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1 Inference

Given a set of N observations in d dimensions, the data X = [x1, . . . ,xN ] and a number of factors
equal to the number of dimensions m = d, MCMC analysis is rather standard and can be imple-
mented through Gibbs sampling. Note that in the following, Xi: and X:i are rows and columns of
X respectively, i, j, n are indexes for dimensions, factors and observations respectively. In the fol-
lowing we describe the conditional distributions needed to sample from the factor model hierarchy.
To sample from the DAG model we only have to replace Z by X, Ψ by Z, A by B. Note also that
B is strictly lower triangular, thus we only need to sample for the elements in its lower part.

Noise variance We can sample each element of Ψ independently one at the time using
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Factors The conditional distribution of Z depends on π(zjn|·) and is written independently for
each element zjn by
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where ǫ\jn = X:n −AZ:n|zjn=0. In addition, we need to sample from the conditional of υjn using
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where IG(·|µ, λ) is the inverse Gaussian distribution with mean µ and scale parameter λ [1]. Fur-
thermore, the conditional of λ2 is given by

λ2|νij , ℓs, ℓr ∼ Gamma
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Mixing matrix In order to sample each element aij from the conditional distribution of A we use

aij |Xi:,A\ij ,Zj:, ψi, τij ∼ N (aij |cǫ\ijZ
⊤
j:, cψi) , c = (Zj:Z

⊤
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ij )−1 ,

where ǫ\ij = Xi: − Ai:Z|Aj:=0 and noting that we only need to sample those elements aij for
which rij = 1, i.e. just the slab distribution. Sampling from the conditional distributions for τij can
be done using
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The conditional distributions for the remaining parameters in the slab and spike prior can be written
as

rij |Xi:,A\ij ,Zj:, ψi, τij , ηij ∼ Bernoulli
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and

ηij |rij , αp, αm ∼ Beta(ηij |αpαm + rij , αp(1− αm) + 1− rij) ,

just if qij = 1, otherwise ηij = 0.

Finally, for the shared sparsity rate as

qij |αm, νj ∼ Bernoulli
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and
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