
Sparsistent Learning of Varying-coefficient Models
with Structural Changes

Mladen Kolar, Le Song and Eric P. Xing
School of Computer Science, Carnegie Mellon University

{mkolar,lesong,epxing}@cs.cmu.edu

1 Appendix

1.1 TD-transformation

In this Section we detail the TD-transformation used in Section 3, to transform the TD regression
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We start by demonstrating the transformation for the following model with one variable,i.e., X ∈ R,

Yi = Xiβi + ǫi, i = 1, . . . , n. (3)

Subtracting two consecutive equations, we have fori = 2, . . . , n,

Yi − Yi−1 = Xiβi − Xi−1βi−1 + ǫi − ǫi−1

= Xi(βi − βi−1) + (Xi − Xi−1)βi−1 + ǫi − ǫi−1

= Xi(βi − βi−1) +
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(Xj − Xj−1)βj−1 + ǫi − ǫi−1,
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can be written in a matrix form as

Y † = X
†
1β

† + ǫ†. (4)

Similarly, for a general multivariate modelYi = Xiβi + ǫi, i = 1, . . . , n, Xi ∈ R
p we perform

the same transformation with the difference thatX
† = (X†

1, . . . ,X
†
p),X

† ∈ R
n×np is obtained by

concatenating matrices corresponding to TD features.
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1.2 Randomized Lasso

In this paper, we use the randomized Lasso to identify the partition of the interval[0, 1] on which
the regression coefficient are constant. The partition could be obtained by finding a minimum in
Eq. (2), however, note that the randomized Lasso does not finda solution that minimizes Eq. (2).
The randomized Lasso finds a minimum of a related optimization problem

min
β∈Rp

n
∑

i=1

(Y †
i − X

†
iβ)2 + 2λ

p
∑

k=1

|βk|
Wk

(5)

where{Wk}p
k=1 are independent and identically distributed uniform random variables on an interval

[α, 1] andα is a weakness parameter. It can be seen from Eq. (5) that the randomized Lasso assigns
each feature a different penalty, which can also be thought of as rescaling different features. It can
be shown [8] that this rescaling weakens the necessary condition for the ordinary Lasso to select
the relevant features. Note that the randomized Lasso is a random algorithm and in order to see
benefits over the ordinary Lasso, it has to be run multiple times. We use it together with bootstrap,
so, instead of running the random Lasso multiple times on a same dataset, it is run on multiple
bootstrap replicas of the dataset. For each run of the algorithm, an estimate of the partition̂T is
obtained. Finally, one obtains the estimate of the partition by keeping the jump points that appear
in more thanτ fraction of the partitions, whereτ is a tuning parameter that controls the number of
falsely identified jumps. Theorem 1 in [8] provides a way to choose the parameterτ . The weakness
parameterα also plays role in falsely choosing jump points. The lower values ofα help to reduce the
number of false positives, however, this compromises numerical stability. Notice that small values
of α can affect the condition number of the design matrix. [8] reports that choosingα ∈ (0.2, 0.8)
gives good results. From our numerical experience, we have noticed that the choice of parameter
α does not have a huge impact on the solution. We choose to report experimental results with the
valueα = 0.6.

1.3 Optimization Procedure

In this section, we outline a coordinate descent algorithm for finding the minimum of the following
objective
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The algorithm we are about to describe is motivated by the coordinate descent algorithm for
Lasso [2]. Let us introduceβ′ ∈ R

p×n such thatβk,i =
∑i

j=1 β′
k,j . Usingβ′ Eq. (6) becomes

n
∑

i=1



Yi −
p
∑

k=1

Xi,k

i
∑

j=1

βk,j





2

+ 2λ2

p
∑

k=1

n
∑

j=1

|β′
k,j |. (7)

Keeping all the coefficients butβ′
u,v fixed, one can find a minimizer of Eq. (7) in a closed form

β̂′
u,v =

C
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where
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β′
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Now, the minimization algorithm iteratively minimizes coefficients β′
u,v, u = 1, . . . , p, v =

1, . . . , n, while keeping the rest fixed, until convergence. The algorithm is guaranteed to converge a
global optimum due to the result of [6].

1.4 Applications and Generalizations

In this section we provide some insight on how to apply TDB-lasso to different models. We consider
time-varying Gaussian graphical models [10], generalizedvarying-coefficient models and time-
varying Markov Random Fields.

2



Consider a time-varying Gaussian graphical model [10], defined with the covariance function
Σ(t) = [σjk(t)]j,k∈1...p, whose components are functions of time. There aren independent sam-
ples,X1, . . . ,Xn, Xi ∈ R

p, each drawn from a different underlying multivariate Gaussian dis-
tribution with covarianceΣ(ti), ti = i/n, and the problem is to estimateΣ(τ), for a given time
point τ ∈ [0, 1]. In [10], it is assumed that the coefficient functionsσjk(t) are smooth and the rate
of convergence in Frobenius norm is established for a nonparametric kernel estimator̂Σ of Σ(τ).
Often, estimating the structure of the graphical model is animportant problem to domain experts,
who can interpret it more easily than the coefficient values.We address the problem of the struc-
ture estimation of a time-varying Gaussian graphical model, under the assumption that components
of Σ(t) are piecewise constant functions. The structure of the graphical model is encoded with a
non-zero pattern of the concentration matrixΩ(t) := Σ(t)−1 [4]. Let Ω(t) = [ωjk(t)]j,k∈1...p. It
is possible to formulate the structure estimation problem as a sequence of regression problems by
regressing each variableXi,j to the rest of variablesXi,\j [7]:

Xi,j =
∑

k 6=j

βjk(ti)Xi,k + ǫj , i ∈ 1, . . . , n, (10)

whereβjk(ti) = −ωjk(ti)
ωjj(ti)

. Estimating the non-zero pattern ofΩ(τ) is equivalent to estimating the

non-zero pattern of vectorβj(τ) for all j = 1, . . . , p. We fit the parameters of the model (10) using
the TDB-lasso procedure.

Now, consider a generalized varying-coefficient model

g(m(Xi, ti)) = Xiβ(ti), i = 1, . . . , n, (11)

whereg(·) is a given link function andm(Xi, ti) = E[Y |X = Xi, t = ti] is the conditional mean.
Again, we assume that the coefficient functions are piecewise constant and formulate the estimateβ̂
as a solution to the following penalized log-likelihood problem

β̂ = min
β

{−
n
∑

i=1

ℓ(Yi,Xi, ti) + λn
1

n
∑

i=1

||β(ti)||1 + λn
2

p
∑

k=1

||βk||TV}, (12)

whereℓ(Yi,Xi, ti) = ℓ(Yi, m(Xi, ti) is the conditional log-likelihood function. Instead of directly
minimizing (12) we can again use the two step procedure, in which the first step aims to identify
block partitions on which the coefficient functions are constant, and the second step estimates the
coefficient functions using theℓ1 penalized log-likelihood maximization.

One immediate application of the generalized varying-coefficient model is in estimation of time-
varying discrete networks [3]. The problem can be describedas the graph structure estimation
problem of a Markov Random Field, whose structure is constant on unknown blocks and changes
abruptly between blocks. To estimate the varying structure, one decomposes the estimation across
different nodes of the graph and separately estimates neighborhoods of these nodes. One neighbor-
hood estimation problem can be modeled using the generalized varying-coefficient model (11) and
the estimated neighborhood corresponds to the non-zero coefficientsβ̂.

1.5 Additional Real Data Experiments

The TDB-Lasso procedure is run on EEG measurements to infer how the brain interactions form over
the time of the experiment. We regress the measurement of onechannel onto the rest of channels
to estimate the connections with other channels. Repeatingthis procedure, we estimate a network
of interactions between different positions in the brain. We report the estimated interactions at
three time points after the visual cues have been presented.Fig. 1 gives visualization of the brain
interactions when the subjects were presented visual cues from the class 1 (right) and Fig. 2 for the
class 2 (foot).

1.6 Proof of Lemma 1

Lemma 1 Let γ̂j andB̂j, j = 1, . . . , B̂ be vectors and segments obtained from a minimizer of

min
β

n
∑

i=1

(Yi − X
′
iβ(ti))

2
+ 2λ1

n
∑
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||β(ti)||1 + 2λ2

p
∑

k=1

||βk||TV . (13)
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Then eacĥγj can be found as a solution to the subgradient equation:

X
′
B̂j

XB̂j
γ̂j − X

′
B̂j

YB̂j
+ λ1|B̂j |ŝ(1)

j + λ2ŝ
(TV)
j = 0, (14)

where
ŝ
(1)
j ∈ ∂ ||γ̂j ||1 = sign(γj), (15)

by conventionsign(0) ∈ [−1, 1], andŝ
(TV)
j ∈ R

p such that

ŝ
(TV)
1,k =

{

−1 if γ̂2,k − γ̂1,k > 0
1 if γ̂2,k − γ̂1,k < 0

, ŝ
(TV)

B̂,k
=

{

1 if γ̂B̂,k − γ̂B̂−1,k > 0
−1 if γ̂B̂,k − γ̂B̂−1,k < 0

(16)

and, for1 < j < B̂,

ŝ
(TV)
j,k =

{

2 if γ̂j+1,k − γ̂j,k > 0, γ̂j,k − γ̂j−1,k < 0
−2 if γ̂j+1,k − γ̂j,k < 0, γ̂j,k − γ̂j−1,k > 0

0 if (γ̂j,k − γ̂j−1,k)(γ̂j+1,k − γ̂j,k) = 1.
(17)

Proof We briefly sketch the proof idea, which is based on the analysis of the subgradient of Eq. (14).
The subgradient∂ ||x||1 of x ∈ R

p is the set{s ∈ R
p | s = sign(x)} wheresign(0) ∈ [−1, 1]

by definition. LetL ∈ R
(p−1)×p be a matrix with entriesTk,k = −1 and Tk,k+1 = 1 for

k = 1, . . . , p − 1 and 0 otherwise. Now∂ ||X ||TV = ∂ ||LX ||1. Using this we compute the
subgradient of (13) with respect toγj and Lemma follows by grouping variables within estimated
segments.

1.7 Proof of Theorem 1

Theorem 1 Let A1 be satisfied. Let the weaknessα be given asα2 = νϕmin(CJ2,X†)/(CJ2), for
anyν ∈ (7/κ, 1/

√
2). If the minimum size of the jump is bounded away from zero as

min
k∈J †

|β†
k| ≥ 0.3(CJ)3/2λmin, (18)

whereλmin = 2σ†(
√

CJ + 1)
√

log np
n andσ†2 ≥ V ar(Y †

i ), for np > 10 andJ ≥ 7, there exists

someδ = δJ ∈ (0, 1) such that for allτ ≥ 1 − δ, the collection of the estimated jump pointŝJ τ

satisfies,
P(Ĵ τ = J †) ≥ 1 − 5/np. (19)

Proof

We briefly sketch the main proof ideas here. The proof strategy is based on the approach of [8],
which is based on the approach of [9].

The first difficulty we have to take care of is that after the TD-transformation is done, the samples
are noti.i.d.any more. After the transformation, the elements of the vector ǫ† are not independent.
For each2 ≤ i 6= j ≤ n it holdsEǫ†i = 0, Var ǫ†i = 2σ2 and

Cov(ǫ†i , ǫ
†
j) =

{

−σ2 if |i − j| = 1
0 otherwise. (20)

Let σ†2 = 2σ2 and fori = 1, . . . , n let ǫ∗i ∼ N(0, σ†2) be independent, such that
{

E(ǫ†i ǫ
†
i ) ≤ E(ǫ∗i ǫ

∗
i ) 1 ≤ i 6= j ≤ n

E(ǫ†i )
2 = E(ǫ∗i )

2 1 ≤ i ≤ n.
(21)

Using Slepian’s inequality (seee.g.[5]), we can substitute variablesǫ∗i in place ofǫ†i .

The rest of the proof follows the same strategy as [8], with small modifications due to the use of
Slepian’s inequality and the fact that we use bootstrap instead of subsampling. We leave out the
details to a full version of the paper.
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1.8 Proof of Theorem 2

Theorem 2 Let A2 be satisfied. Also, assume that the conditions of Theorem 1 are satisfied. Let
K = max1≤j≤B ||γj ||0 be the upper bound on the number of features in segments and let L be
an upper bound on elements ofX. Let ρ = min1≤j≤B |Bj | denote the number of samples in the
smallest segment. Then for a sequenceδ = δn → 0,

λ1 ≥ 4Lσ

√

ln 2Kp
δ

ρ
∨ 8L

ln 4Kp
δ

ρ
and min

1≤j≤B
min

k∈SBj

|γj,k| ≥ 2λ1,

we have
lim

n→∞
P(B̂ = B) = 1, (22)

lim
n→∞

max
1≤j≤B

P(||γ̂j − γj ||1 = 0) = 1, (23)

lim
n→∞

min
1≤j≤B

P(ŜBj
= SBj

) = 1. (24)

Proof Under the assumptions of Theorem 1, for anyδ′ > 0 and sufficiently largen, Ĵ τ = J †

with probability at least1 − δ′, i.e.,, the jump points can be estimated consistently. This implies
equation (22).

Now, on each of the estimated segments, coefficient values are estimated using the ordinary Lasso.
Under the assumption A1, we can apply the known results of theLasso procedure on each of the
estimated segments. Theorem follows from [1] after some adjustments of constants.
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Figure 1: Brain interactions of different subjects estimated at different times after the visual cues for
Class 1 (right hand) had been presented.
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Figure 2: Brain interactions of different subjects estimated at different times after the visual cues for
Class 2 (right foot) had been presented.
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