Here, the given s and s′ are any states in S, possibly the same state, and t > 0 is also given.

A hidden continuous-time Markov chain (HCTMC) adds an observation model to the CTMC.
In particular, we assume a finite set of possible observations O. When the system is observed
and it is in state s ∈ S, the observer sees observation o ∈ O with probability Pso. Let O =
(o1, τ1, o2, τ2, . . . , om, τm) denote a sequence of observations and the times at which they are made.
We assume that the observation times are fixed, being chosen ahead of time, and depend in no way on
the evolution of the chain itself. Given a trajectory of the system U = (s0, t0, s1, t1, . . . , tk−1, sk),
let U(t) denote the state of the system at time t implied by that sequence. Then, the probability of
an observation sequence O given the trajectory U can be written as

P (O|Uτm
= U) = Πm

i=1PU(τi)oi
(4)

The final problem we study in this paper is that of finding the most likely trajectory given an obser-
vation sequence:

arg max
U

l(Uτm
= U|O) ∝ arg max

U
P (O|Uτm

= U)l(Uτm
= U) (5)

3 Solving the initial and boundary value problems

In this section we develop solutions to problems (2) and (3). The first step in this development is
to show that we can analytically optimize the dwell times if we are given the state sequence. This
is covered in the next subsection. Following that, we develop a dynamic program to find optimal
state sequences, assuming that the dwell times are set to their optimal values relative to the state
sequence.

3.1 Maximum likelihood dwell times

Consider a particular trajectory U = (s0, t0, s1, t1, . . . , sk−1, tk−1, sk). Given S0 and a time t, the
likelihood of that particular trajectory, l(Ut = U|S0) is given above by Equation (1). Let us assume
that S0 = s0, as we have no need to consider U starting from the wrong state, and let us maximize
l(Ut = U|S0) with respect to the dwell times. To be concise, let Ttk = {(t0, t1, . . . , tk−1) : ti ≥
0 for all 0 ≤ i < k and

∑
i ti ≤ t}. This is the set of all feasible dwell times for the states up until

state sk. Then we can write the desired optimization as

arg max(t0,...,tk−1)∈Ttk

(
Πk−1
i=0 λsie

−λsi
tiPsisi+1

) (
e−λsk

(t−Σiti)
)
. (6)

It is more convenient to maximize the logarithm, which gives us

arg max(t0,...,tk−1)∈Ttk

(
k−1∑
i=0

log λsi
− λsi

ti + logPsisi+1

)
− λsk

(t− Σjtj) (7)

Dropping the terms that do not depend on any of the ti and rearranging, we find the equivalent
problem

arg max(t0,...,tk−1)∈Ttk

k−1∑
i=0

(λsk
− λsi)ti (8)

The solution can be obtained by inspection. If λsk
≤ λsi

for all 0 ≤ i < k, then we must have all
ti = 0. That is, the system transitions instantaneously through the states s0, s1, . . . , sk−1 and then
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dwells in state sk for (at least) time t.1 Otherwise, let j be such that λsj
is minimal for 0 ≤ j < k.

Then an optimal solution has tj = t, and all other ti = 0. Intuitively, this says that if state sj has the
largest expected dwell time (corresponding to the smallest λ parameter), then the most likely setting
of dwell times is obtained by assuming all of the time t is spent in state sj , and all other transitions
happen instantaneously. This is not unintuitive, although it is dissatisfying in the sense that the most
likely set of dwell times are not typical in some sense. For example, none are near their expected
value. Moreoever, the basic character of the solution—that all the time t goes into waiting at the
slowest state—is independent of t. Nevertheless, being able to solve explicitly for the most likely
dwell times for a given state sequence makes it much easier to find the most likely Ut. So, let us
press onwards.

3.2 Dynamic programming for the most likely state sequence

Substituting back our solution for the ti into Equation (1), and continuing our assumption that s0 =
S0, we obtain

max
(t0,...,tk−1)∈Ttk

l(Ut = U|S0) =


(
Πk−1
i=0 λsi

Psisi+1

)
e−λsk

t if λsk
≤ λsi

for
all 0 ≤ i < k(

Πk−1
i=0 λsi

Psisi+1

)
e−(mink−1

i=0 λsi
)t otherwise

=
(
Πk−1
i=0 λsi

Psisi+1

)
e−(mink

i=0 λsi)t (9)

This leads to a dynamic program for finding the state sequence that maximizes the likelihood. As is
typical, we build maximum likelihood paths of increasing length by finding the best ways of extend-
ing shorter paths. The main difference with a more typical scenario is that to score an extension we
need to know not just the score and final state of the shorter path, but also the smallest dwell time
parameter along that path. Define a (k, s, λ)-trajectory to be one that includes k ∈ {0, 1, 2, . . .} state
transitions, ends at state sk = s, and for which the smallest dwell time parameter of any state along
the trajectory is λ. Then define Fk(s, λ) to be the maximum achievable l(Ut = U|S0), where we
restrict attention to U that are (k, s, λ)-trajectories. We initialize the dynamic program as:

F0(S0, λS0) = e−tλS0

F0(s, λ) = 0 for all (s, λ) 6= (S0, λS0)

To compute Fk(s, λ) for larger k, we first observe that Fk(s, λ) is undefined if λ > λs. This is
because there are no (k, s, λ)-trajectories if λ > λs. The fact that a trajectory ends at state s implies
that the minimum dwell time parameter along the trajectory can be no greater than λs. So, we only
compute Fk(s, λ) for λ ≤ λs.
To determine Fk+1(s, λ), we must consider two cases. If λ < λs, then the best (k + 1, s, λ)-
trajectory must come from some (k, s′, λ)-trajectory. That is, the length k trajectory must already
have a dwell time parameter of λ along it. The state s′ can be any state other than s. If λ = λs, then
the best (k + 1, s, λ)-trajectory may be an extension of any (k, s′, λ′)-trajectory with λ′ ≥ λ and
s 6= s′. To be more concise, define

G(s, λ) =
{
{λ} if λ < λs
{λs′ : λs′ ≥ λ} if λ = λs

(10)

We then compute F for increasing k as:

Fk+1(s, λ) = max
s′ 6=s,λ′∈G(s,λ)

Fk(s′, λ′)λs′Ps′se−t(λ−λ
′)

The first term on the right hand side accounts for the likelihood of the best (k, s′, λ′)-trajectory. The
next two terms account for the dwell in s′ and the transition probability to s. The final term accounts
for any difference between the smallest dwell time parameters along the k and k + 1 transition
trajectories.

1If the reader is not comfortable with a dwell time exactly equal to zero, one may instead take ti = 0 as a
shorthand for an infinitesimal but positive dwell time. Alternatively, the optimization problem can be modified
to explicitly require ti > 0. However, this does nothing to change the fundamental nature of the solution, while
resulting in a significantly more laborious exposition.
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Figure 1: A continuous-time Markov chain used as a demonstration domain. The five circles corre-
spond to states, and the arrows to transitions between states. States are also labeled with their dwell
time parameters.

Because the set of possible states, S, is finite, so is the set of possible dwell time parameters, λs for
s ∈ S. The size of the table Fk for each k is thus at most |S|2. If we limit k to some maximum value
K, then the total size of all the tables is at mostK|S|2, and the total computational effortO(K|S|3).

To solve the initial value problem (2), we scan over all values of k, s and λ to find the maximum
value of Fk(s, λ). Such a value implies that the most likely state sequence ends at state s after k
state transitions. We can use a traceback to reconstitute the full sequence of states, and the result of
the previous section to obtain the most likely dwell times. To solve the boundary value problem (3),
we do the same, except that we only scan over values of k and λ, looking for the maximum value of
Fk(St, λ).

3.3 Examples

In this section, we use the toy chain depicted in Figure 1 to demonstrate the algorithm of the previous
section, and to highlight some properties of maximum likelihood trajectories. First, suppose that we
know the system is in state x at time zero and in state z at time t. There are two different paths,
(x, z) and (x, y, z), that lead from x to z. If we ignore the issue of dwell times and consider
only the transition probabilities, then the path (x, y, z) seems more probable. Its probability is
PxyPyz = 2

3 · 1 = 2
3 , whereas the direct path (x, z) simply has probability Pxz = 1

3 . However, if
we consider the dwell times as well, the story can change. For example, suppose that t = 1. Note
that λy = 1

10 , so that the expected dwell time in state y is 10. If the chain enters state y, the chance
of it leaving y before time t = 1 is quite small. If we run the dynamic programming algorithm of
the previous section to find the most likely trajectory, it finds (s0 = x, t0 = 0, s1 = z) to be most
likely, with a score of 0.1226. Along the way, it computes the likelihood of the most likely path
going through y, which is (s0 = x, t0 = 0, s1 = y, t1 = t, s2 = x). It prefers to place all the dwell
time t in state y, because that state is most likely to have a long dwell time. However, the total score
of this trajectory is still only 0.0603, making the direct path the more likely one. On the other hand,
if t = 2, then the path through y becomes more likely by a score of 0.0546 to 0.0451. If t = 10, then
the path through y still has a likelihood of 0.0245, whereas the direct path has a likelihood below
2× 10−5, because it is highly unlikely to remain in x and/or z for so long.

Next, suppose that we know S0 = a and that we are interested in knowing the most likely trajectory
out until time t, regardless of the final state of that trajectory. For simplicity, suppose also that
λa = λb. There is only one possible state sequence containing k transitions for each k = 0, 1, 2, . . .,
and the likelihood of any such sequence turns out to be independent of the dwell times (assuming
the dwell times total no more than time t):

(Πk−1
i=0 λe

−λti)e−λ(t−Σiti) = e−λtλk (11)

If λ < 1, this implies the optimal trajectory has the system remaining at state a. However, if λ = 1
then all trajectories of all lengths have the same likelihood. If λ > 1, then there are trajectories of
arbitrarily large likelihood, but no maximum likelihood trajectory. Intuitively, because the likelihood
of a dwell time can be greater than one, the likelihood of a trajectory can be increased by including
short dwells in states with high dwell parameters λ.

In general, if a continuous-time Markov chain has a cycle of states (s0, s1, . . . , sk = s0), such
that Πk−1

i=0 Psisi+1λsi > 1, then maximum likelihood trajectories do not exist. Rather, a sequence of
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Figure 2: Abstract example of a continuous-time trajectory of a chain, along with observations taken
at fixed time intervals.

trajectories with ever-increasing likelihood can be found starting from any state from which the cycle
is reachable. One should, thus, always check the chain for this property before seeking maximum
likelihood trajectories. This can be easily done in polynomial time. For example, one can label the
edges of the transition graph with the weights logPss′λs for the edge from s to s′, and then check
the graph for the existence of a positive-weight cycle—a well-known polynomial-time computation.

4 Solving the partially observable problem

We now turn to problem (12), where we are given an observation sequence O =
(o1, τ1, o2, τ2, . . . , om, τm) and want to find the most likely trajectory U. For simplicity, we as-
sume that τ1 = 0. The following can be straightforwardly generalized to allow the first observation
to take place sometime after the trajectory begins. Similarly, we restrict attention to trajectories
U = (s0, t0, s1, t0, . . . , tk−1, sk) where

∑
i tk ≤ τm, so that we do not concern ourselves with

extrapolating the trajectory beyond the final observation time. The conditional likelihood of such a
trajectory can be written as

l(Uτm
= U|O) ∝ P (O|Uτm

= U)l(Uτm
= U) (12)

=
(
Πm
i=1PU(τi)oi

) (
Ps0

(
Πk−1
i=0 λsi

e−λsi
tiPsisi+1

) (
e−λsk

(t−Σiti)
))

(13)

The term in the first parentheses is P (O|Uτm
= U), and the term in the second parentheses is

l(Uτm
= U). The only differences between the second parentheses and Equation (1) is that we now

include the probability of starting in state s0, and we have implicitly assumed that
∑
i tk ≤ τm, as

mentioned above. This form, however, is not convenient for optimizing U. To do this, we need to
rewrite l(Uτm = U) in a way that separates the likelihood into events happening in each interval of
time between observations.

4.1 Decomposing trajectory likelihood by observation intervals

For simplicity, let us further restrict attention to trajectories U that do not include a transition
into a state si precisely at any observation time τj . We do not have space here to show that
this restriction does not affect the value of the optimization problem; this will be addressed in
the full paper. The likelihood of the trajectory can be written in terms of the events in each ob-
servation interval. For example, consider the trajectory and observations depicted in Figure 2.
In the first interval, the system starts in state s0 and transitions to s1, where it stays until time
τ2. The likelihood of this happening is Ps0λs0e

−λs0 t0Ps0s1e
−λs1 (τ2−t0). In the second observa-

tion interval, the system never leaves state s1. The probability of this happening is e−λs1 (τ3−τ2).
Finally, in the third interval, the system continues in state s1 before transitioning to state s2

and then s3, where it remains until the final observation. The likelihood of this happening is
λs1e

−λs1 (t0+t1−τ3)Ps1s2λs2e
−λs2 t2ps2s3e

−λs3 (τ4−t0−t1−t2). If we multiply these together, we ob-
tain the full likelihood of the trajectory, Ps0(Π2

i=0λsi
e−λsi

ti)e−λs3 (τ4−Σjtj).

In general, let Ui = (si0, ti0, si1, ti1, . . . , siki) denote the sequence of states and dwell times of
trajectory U during the time interval [τi, τi+1). The first dwell time ti0, if any, is measured with
respect to the start of the time interval. The component of the likelihood of the whole trajectory U
attributable to the ith time interval is nothing other than l(Uτi+1−τi

= Ui|S0 = si0). Thus, the
likelihood of the whole trajectory can be written as

l(Uτm
= U) = Ps0Πm−1

i=1 l(Uτi+1−τi
= Ui|S0 = si0) (14)
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4.2 Dynamic programming for the optimal trajectory

Combining Equations (12) and (14), we find

l(Uτm
= U|O) ∝ PU(0)PU(0)o1Πm−1

i=1 l(Uτi+1−τi
= Ui|S0 = U(τi))PU(τi+1)oi+1 (15)

The first two terms account for the probability of the initial state and the probability of the first
observation given the initial state. The terms inside the product account for the likelihood of the ith
interval of the trajectory, and the probability of the (i + 1)st observation, given the state at the end
of the ith interval of the trajectory.

One immediate implication of this rewriting of the conditional likelihood is the following. At times
τi and τi+1, the system is in states U(τi) and U(τi+1). If U is to maximize the conditional likeli-
hood, it had better be that the fragment of the trajectory between those two times, Ui, is a maximum
likelihood trajectory from state U(τi) to state U(τi+1) in time τi+1− τi. If it is not, then an alterna-
tive, higher likelihood trajectory fragment could be swapped into U, resulting in a higher conditional
likelihood. Let us define

Ht(s, s′) = max
U′

l(Ut = U′|S0 = s, St = s′) (16)

to be the maximum achievable likelihood by any trajectory from state s to state s′ in time t. Then a
necessary condition for U to maximize the conditional likelihood is

l(Uτi+1−τi
= Ui|S0 = U(τi)) = Hτi+1−τi

(U(τi),U(τi+1)) . (17)

Moreover, to find an optimal U, we can simply assume that the above condition holds, and con-
cern ourselves only with finding the best endpoints for the each time interval, U(τi) and U(τi+1).
(Of course, the endpoint of one interval must be the same as the initial point of the next interval.)
Specifically, define Ji(s) to be the likelihood of the most likely trajectory covering the time interval
[τ1, τi], accounting for the first i observations, and ending at state s. The we can compute J as
follows. To initialize, we set

J1(s) = PsPso1 . (18)
Then, for i = 1, 2, . . . ,m− 1,

Ji+1(s) = max
s′

Ji(s′)Hτi+1−τi
(s′, s)Psoi+1 . (19)

We can then reconstruct the most likely trajectory by finding s that maximizes Jm(s) and tracing
back to the beginning. This algorithm is identical to the Viterbi algorithm for finding most likely
state sequences for hidden Markov models, with the exception that the state transition probabilities
in the Viterbi algorithm are replaced by the Hτi+1−τi

(s′, s) terms above—which can, of course, be
computed based on the results of the previous section.

4.3 Examples

To demonstrate this algorithm, let us return to the CTMC depicted in Figure 1. We assume that
λa = λb = 1, that the system always starts in state x, and that when we observe the system, we
get a real-valued Gaussian observation with standard deviation 1 and means 0, 10, 3, 100 and 100
for states x, y, z, a and b respectively.2 The left side of Figure 3 shows three sample sequences
of 20 observations. The right side of the figure shows the most likely trajectories inferred under
different assumptions. First, if we assume the time interval between observations is t = 1, and we
consider observations OA, then the most likely trajectory has the system in state x up through the
10th observation, after which it instantly transitions to state z and remains there. This makes sense,
as the lower observations at the start of the series are more likely in state x. If we consider instead
observations OB , which has a high observation at time t = 11, the procedure infers that the system
was in state y at that time. Moreover, it predicts that the system switches into y immediately after the
10th observation, and says there until just before the 12th observation, taking advantage of the fact
that longer dwell times are more likely in state y than in the other states. If we consider observations
OC , which have a spike at t = 5, the transit to state y is moved earlier, and state z is used to explain
observations at t = 6 onward, even though the first few are relatively unlikely in that state. If we

2Although our derivations above assume the observation set O is finite, the same approach goes through if
O is continuous and individual observations have likelihoods instead of probabilities.
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Figure 3: Left: three length-20 observation sequences, OA, OB , and OC . All three are the same
at most points, but the 11th observation of OB is 10, and the 5th observation of OC is 10. Right:
most likely trajectories inferred by our algorithm, assuming the underlying CTMC is the one given
in Figure 1, with parameters given in the text.

return to observations OA, but we assume that the time interval between observations is t = 2, then
the most likely trajectory is different than it is for t = 1. Although the same states are used to explain
the observations, the most likely trajectory has the system transitioning from x to y immediately
after the 10th observation and dwelling there until just before the 11th observation, where the state
becomes z. This is because, as explained previously, this is the more likely trajectory from x to z
given t = 2. If we assume the time interval between observations is t = 20, then a wider range of
observations during the trajectory are attributed to state y. Intuitively, this is because, although the
observations are somewhat unlikely under state y, it is extremely unlikely for the system to dwell
for so long in state z as to account for all of the observations from the 11th onward.

5 Discussion

We have provided correct, efficient algorithms for inferring most likely trajectories of CTMCs given
either initial or initial and final states of the chain, or given noisy/partial observations of the chain.
Given the enormous practical import of the analogous problems for discrete-time chains, we are
hopeful that our methods will prove useful additions to the toolkit of methods available for analyzing
continuous-time chains. An alternative, existing approach to the problems we have addressed here is
to discretize time, producing a DTMC which is then analyzed by standard methods [14]. A problem
with this approach, however, is that if the time step is taken too large, the discretized chain can
collapse a whole set of transition sequences of the CTMC into a single “pseudotransition”, obscuring
the real behavior of the system in continuous time. If the time step is taken to be sufficiently small,
then the DTMC should produce substantially the same solutions as our approach. However, the
time complexity of the calculations increases as the time step shrinks, which can be a problem if
we are interested in long time intervals and/or there are states with very short expected dwell times,
necessitating very small time steps.

A related problem on which we are working is to find the most probable state sequence of a
continuous-time chain under similar informational assumptions. By this, we mean that the dwell
times, rather than being optimized, are marginalized out, so that we are left with only the sequence
of states and not the particular times they occurred. In many applications, this state sequence may
be of greater interest than the dwell times—especially since, as we have shown, maximum likeli-
hood dwell times are often infinitessimal and hence non-representative of typical system behavior.
Morever, this version of the problem has the advantage of always being well-defined. Because state
sequences have probabilities rather than likelihoods, a most probable state sequence will always
exist.
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