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Abstract

This paper tackles the problem of selecting among several linear estimators in
non-parametric regression; this includes model selection for linear regression, the
choice of a regularization parameter in kernel ridge regression or spline smooth-
ing, and the choice of a kernel in multiple kernel learning. We propose a new
algorithm which first estimates consistently the variance of the noise, based upon
the concept of minimal penalty which was previously introduced in the context of
model selection. Then, plugging our variance estimate in Mall@s’penalty

is proved to lead to an algorithm satisfying an oracle inequality. Simulation ex-
periments with kernel ridge regression and multiple kernel learning show that the
proposed algorithm often improves significantly existing calibration procedures
such as 10-fold cross-validation or generalized cross-validation.

1 Introduction

Kernel-based methods are now well-established tools for supervised learning, allowing to perform
various tasks, such as regression or binary classification, with linear and non-linear predictors [1, 2].
A central issue common to all regularization frameworks is the choice of the regularization parame-
ter: while most practitioners use cross-validation procedures to select such a parameter, data-driven
procedures not based on cross-validation are rarely used. The choice of the kernel, a seemingly
unrelated issue, is also important for good predictive performance: several techniques exist, either
based on cross-validation, Gaussian processes or multiple kernel learning [3, 4, 5].

In this paper, we consider least-squares regression and cast these two problems as the problem of
selecting among severahear estimators, where the goal is to choose an estimator with a quadratic
risk which is as small as possible. This problem includes for instance model selection for linear
regression, the choice of a regularization parameter in kernel ridge regression or spline smoothing,
and the choice of a kernel in multiple kernel learning (see Section 2).

The main contribution of the paper is to extend the notiomafimal penalty[6, 7] to all discrete
classes of linear operators, and to use it for defining a fully data-driven selection algorithm satisfying
a non-asymptotic oracle inequality. Our new theoretical results presented in Section 4 extend simi-
lar results which were limited to unregularized least-squares regression (i.e., projection operators).
Finally, in Section 5, we show that our algorithm improves the performances of classical selection
procedures, such as GCV [8] and 10-fold cross-validation, for kernel ridge regression or multiple
kernel learning, for moderate values of the sample size.
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2 Linear estimators

In this section, we define the problem we aim to solve and give several examples of linear estimators.

2.1 Framework and notation
Let us assume that one observes
Yi=f(z;)+e, €R for i=1...n,

whereeq, ..., e, are i.i.d. centered random variables V\AE[tf] = ¢2 unknown, f is an unknown
measurable functiod’ — R andzy,...,z, € X are deterministic design points. No assumption
is made on the se¥'. The goal is to reconstruct the signél= (f(z;))1<i<n € R™, with some
estimatorf’ € R™, depending only orjzy,Y1),..., (2, Ys), and having a small quadratic risk
n=Y|F — F||2, whereVt € R" , we denote byj¢||, thef,-norm of ¢, defined agj¢||2 := S, 2.

i=1"

In this paper, we focus olinear estimatorsF' that can be written as a linear function Bf =
(Y1,...,Y,) € R™, thatis, F = AY, for some (deterministich x n matrix A. Here and in
the rest of the paper, vectors suchYasr F' are assumed to be column-vectors. We present in
Section 2.2 several important families of estimators of this form. The matnway depend on
x1,...,x, (Which are known and deterministic), but notBn and may be parameterized by certain
guantities—usually regularization parameter or kernel combination weights.

2.2 Examplesof linear estimators

In this paper, our theoretical results apply to matrideshich are symmetric positive semi-definite,
such as the ones defined below.

Ordinary least-squares regression / model selection.  If we consider linear predictors from a
design matrixX € R"*?  thenF = AY with A = X(X T X)~'X T, which is a projection matrix
(ile, ATA = A); F = AY is often called grojection estimator. In the variable selection setting,
one wants to select a subset” {1,...,p}, and matricesi are parameterized by.

Kernel ridge regression / spline smoothing. We assume that a positive definite kerhel X' x

X — Ris given, and we are looking for a functigh: X — R in the associated reproducing kernel
Hilbert space (RKHS)F, with norm || - ||=. If K denotes thex x n kernel matrix, defined by

Kay = k(zq,xp) , then the ridge regression estimator—a.k.a. spline smoothing estimator for spline
kernels [9]—is obtained by minimizing with respectfas F [2]:
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The unique solution is equal o= > -1 a;k(-,x;), wherea = (K +nAI)~1Y . This leads to the
smoothing matrixAd, = K (K +nA\I,)~!, parameterized by the regularization paramaterR , .

Multiple kernel learning / Group Lasso / Lasso. We now assume that we hayedifferent
kernelsk; , feature spaces; and feature map®; : X — F;,j=1,...,p. The group Lasso [10]
and multiple kernel learning [11, 5] frameworks consider the following objective function

J(flv"'afp %Z J 1 fJ’ i)>)2+2)\z‘|fj||]:j:L<f17"'7fp)+2AZ||fjH]:j .

1 j=1 j=1

Note that whenb; (z) is simply thej-th coordinate of: € R?, we get back the penalization by the
¢*-norm and thus the regular Lasso [12].

Using a'/? = mingsg 5{% + b}, we obtain a variational formulation of the sum of norms
250 Al = min, cgr Y { 1l® +77]}. Thus, minimizingJ(fi, ..., f,) with respect to
(f1,..., fp) is equivalent to minlmlzmg with respect tpe R, (see [5] for more details):

mln L(f1 s fp) +AZ||fJ||2
1, ) ) p

+AZ j_g S K+ nAlL) +Aznj :
j=1 M



wherel,, is then x n identity matrix. Moreover, givem, this leads to a smoothing matrix of the
form

Apn = 20 K)oy K +nAL,)~ @

parameterized by the regularization parameter R, and the kernel combinations R —note
that it depends only oA~'7, which can be grouped in a single parameteRi.

Thus, the Lasso/group lasso can be seen as particular (convex) ways of optimizing. olrer

this paper, we propose a non-convex alternative with better statistical properties (oracle inequality
in Theorem 1). Note that in our setting, finding the solution of the problem is hard in general
since the optimization is not convex. However, while the model selection problem is by nature
combinatorial, our optimization problems for multiple kernels are all differentiable and are thus
amenable to gradient descent procedures—which only find local optima.

Non symmetric linear estimators. Other linear estimators are commonly used, such as nearest-
neighbor regression or the Nadaraya-Watson estimator [13]; those however lead to non symmetric
matricesA , and are not entirely covered by our theoretical results.

3 Linear estimator selection

In this section, we first describe the statistical framework of linear estimator selection and introduce
the notion of minimal penalty.

3.1 Unbiased risk estimation heuristics

Usually, several estimators of the forfa = AY can be used. The problem that we consider in
this paper is then to select one of them, that is, to choose a matrixet us assume that a family
of matnces(AA)AeA is glven (examples are shown in Section 2.2), hence a family of estimators

(FA)AEA can be used, WIth/\ = A,Y . The goal is to chooskom datasome\ € A, so that the
quadratic risk otF; is as small as possible.

The best choice would be tloeacle:
* : 1By — P2 }
X" € argmin {n ™! | Fy ~ FI3 }
which cannot be used since it depends on the unknown signdlherefore, the goal is to define a
data-driven\ satisfying aroracle inequality
By = FI3 < Co inf {n 7B = FI3} + Ra @)

with large probability, where the leading constaht should be close to 1 (at least for largeand
the remainder tern®,, should be negligible compared to the risk of the oracle.

Many classical selection methods are built upon the “unbiased risk estimation” heuristits: If
minimizes a criteriorerit(A) such that

VAed,  Elcit(\)] ~E [n 1| F - FHg]

then\ satisfies an oracle inequality such as in Eq. (2) with large probability. For instance, cross-
validation [14, 15] and generalized cross-validation (GCV) [8] are built upon this heuristics.

One way of implementing this heuristics is penalization, which consists in minimizing the sum of
the empirical risk and a penalty term, i.e., using a criterion of the form:

crit(A) = n~ Y| Fy — Y2 4 pen()) .

The unbiased risk estimation heuristics, also called Mallows’ heuristics, then leads iteé#ie
(deterministic) penalty

pena(A) i=E [n ! |Fy — FI3| —E [n !By - Y13
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When@ = A,Y ,we have:
IFx = FI3 = (Ax — L) F |3 + | Axell; + 2 (Axe, (Ax — I)F) | 3)
1P = Y3 = 1B — FI3+ llell; — 2 (e, Axe) + 2 (e, (In — ANF) @)

wheres =Y — F € R" andVt,u € R", (t, u) = Y., t;u; . Sinces is centered with covariance
matrix o1, , Eq. (3) and Eq. (4) imply that

202 tr(A
peny (1) = 22 ©
up to the term-E[n~!||||3] = —¢? , which can be dropped off since it does not vary with

Note thatdf(\) = tr(A,) is called theeffective dimensionalityr degrees of freedoifl6], so that

the ideal penalty in Eq. (5) is proportional to the dimensionality associated with the rmAggrx

for projection matrices, we get back the dimension of the subspace, which is classical in model
selection.

The expression of the ideal penalty in Eq. (5) led to several selection procedures, in particular Mal-
lows’ C, (calledC, in the case of projection estimators) [17], wheteis replaced by some esti-

matoro? . The estimator of? usually used withC;, is based upon the value of the empirical risk at
some)\, with df(\) large; it has the drawback of overestimating the risk, in a way which depends
on )\, andF [18]. GCV, which implicitly estimates? , has the drawback of overfitting if the family
(A))xea contains a matrix too close @ [19]; GCV also overestimates the risk even more than

for mostA, (see (7.9) and Table 4 in [18]).

In this paper, we define an estimatorsdf directly related to the selection task which does not have
similar drawbacks. Our estimator relies on the concept of minimal penalty, introduced IgyaBitlg
Massart [6] and further studied in [7].

3.2 Minimal and optimal penalties
We deduce from Eq. (3) thaias-variance decompositiaf the risk:

tr(AIA,\)U2
n

E {n_lllﬁx - FH%} =n" [(Ax — L) F|3 + = bias+ variance, (6)

and from Eq. (4) the expectation of the empirical risk:

(2tI‘(A>\) — tI‘(AIA)\)) o? '

— = 2 — 2
E[n B = Y1 - llel}] = n 7 l(Ax = )Pl - -

(7

Note that the variance term in Eq. (6) is not proportional to the effective dimensioréfity =
tr(Ay) but totr(A] Ay). Although several papers argue these terms are of the same order (for
instance, they are equal wheb, is a projection matrix), this may not hold in general. A, is
symmetric with a spectrurBp(A,) C [0, 1], as in all the examples of Section 2.2, we only have

0 < tr(Af Ay) < tr(Ay) < 2tr(Ay) — tr(A)] Ay) < 2tr(A4y) . (8)

In order to give a first intuitive interpretation of Eq. (6) and Eq. (7), let us consider the kernel ridge
regression example and assume that the risk and the empirical risk behave as their expectations
in Eq. (6) and Eq. (7); see also Fig. 1. Completely rigorous arguments based upon concentration
inequalities are developed in [20] and summarized in Section 4, leading to the same conclusion as
the present informal reasoning.

First, as proved in [20], the bias ! ||(A) — In)F||§ is a decreasing function of the dimensionality
df(\) = tr(A4,), and the variancer(A) Ay)o?n~1 is an increasing function aff(\), as well
as2tr(Ay) — tr(A] Ay). Therefore, Eq. (6) shows that the optimatealizes the best trade-off
between bias (which decreases witf{\)) and variance (which increases witfi(\)), which is a
classical fact in model selection.

Second, the expectation of the empirical risk in Eqg. (7) can be decomposed into the bias and a
negative variance term which is the opposite of

pen,,;, (A) == n"" (2tr(Ay) — tr(A) Ay)) 0 . 9)
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Figure 1: Bias-variance decomposition of the generalinagiwor, and minimal/optimal penalties.

As suggested by the notatigren
If

we will show it is aminimal penaltyin the following sense.

3o : -1 _ 2 )
vC > 0, )‘mm(C) € arg{\nel/rxl{n ||F)\ YH2 + Cpenmm(A)} )

then, up to concentration inequalities that are detailed in Sectioriﬁlﬁg(C’) behaves like a mini-
mizer of

)

min(

go(N) =E [n Y| By = YII§ + Cpen,y, () | =010 = 71 [(Ax = L)FI3+(C1) pen
Therefore, two main cases can be distinguished:

e if C < 1,thenge(\) decreases withf(\) so thatdf(Amin (C)) is huge:Amin (C) overfits.
o if C > 1, thengc(A) increases withdf(A\) when df()) is large enough, so that

o~

df (Amin (C)) is much smaller than whefl < 1.
As a conclusionpen,,;, () is the minimal amount of penalization needed so that a mininNzEr
a penalized criterion is not clearly overfitting.

Following an idea first proposed in [6] and further analyzed or used in several other papers such as
[21, 7, 22], we now propose to use thatn_ . (1)) is a minimal penalty for estimating® and plug
this estimator into Eq. (5). This leads to the algorithm described in Section 4.1.

Note that the minimal penalty given by Eq. (9) is new; it generalizes previous results [6, 7] where
penin (Ax) = n 1 tr(A,)o? because alll , were assumed to be projection matrices, 4g. A, =

Ay . Furthermore, our results generalize the slope heurigiiag; ~ 2pen,;, (only valid for
projection estimators [6, 7]) to general linear estimators for whiahy, / pen,;, € (1,2].

min

4 Main results

In this section, we first describe our algorithm and then present our theoretical results.

4.1 Algorithm

The following algorithm first computes an estimatol(obf o using the minimal penalty in Eq. (9),
then considers the ideal penalty in Eq. (5) for selecting

Input: A afinite set withCard(A) < Kn® for someK, « > 0, and matricesi) .
e VC >0, compute)y(C) € argminyea{[|Fx — Y|+ C (2tr(Ay) — tr(A] Ay))} .
e Find C such thatlf (X (C)) € [n3/4,1/10] .
e Select) € argminyep{[| Py — V2 + 2C tr(Ay)} .

In the steps 1 and 2 of the above algorithm, in practice, a grid in log-scale is used, and our theoretical
results from the next section suggest to use a step-size of ordét . Note that it may not be



possible in all cases to find@ such thatdf(\(C)) € [n3/4,n/10]; therefore, our condition in
step 2, could be relaxed to findingZasuch that for alC' > C + 4, df(A\(C)) < n3/* and for all
C < C—6,df(\(C)) >n/10, with § = n~/4+¢ 'where¢ > 0 is a small constant.

Alternatively, using the same grid in log-scale, we can seleeith maximal jump between succes-

sive values oflf(\y(C'))—note that our theoretical result then does not entirely hold, as we show
the presence of a jump around, but do not show the absence of similar jumps elsewhere.

4.2 Oracleinequality

Theorem 1 LetC and A be defined as in the algorithm of Section 4.1, vithrd(A) < Kn® for
someK,a > 0. Assume thatA € A, A, is symmetric witlfBp(A,) C [0, 1], thate; are i.i.d.
Gaussian with variance? > 0, and that3\;, \» € A with

(A1_2)

Then, a numerical constaidt, and an event of probability at lea$t— 8Kn~2 exist on which, for
everyn > C,,

<1 _ 91(a + 2)y/ ) ) 2<C< (1 | Hat+2)yinwm) ) o2 . (10)

1
df(\) > g df(A2) < Vn, and Vi € {1,2}, ! [|(Ay, — L) F|2 < o® “2”) .

n n1/4
Furthermore, if
Jw>1,VAEA, nttr(Ay)o? < kKE {nilﬂﬁ)\ - FH%} , (As)

then, a constant’, depending only or exists such that for every > C;,, on the same event,

i~ 40K . RPN 36(k + o + 2) In(n)o?

Theorem 1 is proved in [20]. The proof mainly follows from the informal arguments developed in
Section 3.2, completed with the following two concentration inequalities: ¢f R™ is a standard
Gaussian random vectar,€ R™ and M is a real-valuedr x n matrix, then for every: > 0,

P (I, & < V2z|al,) 2 1-2¢7 (12)
P (ve >0, ’||M§H§ - tr(MTM)‘ <Ote(MTM)+2(1+07") ||M||2x) >1-2"" , (13)

where|| M || is the operator norm af/ . A proof of Eq. (12) and (13) can be found in [20].

4.3 Discussion of the assumptions of Theorem 1

Gaussian noise.  Whene is sub-Gaussian, Eq. (12) and Eq. (13) can be provetl for !¢ at the
price of additional technicalities, which implies that Theorem 1 is still valid.

Symmetry. The assumption that matricels, must be symmetric can certainly be relaxed, since it
is only used for deriving from Eq. (13) a concentration inequality fox¢, &) . Note thatSp(A4,) C
[0, 1] barely is an assumption since it means thgtactually shrinks”.

Assumptions (A1_2). (Ai_2) holds if maxyca {df(A)} > n/2 and the bias is smaller than
cdf(\)~4 for somec, d > 0, a quite classical assumption in the context of model selection. Besides,
(A1_2) is much less restrictive and can even be relaxed, see [20].

Assumption (Ag). The upper bound (4) on tr(A,) is certainly the strongest assumption of
Theorem 1, but it is only needed for Eq. (11). According to Eq. (6))(Aolds withx = 1 when

A, is a projection matrix sincer(A) Ay) = tr(A,). In the kernel ridge regression framework,
(A3) holds as soon as the eigenvalues of the kernel méfridecrease likg~“—see [20]. In
general, (&) means that", should not have a risk smaller than the parametric convergence rate
associated with a model of dimensidf(\) = tr(4,) .

When (A3) does not hold, selecting among estimators whose risks are below the parametric rate
is a rather difficult problem and it may not be possible to attain the risk of the oracle in general.
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Nevertheless, an oracle inequality can still be proved withouj) (At the price of enlargingf
slightly and adding a small fraction of?n~! tr(A,) in the right-hand side of Eq. (11), see [20].

EnlargingC is necessary in general: tf(A] A,) < tr(Ay) for mostA € A, the minimal penalty

is very close t20%n~1tr(A,), so that according to Eq. (10), overfitting is likely as soon’as
underestimates? , even by a very small amount.

4.4 Main consequences of Theorem 1 and comparison with previousresults

Consistent estimation of o2. The first part of Theorem 1 shows th@tis a consistent estimator
of o2 in a general framework and under mild assumptions. Compared to classical estimatdys of

such as the one usually used with Mallows;,, C does not depend on the choice of some model
assumed to have almost no bias, which can lead to overestimtiog an unknown amount [18].

Oracleinequality. Our algorithm satisfies an oracle inequality with high probability, as shown by
Eqg. (11): The risk of the selected estimatgy is close to the risk of the oracle, up to a remainder

term which is negligible when the dimensionalitf( \*) grows withn faster tharin(n) , a typical
situation when the bias is never equal to zero, for instance in kernel ridge regression.

Several oracle inequalities have been proved in the statistical literature for Mallowsith a con-

sistent estimator of2, for instance in [23]. Nevertheless, except for the model selection problem
(see [6] and references therein), all previous results were asymptotic, meaningighatplicitly
assumed to be larged compared to each parameter of the problem. This assumption can be prob-
lematic for several learning problems, for instance in multiple kernel learning when the number

of kernels may grow witle . On the contrary, Eq. (11) ison-asymptotic, meaning that it holds for

every fixedn as soon as the assumptions explicitly made in Theorem 1 are satisfied.

Comparison with other procedures. According to Theorem 1 and previous theoretical results
[23, 19],C}, GCV, cross-validation and our algorithm satisfy similar oracle inequalities in various
frameworks. This should not lead to the conclusion that these procedures are completely equivalent.
Indeed, second-order terms can be large for a givewhile they are hidden in asymptotic results

and not tightly estimated by non-asymptotic results. As showed by the simulations in Section 5, our
algorithm yields statistical performances as good as existing methods, and often quite better.

Furthermore, our algorithm never overfits too much becahﬁs%) is by construction smaller than
the effective dimensionality of,(C) at which the jump occurs. This is a quite interesting property
compared for instance to GCV, which is likely to overfit if it is not corrected because GCV minimizes
a criterion proportional to the empirical risk.

5 Simulations

Throughout this section, we consider exponential kernelRork(z, i) = Hle e~ l#i—vil with the
z’s sampled i.i.d. from a standard multivariate Gaussian. The funcfiems then selected randomly
asy .-, a;k(-,z), where bothv andz are i.i.d. standard Gaussian (i.¢ belongs to the RKHS).
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Figure 3: Comparison of various smoothing parameter sele¢tninikernel, GCV, 10-fold cross
validation) for various values of numbers of observations, averaged over 20 replications. Left: single
kernel, right: multiple kernels.

Jump. In Figure 2 (left), we consider data € R®, n = 1000, and study the size of the jump

in Figure 2 for kernel ridge regression. With half the optimal penalty (which is used in traditional
variable selection for linear regression), we do not get any jump, while with the minimal penalty we
always do. In Figure 2 (right), we plot the same curves for the multiple kernel learning problem with
two kernels on two different 4-dimensional variables, with similar results. In addition, we show two
ways of optimizing ovei € A = ]R%r , by discrete optimization with different kernel matrices—a
situation covered by Theorem 1—or with continuous optimization with respegirtdeq. (1), by
gradient descent—a situation not covered by Theorem 1.

Comparison of estimator selection methods. In Figure 3, we plot model selection results for 20
replications of data (&= 4, n = 500), comparing GCV [8], our minimal penalty algorithm, and
cross-validation methods. In the left part (single kernel), we compare to the oracle (which can be
computed because we can enumergteind use for cross-validation all possible valuea ofn the

right part (multiple kernel), we compare to the performance of Mallaiswhenc? is known (i.e.,
penalty in Eq. (5)), and since we cannot enumerate’sjlwe use the solution obtained by MKL

with CV [5]. We also compare to using our minimal penalty algorithm with the sum of kernels.

6 Conclusion

A new light on the slope heuristics. Theorem 1 generalizes some results first proved in [6] where
all A, are assumed to be projection matrices, a framework where assumptjpis(@utomatically
satisfied. To this extent, Bieggand Massart’s slope heuristics has been modified in a way that sheds
a new light on the “magical’ factor 2 between the minimal and the optimal penalty, as proved in
[6, 7]. Indeed, Theorem 1 shows that for general linear estimators,

pen;y(A) B 2tr(Ay)
pen, ;. (A) 2tr(Ay) — tr(A:\rAA) ’

which can take any value if, 2] in general; this ratio is only equal to 2 wher{A,) ~ tr(A] A,),
hence mostly wher , is a projection matrix.

(14)

Futuredirections. In the case of projection estimators, the slope heuristics still holds when the de-
sign is random and data are heteroscedastic [7]; we would like to know whether Eq. (14) is still valid
for heteroscedastic data with general linear estimators. In addition, the good empirical performances
of elbow heuristics based algorithms (i.e., based on the sharp variation of a certain quantity around
good hyperparameter values) suggest that Theorem 1 can be generalized to many learning frame-
works (and potentially to non-linear estimators), probably with small modifications in the algorithm,
but always relying on the concept of minimal penalty.

Another interesting open problem would be to extend the results of Section 4, @hete\) <
Kn®is assumed, to continuous sétsuch as the ones appearing naturally in kernel ridge regression
and multiple kernel learning. We conjecture that Theorem 1 is valid without modification for a
“small” continuousA , such as in kernel ridge regression where taking a grid ofisindog-scale is
almost equivalent to taking = R . On the contrary, in applications such as the Lasso with n
variables, the natural satcannot be well covered by a grid of cardinality with « small, and our
minimal penalty algorithm and Theorem 1 certainly have to be modified.
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