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1 Appendix

1.1 TD-transformation

In this Section we detail the TD-transformation used in B&cB, to transform the TD regression
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into an/¢; penalized regression
Bt = argmin | [V — X1 |2 + 2, |57, - 2)
BER™P

We start by demonstrating the transformation for the follmpmodel with one variablée., X € R,
Y = XiBi + e, i=1,...,n. (3)
Subtracting two consecutive equations, we have for2, ... n,
Yi—=Yi1=Xi8i — Xi1Bi-1 + 6 — €1
= Xi(Bi — Bic1) + (Xi = Xi—1)Bi1 + & — €1

= X;i(Bi — Bi—1) + Z(Xj - Xj1)Bj—1 + € — €1,

j=2

which after introducing, = Y1,V = Y, =Y, 1,80 = 81,8 = 8 — Bi_1, €l = e1,e =
€ — €i—1,1 = 1,...,Tland

X1 0 0 ... 0
X — Xy Xo 0 ... 0
Xt — X5-X, X3 — X5 X3 ... 0
1 o . .
Xn _anl Xn _anl Xn _anl Xn
can be written in a matrix form as
v =Xigt 4t (4)
Similarly, for a general multivariate mod&} = X,;6; +¢;, i = 1,...,n, X; € RP we perform

the same transformation with the difference thdt= (X1, ... ,X1), X" € R"*"? is obtained by
concatenating matrices corresponding to TD features.



1.2 Randomized Lasso

In this paper, we use the randomized Lasso to identify thétioar of the interval[0, 1] on which
the regression coefficient are constant. The partitionddel obtained by finding a minimum in
Eq. (2), however, note that the randomized Lasso does noafsmution that minimizes Eq. (2).
The randomized Lasso finds a minimum of a related optimirgiroblem
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where{I};})_, are independentand identically distributed uniform randariables on an interval
[a, 1] andw is a weakness parameter. It can be seen from Eq. (5) thatidemsized Lasso assigns
each feature a different penalty, which can also be thoubhs oescaling different features. It can
be shown [8] that this rescaling weakens the necessary timmdor the ordinary Lasso to select
the relevant features. Note that the randomized Lasso isdora algorithm and in order to see
benefits over the ordinary Lasso, it has to be run multiplesm\e use it together with bootstrap,
so, instead of running the random Lasso multiple times onnaesdataset, it is run on multiple
bootstrap replicas of the dataset. For each run of the algorian estimate of the partitioh is
obtained. Finally, one obtains the estimate of the partitig keeping the jump points that appear
in more thanr fraction of the partitions, where is a tuning parameter that controls the number of
falsely identified jumps. Theorem 1 in [8] provides a way toabe the parameter The weakness
parametet also plays role in falsely choosing jump points. The lowduga ofa help to reduce the
number of false positives, however, this compromises nigakstability. Notice that small values
of a can affect the condition number of the design matrix. [8jompthat choosing: € (0.2,0.8)
gives good results. From our numerical experience, we hatieed that the choice of parameter
« does not have a huge impact on the solution. We choose totrexmerimental results with the
valuea = 0.6.

1.3 Optimization Procedure

In this section, we outline a coordinate descent algoritbriinding the minimum of the following

objective
n p 2 P
Z <Yi - Z Xi,kﬁk,i) + 2 Z Bkl - (6)

i=1 k=1 k=1
The algorithm we are about to describe is motivated by therdinate descent algorithm for
Lasso [2]. Let us introducgd’ € RP*™ such thatsy, ; = Z;Zl By ;- Using 8’ Eq. (6) becomes
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Keeping all the coefficients but, ,, fixed, one can find a minimizer of Eq. (7) in a closed form
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Now, the minimization algorithm iteratively minimizes déeients 3, ,, v = 1,...,p, v =
1,...,n, while keeping the rest fixed, until convergence. The atbariis guaranteed to converge a

global optimum due to the result of [6].

1.4 Applications and Generalizations

In this section we provide some insight on how to apply TD8stato different models. We consider
time-varying Gaussian graphical models [10], generalizag/ing-coefficient models and time-
varying Markov Random Fields.



Consider a time-varying Gaussian graphical model [10], neefiwith the covariance function
3(t) = [ojk(t)])ke1...p» Whose components are functions of time. Thereraiedependent sam-
ples,X1,...,X,, X; € RP, each drawn from a different underlying multivariate Gaasdlis-
tribution with covariance(t;), ¢; = i/n, and the problem is to estima®(r), for a given time
pointT € [0,1]. In [10], it is assumed that the coefficient functiang (¢) are smooth and the rate

of convergence in Frobenius norm is established for a n@mpetric kernel estimata¥ of (7).
Often, estimating the structure of the graphical model isnaportant problem to domain experts,
who can interpret it more easily than the coefficient valu&g address the problem of the struc-
ture estimation of a time-varying Gaussian graphical madedier the assumption that components
of 3(t) are piecewise constant functions. The structure of thehgcabmodel is encoded with a
non-zero pattern of the concentration maxt) := 3(¢)~! [4]. Let Q(¢t) = [wjr(t)]j ke, p- It

is possible to formulate the structure estimation problesna @equence of regression problems by
regressing each variabl; ; to the rest of variablex(; \ ; [7]:

Xi,j :Zﬁjk(ti)Xi,k_Fejv 7€ 1,...,TL, (10)
ki
whereg; (t;) = —ij—gfg Estimating the non-zero pattern @f(r) is equivalent to estimating the
JI\"
non-zero pattern of vectat; (7) forall j = 1, ..., p. We fit the parameters of the model (10) using

the TDB-lasso procedure.

Now, consider a generalized varying-coefficient model
whereg(-) is a given link function andn(X;, ¢;) = E[Y|X = X,,¢ = t,] is the conditional mean.

Again, we assume that the coefficient functions are pie@wessistant and formulate the estimate
as a solution to the following penalized log-likelihood plem

n n P
B =min {= 3005, X ta) + 27 3 1B + 25 D 1Bkl } (12)
i=1 i=1 k=1

wherel(Y;, X;,t;) = £(Y;, m(X;, t;) is the conditional log-likelihood function. Instead of elitly
minimizing (12) we can again use the two step procedure, iithvthe first step aims to identify
block partitions on which the coefficient functions are dang and the second step estimates the
coefficient functions using thg penalized log-likelihood maximization.

One immediate application of the generalized varying-ficieht model is in estimation of time-
varying discrete networks [3]. The problem can be descriagdhe graph structure estimation
problem of a Markov Random Field, whose structure is corisiarunknown blocks and changes
abruptly between blocks. To estimate the varying structome decomposes the estimation across
different nodes of the graph and separately estimates bergbods of these nodes. One neighbor-
hood estimation problem can be modeled using the genedalaging-coefficient model (11) and

the estimated neighborhood corresponds to the non-zefficiesets 3.

1.5 Additional Real Data Experiments

The TDB-Lasso procedure is run on EEG measurements to infethre brain interactions form over

the time of the experiment. We regress the measurement oftoenr@nel onto the rest of channels
to estimate the connections with other channels. Repetitingprocedure, we estimate a network
of interactions between different positions in the braine Yéport the estimated interactions at
three time points after the visual cues have been presefkigdl gives visualization of the brain

interactions when the subjects were presented visual comsthe class 1 (right) and Fig. 2 for the
class 2 (foot).

1.6 Proof of Lemma 1

Lemmal Let¥; andBj, j=1,...,Bbe vectors and segments obtained from a minimizer of
n n p
. 2
min Y (Vi = XiB(8)" + 22 3 N8|+ 222 3 15k ley - (13)
i=1 =1 k=1
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Then eachy; can be found as a solution to the subgradient equation:
Xy X A5 — X Vi, + MBs 1377 + 208" =0, (14)
where @
857 € 0|ll, = sign(v;), (15)

by conventionign(0) € [—1, 1], and§§TV) € R? such that

(16)

N
Sk T 1 if4or— 41k <0

™) _ [ =1 ifYr—%r>0
» Bk

L(TV) _ { L g, =516 >0
S = £ oA ~

—1 Y5, =Yp14 <0
and, forl < j < B,

V) 2 i Y1k — Vi > 0,956 — Yj—1k <0
S =9 —2 W9k — Yk <0 A5k —Fj-1k >0 (17)
0 if (%0 — Yj—1.6) Vi1 — Fjk) = 1.

Proof We briefly sketch the proof idea, which is based on the arabf¢he subgradient of Eq. (14).
The subgradiend ||z||, of z € RP? is the set{s € R | s = sign(z)} wheresign(0) € [-1,1]
by definition. LetL € R®~1*P pe a matrix with entried} , = —1 and Ty 41 = 1 for
kE =1,...,p — 1 and 0 otherwise. Now) || X||;, = O||[LX]||,. Using this we compute the
subgradient of (13) with respect tg and Lemma follows by grouping variables within estimated
segments. |

1.7 Proof of Theorem 1
Theorem 1 Let Al be satisfied. Let the weaknedse given as? = vy, (CJ2, X1)/(CJ?), for
anyv € (7/k,1/+/2). If the minimum size of the jump is bounded away from zero as
min [8F] > 0.3(C7)%*Ayin, (18)
keJt

whereApin = 201 (VCJ 4 1)1/ €% andot” > Var(Y;), fornp > 10 andJ > 7, there exists

somes = §; € (0,1) such that for allr > 1 — 4, the collection of the estimated jump poitts
satisfies,

P(J"=J") >1-5/np. (19)
Proof

We briefly sketch the main proof ideas here. The proof stsatedased on the approach of [8],
which is based on the approach of [9].

The first difficulty we have to take care of is that after the frBAasformation is done, the samples
are noti.i.d.any more. After the transformation, the elements of thearadtare not independent.

Foreach < i # j < nitholdsEe! = 0, Vare! = 202 and

2 - . .
P ) —or ifli—jl=1
Cov(e;, ;) = { 0  otherwise (20)

Leto™ =202andfori = 1,...,nlete: ~ N(0,07 ) be independent, such that

E(ETGT) < E(e*e*) 1<i#j<n
2 2 . (21)
E(e;)* = E(€}) 1<i<n.

Using Slepian’s inequality (seeg.[5]), we can substitute variable$ in place ofej.

The rest of the proof follows the same strategy as [8], witlakmodifications due to the use of
Slepian’s inequality and the fact that we use bootstrapatsiof subsampling. We leave out the
details to a full version of the paper.



1.8 Proof of Theorem 2

Theorem 2 Let A2 be satisfied. Also, assume that the conditions of €hedrare satisfied. Let
K = maxi<;<p||v;]|, be the upper bound on the number of features in segments afidde
an upper bound on elements ¥f Letp = min;<;<p |B;| denote the number of samples in the
smallest segment. Then for a sequeheed,, — 0,

In 2E2 In &2
A\ > 4Lo O v8L——"— and min_ min |y > 2\,
p p 1<j<BkeSp;

we have A
lim P(B = B) =1, (22)
M max P(I14; = ll, =0) =1, (23)
lim min P(Sz, = Sp,) = L. (24)

n—00 1<j<B

Proof Under the assumptions of Theorem 1, for ay> 0 and sufficiently large:, 7™ = J*
with probability at leastl — ¢/, i.e.,, the jump points can be estimated consistently. This iespli
equation (22).

Now, on each of the estimated segments, coefficient val@esstimated using the ordinary Lasso.
Under the assumption Al, we can apply the known results of ##so procedure on each of the
estimated segments. Theorem follows from [1] after somesidjents of constants. |

References
[1] Florentina Bunea. Honest variable selection in linead bbgistic regression models via and
{1 + £5 penalization Electronic Journal of Statistic®:1153, 2008.

[2] J. Friedman, T. Hastie, H. Hofling, and R. Tibshirani.l®eise coordinate optimizatiodnnals
of Applied Statistics1:302, 2007.

[3] Mladen Kolar, Le Song, and Eric Xing. Estimating timeryimg networks. In
arXiv:0812.50872008.

[4] S. L. Lauritzen. Graphical Models (Oxford Statistical Science Serie€)xford University
Press, USA, July 1996.

[5] M. Ledoux and M. TalagrandProbability in Banach Space$pringer, 1991.

[6] Z. Q. Luo and P. Tseng. On the convergence of the cooreidascent method for convex
differentiable minimizationJ. Optim. Theory Appl.72(1):7-35, 1992.

[7]1 N. Meinshausen and P. Buhimann. High-dimensional lygsagnd variable selection with the
lasso.Annals of Statistigs34:1436, 2006.

[8] Nicolai Meinshausen and Peter Buhlmann. Stabilitgstbn. Preprint, 2008.

[9] Cun-Hui Zhang and Jian Huang. The sparsity and bias ofléseo selection in high-
dimensional linear regressioAnnals of Statistics36(4):1567-1594, 2008.

[10] Shuheng Zhou, John Lafferty, and Larry Wasserman. Tuaging undirected graphs. In
Rocco A. Servedio and Tong Zhang, editd2§)LT, pages 455-466. Omnipress, 2008.



ct aa

Subje!

ct al

Subje

ct av

Subje

ct aw

Subje!

ctay

Subje

Figure 1: Brain interactions of different subjects estietbat different times after the visual cues for
Class 1 (right hand) had been presented.
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Figure 2: Brain interactions of different subjects estietbat different times after the visual cues for
Class 2 (right foot) had been presented.



