
Locality-Sensitive Binary Codes
from Shift-Invariant Kernels

Maxim Raginsky
Duke University

Durham, NC 27708
m.raginsky@duke.edu

Svetlana Lazebnik
UNC Chapel Hill

Chapel Hill, NC 27599
lazebnik@cs.unc.edu

Abstract

This paper addresses the problem of designing binary codes for high-dimensional
data such that vectors that are similar in the original space map to similar bi-
nary strings. We introduce a simple distribution-free encoding scheme based on
random projections, such that the expected Hamming distance between the bi-
nary codes of two vectors is related to the value of a shift-invariant kernel (e.g., a
Gaussian kernel) between the vectors. We present a full theoretical analysis of the
convergence properties of the proposed scheme, and report favorable experimental
performance as compared to a recent state-of-the-art method, spectral hashing.

1 Introduction

Recently, there has been a lot of interest in the problem of designing compact binary codes for
reducing storage requirements and accelerating search and retrieval in large collections of high-
dimensional vector data [11, 13, 15]. A desirable property of such coding schemes is that they
should map similar data points to similar binary strings, i.e., strings with a low Hamming distance.
Hamming distances can be computed very efficiently in hardware, resulting in very fast retrieval of
strings similar to a given query, even for brute-force search in a database consisting of millions of
data points [11, 13]. Moreover, if code strings can be effectively used as hash keys, then similarity
searches can be carried out in sublinear time. In some existing schemes, e.g. [11, 13], the notion of
similarity between data points comes from supervisory information, e.g., two documents are similar
if they focus on the same topic or two images are similar if they contain the same objects. The
binary encoder is then trained to reproduce this “semantic” similarity measure. In this paper, we are
more interested inunsupervisedschemes, where the similarity is given by Euclidean distance or by
a kernel defined on the original feature space. Weiss et al. [15] have recently proposed aspectral
hashingapproach motivated by the idea that a good encoding scheme should minimize the sum of
Hamming distances between pairs of code strings weighted by the value of a Gaussian kernel be-
tween the corresponding feature vectors. With appropriate heuristic simplifications, this objective
can be shown to yield a very efficient encoding rule, where each bit of the code is given by the sign
of a sine function applied to a one-dimensional projection of the feature vector. Spectral hashing
shows promising experimental results, but its behavior is not easy to characterize theoretically. In
particular, it is not clear whether the Hamming distance between spectral hashing code strings con-
verges to any function of the Euclidean distance or the kernel value between the original vectors as
the number of bits in the code increases.

In this paper, we propose a coding method that is similar to spectral hashing computationally, but
is derived from completely different considerations, is amenable to full theoretical analysis, and
shows better practical behavior as a function of code size. We start with a low-dimensional mapping
of the original data that is guaranteed to preserve the value of a shift-invariant kernel (specifically,
the random Fourier featuresof Rahimi and Recht [8]), and convert this mapping to a binary one
with similar guarantees. In particular, we show that thenormalizedHamming distance (i.e., Ham-

ming distance divided by the number of bits in the code) between any two embedded points sharply
concentrates around a well-defined continuous function of the kernel value. This leads to a Johnson–
Lindenstrauss type result [4] which says that a set of anyN points in a Euclidean feature space can
be embedded in a binary cube of dimensionO(log N) in a similarity-preserving way: with high
probability, the binary encodings of any two points that are similar (as measured by the kernel) are
nearly identical, while those of any two points that are dissimilar differ in a constant fraction of their
bits. Using entropy bounds from the theory of empirical processes, we also prove a stronger result
of this type that holds for anycompactdomain ofRD, provided the number of bits is proportional
to theintrinsic dimensionof the domain. Our scheme is completely distribution-free with respect to
the data: its structure depends only on the underlying kernel. In this, it is similar tolocality sensitive
hashing(LSH) [1], which is a family of methods for deriving low-dimensional discrete represen-
tations of the data for sublinear near-neighbor search. However, our scheme differs from LSH in
that we obtain both upper and lower bounds on the normalized Hamming distance between any two
embedded points, while in LSH the goal is only to preserve nearest neighbors (see [6] for further dis-
cussion of the distinction between LSH and more general similarity-preserving embeddings). To the
best of our knowledge, our scheme is among the first random projection methods for constructing a
similarity-preserving embedding into a binary cube. In addition to presenting a thorough theoretical
analysis, we have evaluated our approach on both synthetic and real data (images from the LabelMe
database [10] represented by high-dimensional GIST descriptors [7]) and compared its performance
to that of spectral hashing. Despite the simplicity and distribution-free nature of our scheme, we
have been able to obtain very encouraging experimental results.

2 Binary codes for shift-invariant kernels

Consider a Mercer kernelK(·, ·) onR
D that satisfies the following for all pointsx, y ∈ R

D:

(K1) It is translation-invariant(or shift-invariant), i.e.,K(x, y) = K(x − y).

(K2) It is normalized, i.e.,K(x− y) ≤ 1 andK(x − x) ≡ K(0) = 1.

(K3) For any real numberα ≥ 1, K(αx − αy) ≤ K(x − y).

The Gaussian kernelK(x, y) = exp(−γ‖x − y‖2/2) or the Laplacian kernelK(x, y) =
exp(−γ‖x− y‖1) are two well-known examples. We would like to construct an embeddingFn of
R

D into the binary cube{0, 1}n such that for any pairx, y the normalized Hamming distance

1

n
dH(Fn(x), Fn(y))

△

=
1

n

n
∑

i=1

1{Fi(x) 6=Fi(y)}

betweenFn(x) = (F1(x), . . . , Fn(x)) andFn(y) = (F1(y), . . . , Fn(y)) behaves like

h1(K(x − y)) ≤ 1

n
dH(Fn(x), Fn(y)) ≤ h2(K(x − y))

whereh1, h2 : [0, 1] → R
+ are continuous decreasing functions, andh1(1) = h2(1) = 0 and

h1(0) = h2(0) = c > 0. In other words, we would like to mapD-dimensional real vectors into
n-bit binary strings in a locality-sensitive manner, where the notion of locality is induced by the
kernelK. We will achieve this goal by drawingFn appropriately at random.

Random Fourier features. Recently, Rahimi and Recht [8] gave a scheme that takes a Mercer
kernel satisfying (K1) and (K2) and produces arandommappingΦn : R

D → R
n, such that,

with high probability, the inner product of any two transformed points approximates the kernel:
Φn(x)·Φn(y) ≈ K(x−y) for all x, y. Their scheme exploits Bochner’s theorem [9], a fundamental
result in harmonic analysis which says that any suchK is a Fourier transform of a uniquely defined
probability measurePK onR

D. They define therandom Fourier features(RFF) via

Φω,b(x)
△

=
√

2 cos(ω · x + b), (1)

whereω ∼ PK andb ∼ Unif[0, 2π]. For example, for the Gaussian kernelK(s) = e−γ‖s‖2/2, we
takeω ∼ Normal(0, γID×D). With these features, we haveE[Φω,b(x)Φω,b(y)] = K(x − y).
The scheme of [8] is as follows: draw an i.i.d. sample((ω1, b1), . . . , (ωn, bn)), where each

ωi ∼ PK and bi ∼ Unif[0, 2π], and define a mappingΦn : R
D → R

n via Φn(x)
△

=
1√
n

(

Φω1,b1(x), . . . ,Φωn,bn
(x)

)

for x ∈ X . ThenE[Φn(x) · Φn(y)] = K(x − y) for all x, y.

From random Fourier features to random binary codes. We will compose the RFFs with
random binary quantizers. Draw a randomthresholdt ∼ Unif[−1, 1] and define the quantizer
Qt : [−1, 1] → {−1, +1} via Qt(u)

△

= sgn(u + t), where we letsgn(u) = −1 if u < 0 and
sgn(u) = +1 if u ≥ 0. We note the following basic fact (we omit the easy proof):

Lemma 2.1 For anyu, v ∈ [−1, 1], Pt {Qt(u) 6= Qt(v)} = |u − v|/2.

Now, given a kernelK, we define a random mapFt,ω,b : R
D → {0, 1} through

Ft,ω,b(x)
△

=
1

2
[1 + Qt (cos(ω · x + b))] , (2)

wheret ∼ Unif[−1, 1], ω ∼ PK , andb ∼ Unif[0, 2π] are independent of one another. From now
on, we will often omit the subscriptst, ω, b and just writeF for the sake of brevity. We have:

Lemma 2.2

E 1{F (x) 6=F (y)} = hK(x − y)
△

=
8

π2

∞
∑

m=0

1 − K(mx− my)

4m2 − 1
, ∀x, y (3)

Proof: Using Lemma 2.1, we can showE 1{F (x) 6=F (y)} = 1
2 Eω,b | cos(ω ·x+b)−cos(ω ·y +b)|.

Using trigonometric identities and the independence ofω andb, we can express this expectation as

Eb,ω |cos(ω · x + b) − cos(ω · y + b)| =
4

π
Eω

∣

∣

∣

∣

sin

(

ω · (x − y)

2

)∣

∣

∣

∣

.

We now make use of the Fourier series representation of the full rectified sine waveg(τ) = | sin(τ)|:

g(τ) =
2

π
+

4

π

∞
∑

m=1

1

1 − 4m2
cos(mτ) =

4

π

∞
∑

m=1

1 − cos(2mτ)

4m2 − 1
.

Using this together with the fact thatEω cos(ω · s) = K(s) for anys ∈ R
D [8], we obtain (3). �

Lemma 2.2 shows that the probability thatF (x) 6= F (y) is a well-defined continuous function of
x−y. The infinite series in (3) can, of course, be computed numerically to any desired precision. In
addition, we have the following upper and lower bounds solely in terms of the kernel valueK(x−y):

Lemma 2.3 Define the functions

h1(u)
△

=
4

π2
(1 − u) and h2(u)

△

= min

{

1

2

√
1 − u,

4

π2
(1 − 2u/3)

}

,

whereu ∈ [0, 1]. Note thath1(0) = h2(0) = 4/π2 ≈ 0.405 and thath1(1) = h2(1) = 0. Then
h1(K(x − y)) ≤ hK(x − y) ≤ h2(K(x − y)) for all x, y.

Proof: Let ∆
△

= cos(ω · x + b) − cos(ω · y + b). ThenE |∆| = E

√
∆2 ≤

√
E ∆2 (the last step

uses concavity of the square root). Using the properties of the RFF,E ∆2 = (1/2) E[(Φω,b(x) −
Φω,b(y))2] = 1 −K(x− y). Therefore,E 1{F (x) 6=F (y)} = (1/2) E |∆| ≤ (1/2)

√

1 − K(x − y).
We also have

E 1{F (x) 6=F (y)} =
4

π2
− 8

π2

∞
∑

m=1

K(mx − my)

4m2 − 1
≤ 4

π2
− 8

3π2
K(x−y) =

4

π2

(

1−2K(x−y)/3
)

.

This proves the upper bound in the lemma. On the other hand, sinceK satisfies (K3),

hK(x − y) ≥
(

1 − K(x − y)
)

· 8

π2

∞
∑

m=1

1

4m2 − 1
=

4

π2

(

1 − K(x− y)
)

,

because themth term of the series in (3) is not smaller than
(

1 − K(x − y)
)

/(4m2 − 1). �

Fig. 1 shows a comparison of the kernel approximation properties of the RFFs [8] with our scheme
for the Gaussian kernel.

(a) (b) (c)

Figure 1:(a) Approximating the Gaussian kernel by random features (green) and random signs (red). (b) Rela-
tionship of normalized Hamming distance between random signs to functions of the kernel. The scatter plots in
(a) and (b) are obtained from a synthetic set of 500 uniformly distributed 2D points withn = 5000. (c) Bounds
for normalized Hamming distance in Lemmas 2.2 and 2.3 vs. the Euclidean distance.

Now we concatenate several mappings of the formFt,ω,b to construct an embedding ofX into the
binary cube{0, 1}n. Specifically, we drawn i.i.d. triples(t1, ω1, b1), . . . , (tn, ωn, bn) and define

Fn(x)
△

=
(

F1(x), . . . , Fn(y)
)

, whereFi(x) ≡ Fti,ωi,bi
(x), i = 1, . . . , n

As we will show next, this construction ensures that, for any two pointsx andy, the fraction of the
bits where the binary stringsFn(x) andFn(y) disagree sharply concentrates aroundhK(x − y),
providedn is large enough. Using the results proved above, we conclude that, for any two points
x andy that are “similar,” i.e.,K(x − y) ∼ 1, most of the bits ofFn(x) andFn(y) will agree,
whereas for any two pointsx andy that are “dissimilar,” i.e.,K(x − y) ∼ 0, Fn(x) andFn(y)
will disagree in about40% or more of their bits.

Analysis of performance. We first prove a Johnson–Lindenstrauss type result which says that,
for any finite subset ofRD, the normalized Hamming distance respects the similarities between
points. It should be pointed out that the analogy with Johnson–Lindenstrauss is only qualitative:
our embedding is highly nonlinear, in contrast to random linear projections used there [4], and the
resulting distortion of the neighborhood structure, although controllable, does not amount to a mere
rescaling by constants.

Theorem 2.4 Fix ǫ, δ ∈ (0, 1). For any finite data setD = {x1, . . . ,xN} ⊂ R
D, Fn is such that

hK(xj − xk) − δ ≤ 1

n
dH(Fn(xj), F

n(xk)) ≤ hK(xj − xk) + δ (4)

h1(K(xj − xk)) − δ ≤ 1

n
dH(Fn(xj), F

n(xk)) ≤ h2(K(xj − xk)) + δ (5)

for all j, k with probability ≥ 1 − N2e−2nδ2

. Moreover, the events (4) and (5) will hold with
probability≥ 1 − ǫ if n ≥ (1/2δ2) log(N2/ǫ). Thus, anyN -point subset ofRD can be embedded,
with high probability, into the binary cube of dimensionO(log N) in a similarity-preserving way.

The proof (omitted) is by a standard argument using Hoeffding’s inequality and the union bound, as
well as the bounds of Lemma 2.3. We also prove a much stronger result: any compact subsetX ⊂
R

D can be embedded into a binary cube whose dimension depends only on the intrinsic dimension
and the diameter ofX and on the second moment ofPK , such that the normalized Hamming distance
behaves in a similarity-preserving way for all pairs of points inX simultaneously. We make use of
the following [5]:

Definition 2.5 TheAssouad dimensionof X ⊂ R
D, denoted bydX , is the smallest integerk, such

that, for any ballB ⊂ R
D, the setB ∩ X can be covered by2k balls of half the radius ofB.

The Assouad dimension is a widely used measure of the intrinsic dimension [2, 6, 3]. For example,
if X is an ℓp ball in R

D, thendX = O(D); if X is a d-dimensional hyperplane inRD, then
dX = O(d) [2]. Moreover, ifX is ad-dimensional Riemannian submanifold ofR

D with a suitably
bounded curvature, thendX = O(d) [3]. We now have the following result:

Theorem 2.6 Suppose that the kernelK is such thatLK
△

=
√

Eω∼PK
‖ω‖2 < +∞. Then there

exists a constantC > 0 independent ofD andK, such that the following holds. Fix anyǫ, δ > 0. If

n ≥ max

{

CLKdX diamX
δ2

,
2

δ2
log

(

2

ǫ

)}

,

then, with probability at least1 − ǫ, the mappingFn is such that, for every pairx, y ∈ X ,

hK(x − y) − δ ≤ 1

n
dH(Fn(x), Fn(y)) ≤ hK(x − y) + δ (6)

Proof: For every pairx, y ∈ X , let Ax,y be the set of allθ ≡ (t, ω, b), such thatFt,ω,b(x) 6=
Ft,ω,b(y), and letA = {Ax,y : x, y ∈ X}. Then we can write

1

n
dH(Fn(x), Fn(y)) =

1

n

n
∑

i=1

1{θi∈Ax,y}.

For any sequenceθn = (θ1, . . . ,θn), define the uniform deviation

∆(θn)
△

= sup
x,y∈X

∣

∣

∣

∣

∣

1

n

n
∑

i=1

1{θi∈Ax,y} − E 1{Ft,ω,b(x) 6=Ft,ω,b(y)}

∣

∣

∣

∣

∣

.

For every1 ≤ i ≤ n and an arbitraryθ′
i, let θn

(i) denoteθn with theith component replaced byθ′
i.

Then|∆(θn) − ∆(θn
(i))| ≤ 1/n for anyi and anyθ′

i. Hence, by McDiarmid’s inequality,

P {|∆(θn) − Eθn ∆(θn)| > β} ≤ 2e−2nβ2

, ∀β > 0. (7)
Now we need to boundEθn ∆(θn). Using a standard symmetrization technique [14], we can write

Eθn ∆(θn) ≤ 2R(A)
△

= 2 Eθn,σn

[

sup
x,y∈X

∣

∣

∣

∣

∣

1

n

n
∑

i=1

σi1{θi∈Ax,y}

∣

∣

∣

∣

∣

]

, (8)

whereσn = (σ1, . . . , σn) is an i.i.d. Rademacher sequence,P{σi = −1} = P(σi = +1} = 1/2.
The quantityR(A) can be bounded by the Dudley entropy integral [14]

R(A) ≤ C0√
n

∫ ∞

0

√

log N(ǫ,A, ‖ · ‖L2(µ))dǫ, (9)

whereC0 > 0 is a universal constant, andN(ǫ,A, ‖ · ‖L2(µ)) is the ǫ-covering number of the
function class{θ 7→ 1{θ∈A} : A ∈ A} with respect to theL2(µ) norm, whereµ is the distribution
of θ ≡ (t, ω, b). We will bound these covering numbers by the covering numbers ofX with respect
to the Euclidean norm onRD. It can be shown that, for any four pointsx, x′, y, y′ ∈ X ,
∥

∥1Ax,y
− 1A

x′,y′

∥

∥

2

L2(µ)
=

∫

(

1{θ∈Ax,y} − 1{θ∈A
x′,y′}

)2
dµ(θ) ≤ µ(Bx△Bx′) + µ(By△By′),

where△ denotes symmetric difference of sets, andBx
△

= {(t, ω, b) : Qt(cos(ω · x + b)) = +1}
(details omitted for lack of space). Now,

2µ (Bx△Bx′) = 2 Eω,b

[

Pt

{

Qt(cos(ω · x + b)) 6= Qt(cos(ω · y + b))
}

]

= Eω,b |cos(ω · x + b) − cos(ω · x′ + b)| ≤ Eω |ω · (x − x′)| ≤ LK‖x − x′‖.
Then µ (Bx△Bx′) + µ (By△By′) ≤ LK

2 (‖x − x′‖ + ‖y − y′‖). This implies that
N(ǫ,A, ‖ · ‖L2(µ)) ≤ N(ǫ2/LK ,X , ‖·‖)2, whereN(δ,X , ‖·‖) are the covering numbers ofX w.r.t.
the Euclidean norm‖·‖. By definition of the Assouad dimension,N(δ,X , ‖·‖) ≤ (2 diamX/δ)dX ,

soN(ǫ,A, ‖ · ‖L2(µ)) ≤
(

2LK diamX
ǫ2

)2dX . We can now estimate the integral in (9) by

R(A) ≤ C1

√

LKdX diamX
n

, (10)

for some constantC1 > 0. From (10) and (8), we obtainEθn ∆(θn) ≤ C2

√

LKdX diamX
n , where

C2 = 2C1. Using this and (7) withβ = δ/2, we obtain (6) withC = 16C2
2 . �

For example, with the Gaussian kernelK(s) = e−γ‖s‖2/2 onR
D, we haveLK =

√
Dγ. The kernel

bandwidthγ is often chosen asγ ∝ 1/[D(diamX)2] (see, e.g., [12, Sec. 7.8]); with this setting,
the number of bits needed to guarantee the bound (6) isn = Ω((dX /δ2) log(1/ǫ)). It is possible,
in principle, to construct adimension-reducingembedding ofX into a binary cube, provided the
number of bits in the embedding is larger than the intrinsic dimension ofX .

Our method Spectral hashing

(a) (b)

(c) (d)

(e) (f)

Figure 2:Synthetic results. First row: scatter plots of normalized Hamming distance vs. Euclidean distance
for our method (a) and spectral hashing (b) with code size 32 bits. Green indicates pairs of data points that
are considered true “neighbors” for the purpose of retrieval. Second row: scatter plots for our method (c) and
spectral hashing (d) with code size 512 bits. Third row: recall-precision plots for our method (e) and spectral
hashing (f) for code sizes from 8 to 512 bits (best viewed in color).

3 Empirical Evaluation

In this section, we present the results of our scheme with a Gaussian kernel, and compare our perfor-
mance to spectral hashing [15].1 Spectral hashing is a recently introduced, state-of-the-art approach
that has been reported to obtain better results than several other well-known methods, including
LSH [1] and restricted Boltzmann machines [11]. Unlike our method, spectral hashing chooses
code parameters in a deterministic, data-dependent way, motivated by results on convergence of

1We use the code made available by the authors of [15] at http://www.cs.huji.ac.il/˜yweiss/SpectralHashing/.

Our method Spectral hashing

Figure 3: Recall-precision curves for the LabelMe database for our method (left) and for spectral hashing
(right). Best viewed in color.

eigenvectors of graph Laplacians to Laplacian eigenfunctions on manifolds. Though spectral hash-
ing is derived from completely different considerations than our method, its encoding scheme is
similar to ours in terms of basic computation. Namely, each bit of a spectral hashing code is given
by sgn(cos(k ω · x)), whereω is a principal direction of the data (instead of a randomly sampled
direction, as in our method) andk is a weight that is deterministically chosen according to the ana-
lytical form of certain kinds of Laplacian eigenfunctions. The structural similarity between spectral
hashing and our method makes comparison between them appropriate.

To demonstrate the basic behavior of our method, we first report results for two-dimensional syn-
thetic data using a protocol similar to [15] (we have also conducted tests on higher-dimensional
synthetic data, with very similar results). We sample 10,000 “database” and 1,000 “query” points
from a uniform distribution defined on a 2d rectangle with aspect ratio 0.5. To distinguish true posi-
tives from false positives for evaluating retrieval performance, we select a “nominal” neighborhood
radius so that each query point on average has 50 neighbors in the database. Next, we rescale the
data so that this radius is 1, and set the bandwidth of the kernel toγ = 1. Fig. 2 (a,c) shows scatter
plots of normalized Hamming distance vs. Euclidean distance for each query point paired with each
database point for 32-bit and 512-bit codes. As more bits are added to our code, the variance of the
scatter plots decreases, and the points cluster tighter around the theoretically expected curve (Eq. (3),
Fig. 1). The scatter plots for spectral hashing are shown in Fig. 2 (b,d). As the number of bits in the
spectral hashing code is increased, normalized Hamming distance does not appear to converge to any
clear function of the Euclidean distance. Because the derivation of spectral hashing in [15] includes
several heuristic steps, the behavior of the resulting scheme appears to be difficult to analyze, and
shows some undesirable effects as the code size increases. Figure 2 (e,f) compares recall-precision
curves for both methods using a range of code sizes. Since the normalized Hamming distance for
our method converges to a monotonic function of the Euclidean distance, its performance keeps
improving as a function of code size. On the other hand, spectral hashing starts out with promising
performance for very short codes (up to 32 bits), but then deteriorates for higher numbers of bits.

Next, we present retrieval results for 14,871 images taken from the LabelMe database [10]. The
images are represented by 320-dimensional GIST descriptors [7], which have proven to be effective
at capturing perceptual similarity between scenes. For this experiment, we randomly select 1,000
images to serve as queries, and the rest make up the “database.” As with the synthetic experiments, a
nominal threshold of the average distance to the 50th nearest neighbor is used to determine whether
a database point returned for a given query is considered a true positive. Figure 3 shows precision-
recall curves for code sizes ranging from 16 bits to 1024 bits. As in the synthetic experiments,
spectral hashing appears to have an advantage over our method for extremely small code sizes, up to
about 32 bits. However, this low bit regime may not be very useful in practice, since below 32 bits,
neither method achieves performance levels that would be satisfactory for real-world applications.
For larger code sizes, our method begins to dominate. For example, with a 128-bit code (which is
equivalent to just two double-precision floating point numbers), our scheme achieves 0.8 precision

Euclidean neighbors 32 bit code 512 bit code

Precision: 0.81 Precision: 1.00

Precision: 0.38 Precision: 0.96

Figure 4: Examples of retrieval for two query images on the LabelMe database. The left column shows top
48 neighbors for each query according to Euclidean distance (the query image is in the top left of the collage).
The middle (resp. right) column shows nearest neighbors according to normalized Hamming distance with a
32-bit (resp. 512-bit) code. The precision of retrieval is evaluated as the proportion of top Hamming neighbors
that are also Euclidean neighbors within the “nominal” radius. Incorrectly retrieved images in the middle and
right columns are shown with a red border. Best viewed in color.

at 0.2 recall, whereas spectral hashing only achieves about 0.5 precision at the same recall. More-
over, the performance of spectral hashing actually begins to decrease for code sizes above 256 bits.
Finally, Figure 4 shows retrieval results for our method on a couple of representative query images.

In addition to being completely distribution-free and exhibiting more desirable behavior as a func-
tion of code size, our scheme has one more practical advantage. Unlike spectral hashing, we retain
the kernel bandwidthγ as a “free parameter,” which gives us flexibility in terms of adapting to target
neighborhood size, or setting a target Hamming distance for neighbors at a given Euclidean dis-
tance. This can be especially useful for making sure that a significant fraction of neighbors for each
query are mapped to strings whose Hamming distance from the query is no greater than 2. This is a
necesary condition for being able to use binary codes for hashing as opposed to brute-force search
(although, as demonstrated in [11, 13], even brute-force search with binary codes can already be
quite fast). To ensure high recall within a low Hamming radius, we can progressively increase the
kernel bandwidthγ as the code size increases, thus counteracting the increase inunnormalizedHam-
ming distance that inevitably accompanies larger code sizes. Preliminary results (omitted for lack of
space) show that this strategy can indeed increase recall for low Hamming radius while sacrificing
some precision. In the future, we will evaluate this tradeoff more extensively, and test our method
on datasets consisting of millions of data points. At present, our promising initial results, combined
with our comprehensive theoretical analysis, convincingly demonstrate the potential usefulness of
our scheme for large-scale indexing and search applications.

Acknowledgments

This work was supported by NSF CAREER Award No. IIS 0845629.

References

[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions.Commun. ACM, 51(1):117–122, 2008.

[2] K. Clarkson. Nearest-neighbor searching and metric space dimensions. InNearest-Neighbor Methods for
Learning and Vision: Theory and Practice, pages 15–59. MIT Press, 2006.

[3] S. Dasgupta and Y. Freund. Random projection trees and low dimensional manifolds. InSTOC, 2008.

[4] S. Dasgupta and A. Gupta. An elementary proof of a theorem of Johnson and Lindenstrauss.Random
Struct. Alg., 22(1):60–65, 2003.

[5] J. Heinonen.Lectures on Analysis on Metric Spaces. Springer, New York, 2001.

[6] P. Indyk and A. Naor. Nearest-neighbor-preserving embeddings.ACM Trans. Algorithms, 3(3):Art. 31,
2007.

[7] A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial enve-
lope. Int. J. Computer Vision, 42(3):145–175, 2001.

[8] A. Rahimi and B. Recht. Random features for large-scale kernel machines. InNIPS, 2007.

[9] M. Reed and B. Simon.Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness.
Academic Press, 1975.

[10] B. Russell, A. Torralba, K. Murphy, and W. T. Freeman. LabelMe: a database and web-based tool for
image annotation.Int. J. Computer Vision, 77:157–173, 2008.

[11] R. Salakhutdinov and G. Hinton. Semantic hashing. InSIGIR Workshop on Inf. Retrieval and App. of
Graphical Models, 2007.

[12] B. Schölkopf and A. J. Smola.Learning With Kernels. MIT Press, 2002.

[13] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large databases for recognition. InCVPR, 2008.

[14] A. W. van der Vaart and J. A. Wellner.Weak Convergence and Empirical Processes. Springer, 1996.

[15] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. InNIPS, 2008.

