
Appendix

Lemma 1 (a) If random vector X is symmetric about 0, then AX + µ is symmetric about µ.
(b) If X, Y are independent and both symmetric about 0, Z = X + Y is also symmetric about 0.

Proof: (a). Since X is symmetric about 0, for all y, Pr(AX + µ ≥ µ + y) = Pr(AX ≥ y) =∫
1Ax≥ydux =

∫
1−Ax≥ydux = Pr(AX ≤ −y) = Pr(AX + µ ≤ µ − y). From the definition of

symmetry, we know AX + µ is symmetric about µ.

(b). Since X and Y are independent and both symmetric about 0, for all z, Pr(Z ≥ z) =∫∫
1x+y≥zduxduy =

∫
dux

∫
1y≥z−xduy =

∫
dux

∫
1y≤x−zduy =

∫
duy

∫
1x≥y+zdux =∫

duy

∫
1x≤−y−zdux =

∫∫
1x+y≤−zduxduy = Pr(Z ≤ −z). From the definition of symme-

try, we know Z is symmetric about 0. !

Equation (26) in Proposition 3

max
x∼(µ,σ2)SU

E
[
(x − t)+

]
=






(
√

3σ−t+µ)2

4
√

3σ
, if µ − σ√

3
≤ t ≤ µ + σ√

3
σ2

9(t−µ) , if t > µ + σ√
3

−σ2+9(t−µ)2

9(t−µ) , if t < µ − σ√
3

Proof: Without loss of generality, we assume µ = 0, otherwise we can explicitly achieve this by
translation x′ = x − µ, t′ = t − µ. We use the technique established in [13] to prove (26).

Using the strong duality property between moment problems and linear programming [13],
maxx∼(0,σ2)SU

E
[
(x − t)+

]
is equivalent to:

min
y0,y1

y0 + y1σ
2 (27)

s.t. y0p +
y1p3

3
≥ 1

2

∫ p

−p
[x − t]+dx, ∀ p ≥ 0 (28)

1). Consider t ≥ 0.
Constraint (28) now can be simplified as:

{
y0p + y1p3

3 ≥ 0, 0 ≤ p ≤ t

y0p + y1p3

3 ≥ (p−t)2

4 , p ≥ t

The first condition implies y0 ≥ 0 and the second implies y1 ≥ 0. Therefore problem (27)-(28) can
be rewritten as:

min
y0≥0,y1≥0

y0 + y1σ
2 (29)

s.t. y0p +
y1p3

3
− (p − t)2

4
≥ 0, ∀ p ≥ t (30)

Denote

h(p) =
y1p3

3
− p2

4
+ (y0 +

t

2
)p − t2

4

h′(p) = y1p
2 − p

2
+ (y0 +

t

2
)

Obviously, h(t) ≥ 0, h′(t) ≥ 0. The constraint (30) can be satisfied either

• y0 + t/2 − 1/(16y1) ≥ 0, which means ∀ p, h′(p) ≥ 0, or
• y0 + t/2 − 1/(16y1) ≤ 0 but the minimum of h(p) is no less than 0.

The first case amounts to:

min
y0≥0,y1≥0

y0 + y1σ
2

s.t. y0 + t/2 − 1/(16y1) ≥ 0
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and the minimum is (exactly the same as that of symmetric distributions)
{

(σ − t)/2, 0 ≤ t ≤ σ/2
σ2

8t , t ≥ σ/2 (31)

For the second case, let p+ = 1+
√

1−8ty1−16y0y1
4y1

be the larger minimizer of h(p), problem (29)-(20)
now becomes:

min
y1≥0

y0 + y1σ
2

s.t. 0 ≤ y0 ≤ 1
16y1

− t

2

h(p+) ≥ 0 ⇒ t3 − 30t2y0 − 96ty2
0 − 64y3

0 + (t2 + 16ty0 + 16y2
0)3/2

18t4
≤ y1 ≤ 1

8t

The minimum is (thanks to Mathematica!)
{

−t/2 + 3σ2+t2

4
√

3σ
, 0 ≤ t ≤ σ/

√
3

σ2

9t , t ≥ σ/
√

3
(32)

Comparing (31) and (32), we know the latter gives the minimum of problem (29)-(30).

2). Consider t ≤ 0.
Similarly, problem (27)-(28) can be rewritten as:

min
y0≥−t,y1≥0

y0 + y1σ
2

s.t. y0p +
y1p3

3
− (p − t)2

4
≥ 0, ∀ p ≥ −t

Using similar procedures as when t ≥ 0, we know the minimum is:
{

−t/2 + 3σ2+t2

4
√

3σ
, −σ/

√
3 ≤ t ≤ 0

−t − σ2

9t , t ≤ −σ/
√

3

Combining the above two cases finishes the proof. !
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