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Abstract

Givenn noisy samples withp dimensions, wheren ≪ p, we show that the multi-
step thresholding procedure can accurately estimate a sparse vectorβ ∈ R

p in a
linear model, under the restricted eigenvalue conditions (Bickel-Ritov-Tsybakov
09). Thus our conditions for model selection consistency are considerably weaker
than what has been achieved in previous works. More importantly, this method al-
lows very significant values ofs, which is the number of non-zero elements in the
true parameter. For example, it works for cases where the ordinary Lasso would
have failed. Finally, we show that ifX obeys a uniform uncertainty principle and
if the true parameter is sufficiently sparse, the Gauss-Dantzig selector (Cand̀es-
Tao 07) achieves theℓ2 loss within a logarithmic factor of the ideal mean square
error one would achieve with an oracle which would supply perfect information
about which coordinates are non-zero and which are above thenoise level, while
selecting a sufficiently sparse model.

1 Introduction

In a typical high dimensional setting, the number of variablesp is much larger than the number of
observationsn. This challenging setting appears in linear regression, signal recovery, covariance
selection in graphical modeling, and sparse approximations. In this paper, we consider recovering
β ∈ R

p in the following linear model:

Y = Xβ + ǫ, (1.1)

whereX is ann × p design matrix,Y is a vector of noisy observations andǫ is the noise term. We
assume throughout this paper thatp ≥ n (i.e. high-dimensional),ǫ ∼ N(0, σ2In), and the columns
of X are normalized to haveℓ2 norm

√
n. Given such a linear model, two key tasks are to identify

the relevant set of variables and to estimateβ with boundedℓ2 loss.

In particular, recovery of the sparsity patternS = supp(β) := {j : βj 6= 0}, also known as variable
(model) selection, refers to the task of correctly identifying the support set (or a subset of “signifi-
cant” coefficients inβ) based on the noisy observations. Even in the noiseless case, recoveringβ (or
its support) from(X,Y ) seems impossible whenn ≪ p. However, a line of recent research shows
that it becomes possible whenβ is also sparse: when it has a relatively small number of nonzero
coefficients and when the design matrixX is also sufficiently nice, which we elaborate below. One
important stream of research, which we also adopt here, requires computational feasibility for the
estimation methods, among which the Lasso and the Dantzig selector are both well studied and
shown with provable nice statistical properties; see for example [11, 9, 19, 21, 5, 18, 12, 2]. For a
chosen penalization parameterλn ≥ 0, regularized estimation with theℓ1-norm penalty, also known
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as the Lasso [16] or Basis Pursuit [6] refers to the followingconvex optimization problem

β̂ = arg min
β

1

2n
‖Y − Xβ‖2

2 + λn‖β‖1, (1.2)

where the scaling factor1/(2n) is chosen by convenience; The Dantzig selector [5] is definedas,

(DS) arg min
bβ∈Rp

∥∥∥β̂
∥∥∥

1
subject to

∥∥∥∥
1

n
XT (Y − Xβ̂)

∥∥∥∥
∞

≤ λn. (1.3)

Our goal in this work is to recoverS as accurately as possible: we wish to obtainβ̂ such that
| supp(β̂) \S| (and sometimes|S△ supp(β̂)| also) is small, with high probability, while at the same
time‖β̂−β‖2

2 is bounded within logarithmic factor of the ideal mean square error one would achieve
with an oracle which would supply perfect information aboutwhich coordinates are non-zero and
which are above the noise level (hence achieving theoracle inequalityas studied in [7, 5]); We deem
the bound onℓ2-loss as a natural criteria for evaluating a sparse model when it is not exactlyS. Let
s = |S|. GivenT ⊆ {1, . . . , p}, let us defineXT as then × |T | submatrix obtained by extracting
columns ofX indexed byT ; similarly, letβT ∈ R

|T |, be a subvector ofβ ∈ R
p confined toT .

Formally, we study aMulti-step Procedure: First we obtain an initial estimatorβinit using the Lasso
as in (1.2) or the Dantzig selector as in (1.3), withλn = Θ(σ

√
2 log p/n).

1. We then threshold the estimatorβinit with t0, with the general goal such that, we get a
setI1 with cardinality at most2s; in general, we also have|I1 ∪ S| ≤ 2s, whereI1 =
{j ∈ {1, . . . , p} : βj,init ≥ t0} for somet0 to be specified. SetI = I1.

2. We then feed(Y,XI) to either the Lasso estimator as in (1.2) or the ordinary least squares
(OLS) estimator to obtain̂β, where we set̂βI = (XT

I XI)
−1XT

I Y andβ̂Ic = 0.

3. We then possibly threshold̂βI1
with t1 = 4λn

√
|I1| (to be specified), to obtainI2, repeat

step2 with I = I2 to obtainβ̂I and set all other coordinates to zero; returnβ̂.

Our algorithm is constructive in that it does not rely on the unknown parameterss, βmin :=
minj∈S |βj | or those that characterize the incoherence conditions onX; instead, our choice ofλn

and thresholding parameters only depends onσ, n, andp. In our experiments, we apply only the
first two steps, which we refer to as atwo-step procedure; In particular, the Gauss-Dantzig selector
is a two-step procedure with the Dantzig selector asβinit [5]. In theory, we apply the third step only
whenβmin is sufficiently large and when we wish to get a “sparser” modelI.

More definitions. For a matrixA, let Λmin(A) andΛmax(A) denote the smallest and the largest
eigenvalues respectively. We refer to a vectorυ ∈ R

p with at mosts non-zero entries, wheres ≤ p,
as as-sparsevector. Throughout this paper, we assume thatn ≥ 2s and

Λmin(2s)
△
= min

υ 6=0;2s−sparse
‖Xυ‖2

2 /(n ‖υ‖2
2) > 0. (1.4)

It is clear thatn ≥ 2s is necessary, as any submatrix with more thann columns must be singular. In

general, we also assumeΛmax(s)
△
= maxυ 6=0;s−sparse ‖Xυ‖2

2 /(n ‖υ‖2
2) < ∞. As defined in [4],

thes-restricted isometry constantδs of X is the smallest quantity such that

(1 − δs) ‖υ‖2
2 ≤ ‖XT υ‖2

2 /n ≤ (1 + δs) ‖υ‖2
2 ,

for all T ⊆ {1, . . . , p} with |T | ≤ s and coefficients sequences(υj)j∈T . It is clear thatδs is
non-decreasing ins and1 − δs ≤ Λmin(s) ≤ Λmax(s) ≤ 1 + δs. Henceδ2s < 1 implies (1.4).
Occasionally, we useβT ∈ R

|T |, whereT ⊆ {1, . . . , p}, to also represent its0-extended version
β′ ∈ R

p such thatβ′
T c = 0 andβ′

T = βT ; for example in (1.5) below.

Oracle inequalities. The following idea has been explained in [5]; we hence describe it here only
briefly. Note that due to different normalization of columnsof X, our expressions are slightly
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different from those in [5]. Consider the least square estimator β̂I = (XT
I XI)

−1XT
I Y , where

|I| ≤ s and consider theideal least-squares estimatorβ⋄

β⋄ = arg min
I⊆{1,...,p}, |I|≤s

E
∥∥∥β − β̂I

∥∥∥
2

2
, (1.5)

which minimizes the expected mean squared error. It followsfrom [5] that forΛmax(s) < ∞,

E ‖β − β⋄‖2
2 ≥ min (1, 1/Λmax(s))

p∑

i=1

min(β2
i , σ2/n). (1.6)

Now we check if forΛmax(s) < ∞, it holds with high probability that
∥∥∥β̂ − β

∥∥∥
2

2
= O(log p)

p∑

i=1

min(β2
i , σ2/n), so that (1.7)

∥∥∥β̂ − β
∥∥∥

2

2
= O(log p)max(1,Λmax(s))E ‖β⋄ − β‖2

2 in view of (1.6). (1.8)

These bounds are meaningful since
p∑

i=1

min(β2
i , σ2/n) = min

I⊆{1,...,p}
‖β − βI‖2

2 +
|I|σ2

n

represents the ideal squared bias and variance. We elaborate on conditions on the design, under
which we accomplish these goals using the multi-step procedures in the rest of this section. We now
define a constantλσ,a,p for eacha > 0, by which we bound the maximum correlation between the
noise and covariates ofX, which we only apply toX with columnℓ2 norm bounded by

√
n; Let

Ta :=

{
ǫ :

∥∥∥∥
XT ǫ

n

∥∥∥∥
∞

≤ λσ,a,p

}
, whereλσ,a,p = σ

√
1 + a

√
2 log p

n
, hence (1.9)

P (Ta) ≥ 1 − (
√

π log ppa)−1, for a ≥ 0; see [5]. (1.10)

Variable selection. Our first result in Theorem 1.1 shows that consistent variable selection is pos-
sible under the Restricted Eigenvalue conditions, as formalized in [2]. Similar conditions have been
used by [10] and [17].

Assumption 1.1 (Restricted Eigenvalue assumptionRE(s, k0,X) [2]) For some integer1 ≤
s ≤ p and a positive numberk0, the following holds:

1

K(s, k0,X)

△
= min

J0⊆{1,...,p},

|J0|≤s

min
υ 6=0,‚‚‚υJc

0

‚‚‚
1

≤k0‖υJ0
‖

1

‖Xυ‖2√
n ‖υJ0

‖2

> 0. (1.11)

If RE(s, k0,X) is satisfied withk0 ≥ 1, then the square submatrices of size≤ 2s of XT X are nec-
essarily positive definite (see [2]) and hence (1.4) must hold. We do not impose any extra constraint
on s besides what is allowed in order for (1.11) to hold. Note thatwhens > n/2, it is impossible
for the restricted eigenvalue assumption to hold asXI for anyI such that|I| = 2s becomes singular
in this case. Hence our algorithm is especially relevant if one would like to estimate a parameterβ
such thats is very close ton; See Section 4 for such examples. Letβmin := minj∈S |βj |.

Theorem 1.1 (Variable selection under Assumption 1.1)Suppose thatRE(s, k0,X) condition
holds, wherek0 = 1 for the DS and= 3 for the Lasso. Supposeλn ≥ Bλσ,a,p for λσ,a,p as in(1.9),
whereB ≥ 1 for the DS and≥ 2 for the Lasso. LetB2 = 1

BΛmin(2s) . Lets ≥ K4(s, k0,X) and

βmin ≥ 4
√

2 max(K(s, k0,X), 1)λn

√
s + max

(
4K2(s, k0,X),

√
2B2

)
λn

√
s.

Then with probability at leastP (Ta), the multi-step procedure returnŝβ such that

S ⊆ I := supp(β̂), where |I \ S| <
B2

2

16
and

‖β̂ − β‖2
2 ≤

λ2
σ,a,p|I|

Λ2
min(|I|) ≤ 2 log p(1 + a)sσ2(1 + B2

2/16)

nΛ2
min(2s)

,

which satisfies(1.7)and (1.8)given thatβmin ≥ σ/
√

n and
∑p

i=1 min(β2
i , σ2/n) = sσ2/n.
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Our analysis builds upon the rate of convergence bounds forβinit derived in [2]. The first implica-
tion of this work and also one of the motivations for analyzing the thresholding methods is: under
Assumption 1.1, one can obtain consistent variable selection for very significant values ofs, if only
a few extra variables are allowed to be included in the estimator β̂. In our simulations, we recover
the exact support setS with very high probability using a two-step procedure. Notethat we did not
optimize the lower bound ons as we focus on cases when the support ofS is large.

Thresholding that achieves the oracle inequalities.The natural question upon obtaining Theo-
rem 1.1 is: is there a good thresholding rule that enables us to obtain a sufficiently sparse estimator
β̂ when some components ofβS (and henceβmin) are well belowσ/

√
n, which also satisfies the

oracle inequality as in (1.7)? Before we answer this question, we defines0 as the smallest integer
such that

p∑

i=1

min(β2
i , λ2σ2) ≤ s0λ

2σ2, where λ =
√

2 log p/n, (1.12)

and the(s, s′)-restricted orthogonality constant [4]θs,s′ as the smallest quantity such that

| 〈XT c,XT ′c′ 〉 /n| ≤ θs,s′ ‖c‖2 ‖c′‖2 (1.13)

holds for all disjoint setsT, T ′ ⊆ {1, . . . , p} of cardinality|T | ≤ s and|T ′| < s′, wheres + s′ ≤
p. Note thatθ is non-decreasing ins, s′ and small values ofθs,s′ indicates that disjoint subsets
covariates inXT andXT ′ span nearly orthogonal subspaces.

Theorem 1.2 says that under a uniform uncertainty principle(UUP), thresholding of an initial
Dantzig selectorβinit , at the level ofΘ(σ

√
2 log p/n) indeed identifies a sparse modelI of car-

dinality at most2s0 such that theℓ22-loss for its corresponding least-squares estimator is indeed
bounded withinO(log p) of the ideal mean square error as in (1.5), whenβ is as sparse as required
by the Dantzig selector to achieve such an oracle inequality[5]. This is accomplished without any
knowledge of the significant coordinates ofβ and not being able to observe parameter values.

Assumption 1.2 (A Uniform Uncertainly Principle) [5] For some integer1 ≤ s < n/3, assume
δ2s + θs,2s < 1, which implies thatλmin(2s) > θs,2s given that1 − δ2s ≤ Λmin(2s).

Theorem 1.2 Chooseτ, a > 0 and setλn = λp,τσ, whereλp,τ := (
√

1 + a + τ−1)
√

2 log p/n,
in (1.3). Supposeβ is s-sparse withδ2s + θs,2s < 1 − τ . Let thresholdt0 be chosen from the
range(C1λp,τσ,C4λp,τσ] for some constantsC1, C4 to be defined. Then with probability at least
1−(

√
π log ppa)−1, the Gauss-Dantzig selector̂β selects a modelI := supp(β̂) such that|I| ≤ 2s0,

|I \ S| ≤ s0 ≤ s, and ‖β̂ − β‖2
2 ≤ 2C2

3 log p

(
σ2/n +

p∑

i=1

min(β2
i , σ2/n)

)
, (1.14)

whereC3 depends ona, τ , δ2s, θs,2s andC4; see(3.3).

Our analysis builds upon [5]. Note that allowingt0 to be chosen from a range (as wide as one
would like, with the cost of increasing the constantC3 in (1.14)), saves us from having to estimate
C1, which indeed depends onδ2s andθs,2s. Assumption 1.2 implies that Assumption 1.1 holds for
k0 = 1 with K(s, k0,X) =

√
Λmin(2s)/(Λmin(2s) − θs,2s) ≤

√
Λmin(2s)/(1 − δ2s − θs,2s)

(see [2]); It is an open question if we can derive the same result under Assumption 1.1.

Previous work. Finally, we briefly review related work in multi-step procedures and the role of
sparsity for high-dimensional statistical inference. Before this work, hard thresholding idea has
been shown in [5] (via Gauss-Dantzig selector) as a method tocorrect the bias of the initial Dantzig
selector. The empirical success of the Gauss-Dantzig selector in terms of improving the statistical
accuracy is strongly evident in their experimental results. Our theoretical analysis on the oracle
inequalities, which hold for the Gauss-Dantzig selector under a uniform uncertainty principle, is
exactly inspired by their theoretical analysis of the initial Dantzig selector under the same conditions.
For the Lasso, [12] has also shown in theoretical analysis that thresholding is effective in obtaining

4



a two-step estimator̂β that is consistent in its support withβ; however, the choice of threshold level
depends on the unknown valueβmin (which needs to be sufficiently large) ands, and their theory
does not directly yield (or imply) an algorithm for finding such parameters. Further, as pointed out
by [2], a weakening of their condition is still sufficient forAssumption 1.1 to hold.

The sparse recovery problem under arbitrary noise is also well studied, see [3, 15, 14]. Although
as argued in [3, 14], the best accuracy under arbitrary noisehas essentially been achieved in both
work, their bounds are worse than that in [5] (hence the present paper) under the stochastic noise as
discussed in the present paper; see more discussions in [5].Moreover, greedy algorithms in [15, 14]
requires to be part of their input, while the iterative algorithms in the present paper do not have such
requirement, and hence adapt to the unknown level of sparsity s well. A more general framework
on multi-step variable selection was studied by [20]. They control the probability of false positives
at the price of false negatives, similar to what we aim for in the present paper. Unfortunately, their
analysis is constrained to the case whens is a constant. Finally, under a restricted eigenvalue con-
dition slightly stronger than Assumption 1.1, [22] requires s = O(

√
n/ log p) in order to achieve

variable selection consistency using the adaptive Lasso [23] as the second step procedure.

Organization of the paper. We prove Theorem 1.1 essentially in Section 2. A thresholding frame-
work for the general setting is described in Section 3, whichalso sketches the proof of Theorem 1.2.
Section 4 briefly discusses the relationship between linearsparsity and random design matrices.
Section 5 includes simulation results showing that our two-step procedure is consistent with our
theoretical analysis on variable selection.

2 Thresholding procedure whenβmin is large

We use a penalization parameterλn = Bλσ,a,p and assumeβmin > Cλn

√
s for some constants

B,C throughout this section; we first specify the thresholding parameters in this case. We then show
in Theorem 2.1 that our algorithm works under any conditionsso long as the rate of convergence
of the initial estimator obeys the bounds in (2.2). Theorem 1.1 is a corollary of Theorem 2.1 under
Assumption 1.1, given the rate of convergence bounds forβinit following derivations in [2].

The Iterative Procedure. We obtain an initial estimatorβinit using the Lasso or the Dantzig selector.
Let Ŝ0 = {j : βj,init > 4λn}, andβ̂(0) := βinit ; Iterate through the following steps twice, fori =

0, 1: (a) Setti = 4λn

√
|Ŝi|; (b) Thresholdβ̂(i) with ti to obtainI := Ŝi+1, where

Ŝi+1 =

{
j ∈ Ŝi : β̂

(i)
j ≥ 4λn

√
|Ŝi|
}

and computeβ̂(i+1)
I = (XT

I XI)
−1XT

I Y. (2.1)

Return the final set of variables in̂S2 and output̂β such that̂βbS2

= β̂
(2)
bS2

andβ̂j = 0,∀j ∈ Ŝc
2.

Theorem 2.1 Let λn ≥ Bλσ,a,p, whereB ≥ 1 is a constant suitably chosen such that the initial
estimatorβinit satisfies onTa, for υinit = βinit − β and some constantsB0, B1,

‖υinit,S‖2 ≤ B0λn

√
s and ‖υinit,Sc‖1 ≤ B1λns; (2.2)

Supposeβmin ≥
(
max

(√
B1, 2

)
2
√

2 + max
(
B0,

√
2B2

))
λn

√
s, (2.3)

whereB2 = 1/(BΛmin(2s)). Then fors ≥ B2
1/16, it holds onTa that |Ŝi| ≤ 2s,∀i = 1, 2, and

‖β̂(i) − β‖2 ≤ λσ,a,p

√
|Ŝi|/Λmin(|Ŝi|) ≤ λnB2

√
2s,∀i = 1, 2, (2.4)

whereβ̂(i) are the OLS estimators based onI = Ŝi; Finally, the Iterative Procedure includes the
correct set of variables in̂S2 such thatS ⊆ Ŝ2 ⊆ Ŝ1 and

∣∣∣Ŝ2 \ S
∣∣∣ :=

∣∣∣supp(β̂) \ S
∣∣∣ ≤ 1

16B2Λ2
min(|Ŝ1|)

≤ B2
2

16
. (2.5)
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Remark 2.2 Without the knowledge ofσ, one could usêσ ≥ σ in λn; this will put a stronger
requirement onβmin, but all conclusions of Theorem 2.1 hold. We also note that inorder to obtain
Ŝ1 such that|Ŝ1| ≤ 2s andŜ1 ⊇ S, we only need to thresholdβinit at t0 = B1λn (see Section 3 and
Lemma 3.2 for an example); instead of having to estimateB1, we uset0 = Θ(λn

√
s) to threshold.

3 A thresholding framework for the general setting

In this section, we wish to derive a meaningful criteria for consistency in variable selection, when
βmin is well below the noise level. Suppose that we are given an initial estimatorβinit that achieves
the rate of convergence bound as in (1.14), which adapts nearly ideally to the uncertainty in the
support setS and the “significant” set. We show that although we cannot guarantee the presence
of variables indexed by{j : |βj | < σ

√
2 log p/n} to be included in the final setI (cf. (3.7)) due

to their lack of strength, we wish to include the significant variables fromS in I such that the OLS
estimator based onI achieves this almost ideal rate of convergence asβinit does, even though some
variables fromS are missing inI. Here we pay a price for the missing variables in order to obtain a
sparse modelI. Toward this goal, we analyze the following algorithm underAssumption 1.2.

The General Two-step Procedure: Assumeδ2s + θs,2s < 1 − τ , whereτ > 0;

1. First we obtain an initial estimatorβmin using the Dantzig selector withλp,τ := (
√

1 + a+

τ−1)
√

2 log p/n, whereτ, a ≥ 0; we then thresholdβinit with t0, chosen from the range
(C1λp,τσ,C4λp,τσ], to obtain a setI of cardinality at most2s, (we prove a stronger result
in Lemma 3.2), where

I := {j ∈ {1, . . . , p} : βj,init > t0} , for C1 as defined in (3.3); (3.1)

2. In the second step, given a setI of cardinality at most2s, we run the OLS regression to
obtain obtained via (3.1),̂βI = (XT

I XI)
−1XT

I Y and set̂βj = 0,∀j 6∈ I.

Theorem 2 in [5] has shown that the Dantzig selector achievesnearly the ideal level of MSE.

Proposition 3.1 [5] LetY = Xβ + ǫ, for ǫ being i.i.d.N(0, σ2) and‖Xj‖2
2 = n. Chooseτ, a > 0

and setλn = λp,τσ := (
√

1 + a + τ−1)σ
√

2 log p/n in (1.3). Then ifβ is s-sparse withδ2s +

θs,2s < 1− τ , the Dantzig selector obeys with probability at least1− (
√

π log ppa)−1,
∥∥∥β̂ − β

∥∥∥
2

2
≤

2C2
2 (
√

1 + a + τ−1)2 log p
(
σ2/n +

∑p
i=1 min

(
β2

i , σ2/n
))

.

From this point on we letδ := δ2s andθ := θs,2s; Analysis in [5] (Theorem 2) and the current paper
yields the following constants, whereC3 has not been optimized,

C2 = 2C ′
0 +

1 + δ

1 − δ − θ
whereC ′

0 =
C0

1 − δ − θ
+

θ(1 + δ)

(1 − δ − θ)2
, (3.2)

whereC0 = 2
√

2
(
1 + 1−δ2

1−δ−θ

)
+ (1 + 1/

√
2) (1+δ)2

1−δ−θ
; We now define

C1 = C ′
0 +

1 + δ

1 − δ − θ
and C2

3 = 3(
√

1 + a + τ−1)2((C ′
0 + C4)

2 + 1) +
4(1 + a)

Λ2
min(2s0)

. (3.3)

We first set up the notation following that in [5]. We order theβj ’s in decreasing order of magnitude

|β1| ≥ |β2|... ≥ |βp|. (3.4)

Recall thats0 is the smallest integer such that
∑p

i=1 min(β2
i , λ2σ2) ≤ s0λ

2σ2, where λ =√
2 log p/n. Thus by definition ofs0, as essentially shown in [5], that0 ≤ s0 ≤ s and

s0λ
2σ2 ≤ λ2σ2 +

p∑

i=1

min(β2
i , λ2σ2) ≤ 2 log p

(
σ2

n
+

p∑

i=1

min

(
β2

i ,
σ2

n

))
(3.5)

and s0λ
2σ2 ≥

s0+1∑

j=1

min(β2
j , λ2σ2) ≥ (s0 + 1)min(β2

s0+1, λ
2σ2) for s < p, (3.6)
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which implies thatmin(β2
s0+1, λ

2σ2) < λ2σ2 and hence by (3.4),

|βj | < λσ for all j > s0. (3.7)

We now show in Lemma 3.2 that thresholding at the level ofCλσ at step 1 selects a setI of at most
2s0 variables, among which at mosts0 are fromSc.

Lemma 3.2 Chooseτ > 0 such thatδ2s + θs,2s < 1 − τ . Letβinit be theℓ1-minimizer subject to
the constraints, forλ :=

√
2 log p/n andλp,τ := (

√
1 + a + t−1)

√
2 log p/n,

∥∥∥∥
1

n
XT (Y − Xβinit)

∥∥∥∥
∞

≤ λp,τσ. (3.8)

Given some constantC4 ≥ C1, for C1 as in(3.3), choose a thresholding parametert0 so that

C4λp,τσ ≥ t0 > C1λp,τσ; Set I = {j : |βj,init | > t0}.
Then with probability at leastP (Ta), as detailed in Proposition 3.1, we have forC ′

0 as in(3.2),

|I| ≤ 2s0, and |I ∪ S| ≤ s + s0, and (3.9)

‖βD‖2 ≤
√

(C ′
0 + C4)2 + 1λp,τσ

√
s0, whereD := {1, . . . , p} \ I. (3.10)

Next we show that even if we miss some columns ofX in S, we can still hope to get the convergence
rate as required in Theorem 1.2 so long as‖βD‖2 is bounded andI is sufficiently sparse, for example,
as bounded in Lemma 3.2. We first show in Lemma 3.3 a general result on rate of convergence of
the OLS estimator based on a chosen modelI, where a subset of relevant variables are missing.

Lemma 3.3 (OLS estimator with missing variables) LetD := {1, . . . , p} \ I andSR = D ∩ S
such thatI ∩ SR = ∅. Suppose|I ∪ SR| ≤ 2s. Then we have onTa, for the least squares estimator
based onI, β̂I = (XT

I XI)
−1XT

I Y , it holds that
∥∥∥β̂I − β

∥∥∥
2

2
≤

((
θ|I|,|SR| ‖βD‖2 + λσ,a,p

√
|I|
)

/Λmin(|I|)
)2

+ ‖βD‖2
2 .

Now Theorem 1.2 is an immediate corollary of Lemma 3.2 and 3.3in view of (3.5), given that
|SR| < s, and|I| ≤ 2s0 and|I ∪ SR| ≤ |I ∪ S| ≤ s + s0 ≤ 2s as in Lemma 3.2 (3.9). Hence it is
clear by (3.10) that we cannot cut too many “significant” variables; in particular, for those that are
largerλσ

√
s0, we can cut at most a constant number of them.

4 Linear sparsity and random matrices

A special case of design matrices that satisfy the Restricted Eigenvalue assumptions are the random
design matrices. This is shown in a large body of work, for example [3, 4, 5, 1, 13], which shows
that the uniform uncertainty principle (UUP) holds for “generic” or random design matrices for very
significant values ofs. For example, it is well known that for a random matrix with i.i.d. Gaussian
variables (that is, Gaussian Ensemble, subject to normalizations of columns), and the Bernoulli and
Subgaussian Ensembles [1, 13], the UUP holds fors = O(n/ log(p/n)); hence the thresholding
procedure can recover a sparse model using nearly a constantnumber of measurements per non-
zero component despite the stochastic noise, whenn is a nonnegligible fraction ofp. See [5] for
other examples of random designs. In our simulations as shown in Section 5, exact recovery rate of
the sparsity pattern is very high for a few types of random matrices using a two-step procedure, once
the number of samples passes a certain threshold. For example, for an i.i.d. Gaussian Ensemble, the
threshold for exact recovery isn = Θ(s log(p/n)), whereΘ hides a very small constant, whenβmin

is sufficiently large; this shows a strong contrast with the ordinary Lasso, for which the probability of
success in terms of exact recovery of the sparsity pattern tends to zero whenn < 2s log(p− s) [19].
In an ongoing work, the author is exploring thresholding algorithms for a broader class of random
designs that satisfy the Restricted Eigenvalue assumptions.
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Figure 1: (a) Compare the probability of success unders = 8 and64 for p = 256. The two-step
procedure requires much fewer samples than the ordinary Lasso. (b) (c) show the probability of
success of the two-step procedure under different levels ofsparsity whenn increases forp = 512
and1024 respectively; (d) The number of samplesn increases almost linearly withs for p = 1024.

5 Illustrative experiments

In our implementation, we choose to use the Lasso as the initial estimator. We show in Figure1
that the two-step procedure indeed recovers a sparse model using a small number of samples per
non-zero component inβ whenX is a Gaussian Ensemble. Similar behavior was also observed
for the Bernoulli Ensemble in our simulations. We run under three cases ofp = 256, 512, 1024;
for eachp, we increase the sparsitys by roughly equal steps froms = 0.2p/log 0.2p to p/4. For
each tuple(p, s, n), we first generate a random Gaussian Ensemble of sizen × p as X, where
Xij ∼ N(0, 1), which is then normalized to have columnℓ2-norm

√
n. For a given(p, s, n) and

X, we repeat the following experiment 100 times:1) Generate a vectorβ of lengthp: within β
randomly chooses non-zero positions; for each position, we assign a value of0.9 or−0.9 randomly.
2) Generate a vectorǫ of lengthp according toN(0, Ip), whereIp is the identity matrix.3) Compute
Y = Xβ + ǫ. Y andX are then fed to the two-step procedure to obtainβ̂. 4) We then compare
β̂ with β; if all components match in signs, we count this experiment as a success. At the end of
the 100 experiments, we compute the percentage of successful runs as the probability of success.
We compare with the ordinary Lasso, for which we search over the full path of LARS [8] and
always choose thêβ that best matchesβ in terms of support. Inside the two-step procedure, we

always fixλn ≈ 0.69
√

2 log p/n and thresholdβinit at t0 = ft

√
log p

n

√
ŝ, where ŝ = |Ŝ0| for

Ŝ0 = {j : βj,init ≥ 0.5λn}, andft is a constant chosen from the range of[1/6, 1/3].
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