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Abstract

Search engines today present results that are often aldivi recent shifts in
intent. For example, the meaning of the query ‘independeagéshifts in early
July to a US holiday and to a movie around the time of the boxeffelease.
While no studies exactly quantify the magnitude of interiftsiy traffic, studies
suggest that news events, seasonal topics, pop culturecetunt for 1/2 the
search queries. This paper shows that the signals a seajitteeaceives can be
used to both determine that a shift in intent happened, dsasdind a result that
is now more relevant. We present a meta-algorithm that emgiclassifier with
a bandit algorithm to achieve regret that depends logaiitélig on the number
of query impressions, under certain assumptions. We peastidng evidence that
this regret is close to the best achievable. Finally, viares®f experiments, we
demonstrate that our algorithm outperforms prior appreacparticularly as the
amount of intent-shifting traffic increases.

1 Introduction

Search engines typically use a ranking function to orderlt@sThe function scores a document by
the extent to which it matches the query, and documents aexext according to this score. This
function is fixed in the sense that it does not change from amgygto another and also does not
change over time. For queries such as ‘michael jacksonitimadl ranking functions that value
features such as high page rank will not work since docunrewsto the web will not have accrued
sufficient inlinks. Thus, a search engine’s ranking functihould not be fixed; different results
should surface depending on the temporal context.

Intuitively, a query is “intent-shifting” if the most degid search result(s) change over time. More
concretely, a query’s intent has shifted if the click diztition over search results at some time
differs from the click distribution at a later time. For thaegy ‘tomato’ on the heels of a tomato
salmonella outbreak, the probability a user clicks on a neey describing the outbreak increases
while the probability a user clicks on the Wikipedia entry fomatoes rapidly decreases. There
are studies that suggest that queries likely to be inteiftirah— such as pop culture, news events,
trends, and seasonal topics queries — constitute roughiyohtéhe search queries that a search
engine receives [10].

The goal of this paper is to devise an algorithm that quicklgs search results to shifts in user
intent. Ideally, for every query and every point in time, weuld like to display the search result that
users are most likely to click. Since traditional rankingtfees like PageRank [4] change slowly
over time, and may be misleading if user intent has shifteg xecently, we want to use just the

observed click behavior of users to decide which searcHtsasudisplay.

*Full version of this paper [20] is available @m xi v. or g. In the present version, all proofs are omitted.
fThis work was done while the author was an intern at Microsoft Reseandtla student in the Department
of Computer Science, Princeton University.



There are many signals a search engine can use to detect dhartant of a query shifts. Query

features such as as volume, abandonment rate, reformutatie, occurrence in news articles, and
the age of matching documents can all be used to build a fitasshich, given a query, determines

whether the intent has shifted. We refer to these featuréseasontexf and an occassion when a
shift in intent occurs as agvent

One major challenge in building an event classifier is olinagitraining data. For most query and
date combinations (e.g. ‘tomato, 06/09/2008), it will kifidult even for a human labeler to recall
in hindsight whether an event related to the query occurretthat date. In this paper, we propose a
novel solution that learns from unlabeled contexts and cigek activity.

Contributions. We describe a new algorithm that leverages the informatioriained in contexts.
Our algorithm is really a meta-algorithm that combines aditasgorithm designed for the event-
free setting with an online classification algorithm. Thasdglifier uses the contexts to predict when
events occur, and the bandit algorithm “starts over” ontp@spredictions. The bandit algorithm
provides feedback to the classifier by checking, soon afieh @f the classifier's positive predic-
tions, whether the optimal search result actually changédte key technical hurdle in proving a
regret bound is handling events that happen during the ¥Ghgtphase.

For suitable choices of the bandit and classifier subrosiiiee regret incurred by our meta-
algorithm is (under certain mild assumptions) at most + dr)(x log T'), wherek is the number

of events,dr is a certain measure of the complexity of the concept cfassed by the classifier,

n is the number of possible search resulisis the “minimum suboptimality” of any search result
(defined formally in Section 2), arifl is the total number of impressions. This regret bound has a
very weak dependence @n which is highly desirable for search engines that receivehraffic.

The context turns out to be crucial for achieving logaritbisieépendence dh. Indeed, we show that
any bandit algorithm that ignores context suffers regre¢'T), even when there is only one event.
Unlike many lower bounds for bandit problems, our lower ibtolds even wher is a constant
independent of’. We also show that assuming a logarithmic dependencg, ¢ine dependence on
k andd s is essentially optimal.

For empirical evaluation, we ideally need access to théidraf a real search engine so that search
results can be adapted based on real-time click activityceSive did not have access to live traf-
fic, we instead conduct a series of synthetic experimentg eXperiments show that if there are
no events then the well-studieccBl algorithm [2] performs the best. However, when many dif-
ferent queries experience events, the performance of goritim significantly outperforms prior
techniques.

2 Problem Formulation and Preliminaries

We view the problem of deciding which search results to digh response to user click behavior
as abandit problem a well-known type of sequential decision problem. For a&giqueryq, the
task is to determine, at each round {1,...,T} thatq is issued by a user to our search engine, a
single resulti; € {1,...,n} to display! This result is clicked by the user with probability(i; ).

A bandit algorithmA chooses; using only observed information from previous rounds, iad.
previously displayed results and received clicks. Thequarénce of an algorithrd is measured by

its regret R(A) £ E [ZtT:lpt(ij;) —pt(it)}, where arpptimalresulti;y = arg max; p:(¢) is one
with maximum click probability, and the expectation is tak®/er the randomness in the clicks and

the internal randomization of the algorithm. Note our urallyustrong definition of regret: we are
competing against the best result@reryround.

We call aneventany roundt wherep;, 1 # p;. It is reasonable to assume that the number of
eventsk < T, since we believe that abrupt shifts in user intent are ivelgtrare. Most existing
bandit algorithms make no attempt to predict when evenioadur, and consequently suffer regret
Q(v/T). On the other hand, a typical search engine receives mangisithat can be used to predict
events, such as bursts in query reformulation, averagefagérieved document, etc.

'For simplicity, we focus on the task of returning a single result, and not aflistsults. Techniques
from [19] may be adopted to find a good list of results.



We assume that our bandit algorithm receivesiatextr;, € X at each round, and that there exists
afunctionf € F, in some knowrtoncept clas§, such thatf (z;) = +1 if an event occurs at round
t, andf(z;) = —1 otherwis€? In other words,f is anevent oracle At each round, aneventful
bandit algorithmmust choose a result using only observed information from previous rounds, i.e.
all previously displayed results and received clicks, pllisontexts up to round

In order to develop an efficient eventful bandit algorithne, mvake an additional key assumption: At
least one optimal result before an evensignificantlysuboptimal after the event. More precisely,
we assume there existsnainimum shiftes > 0 such that, whenever an event occurs at rotind
we havep,(if_;) < p(if) — es for at least one previously optimal search resilt,. For our
problem setting, this assumption is relatively mild: them¢ we are interested in tend to have a
rather dramatic effect on the optimal search results. Maemur bounds are parameterized by
A = ming min;x py(if) — pe(i), theminimum suboptimalitef any suboptimal result.

3 Related Work

While there has been a substantial amount of work on rankgagitthms [11, 5, 13, 8, 6], all of these
results assume that there is a fixed ranking function to Jeaynhone that shifts over time. Online
bandit algorithms (see [7] for background) have been cemsitlin the context of ranking. For
instance, Radlinski et al [19] showed how to compose sewastdntiations of a bandit algorithm
to produce a ranked list of search results. Pandey et al i8ked that bandit algorithms can
be effective in serving advertisements to search enginessusghese approaches also assume a
stationary inference problem.

Even though existing bandit work does not address our pmokieere are two key algorithms that
we do use in our work. Thecsl algorithm [2] assumes fixed click probabilities and hasetgt
mostO(x log T'). The ExP3.s algorithm [3] assumes that click probabilities can changewery

round and has regret at mastk+/nT log(nT')) for arbitraryp;’s. Note that the dependence of
EXP3.s0onT is substantially stronger.

The “contextual bandits” problem setting [21, 17, 12, 16] i&4similar to ours. A key difference
is that the context received in each round is assumed to iooinfarmation about thedentity of
an optimal result;, a considerably stronger assumption than we make. Ourxddntgudes only
side information such as volume of the query, but we nevaradlgtreceive information about the
identity of the optimal result.

A different approach is to build a statistical model of usikcbehavior. This approach has been
applied to the problem of serving news articles on the welaz[P®] used a regularized logistic
model to determine when to surface news results for a quagsrwal et al [1] used several models,
including a dynamic linear growth curve model.

There has also been work on detecting bursts in data stréanexample, Kleinberg [15] describes
a state-based model for inferring stages of burstiness.gbhkof our work is not to detect bursts,
but rather to predict shifts in intent.

In arecent concurrent and independent work, Yu et al [22]istubandit problems with “piecewise-
stationary” distributions, a notion that closely resershdeir definition of events. However, they
make different assumptions than we do about the informatibandit algorithm can observe. Ex-
pressed in the language of our problem setting, they asshadrom time-to-time a bandit algo-
rithm receives information about how usevsuld haveresponded to search results that are never
actually displayed. For us, this assumption is clearly pmapriate.

4 Bandit with Classifier

Our algorithm is calledswc, or “Bandit with Classifier”. The high-level idea is to use anblit
algorithm such as/cBl, restart it every time the classifier predicts an event, & subsequent
rounds to generate feedback for the classifier. We will presar algorithm in a modular way,
as a meta-algorithm which uses the following two componeatsassi fi er andbandit. In

2In some of our analysis, we require that contexts be restricted to a siosesofY’; the value off outside
this subset will technically beul | .



each roundgcl assi fi er inputs a context:; and outputs a “positive” or “negative” prediction
of whether an event has happened in this round. Also, it mpytifabeled samples of the form
(z,1), wherez is a context and is a boolean label, which it uses for training. Algorithrandi t

is a bandit algorithm that is tuned for the event-free rund provides the following additional
functionality: after each round of execution, it outputs theth round guessa pair (G, G™),
whereG* andG~ are subsets of arms that it estimates to be optimal and sutsiptespectively.
Since botlcl assi fi er andbandi t make predictions (about events and arms, respectively), fo
clarity we use the term “guess” exclusively to refer to peidns made bypandi t , and reserve the
term “prediction” forcl assi fi er.

The algorithm operates as follows. It runs in phases of tuer@éting types: odd phases are called
“testing” phases, and even phases are called “adaptinggshd he first round of phagés denoted

t;. In each phase we run a fresh instancéandi t . Each testing phase lasts tbirounds, where

L is a parameter. Each adapting phgsends as soon asl assi fi er predicts “positive”; the
roundt when this happens is rourigl, ;. Phasegj is calledfull if it lasts at least rounds. For a full
phasej, let (Gj, G ) be theL-th round guess in this phase. After each testing pliase generate

a boolean predictiohof whether there was an event in the first round thereof. Spalty, letting

i be the most recent full phase befgrewe setl;, = f al se if and only if Gin Gy # 0.1 1y,

isf al se, the labeled sampler;,, ;) is fed back to the classifier. Note thatassi fi er never
received r ue-labeled samples. Pseudocodedarc is given in Algorithm 1.

Disregarding the interleaved testing phases for the mgnmnt restartsbandi t whenever
cl assi fi er predicts “positive”, optimistically assuming that the gietion is correct. By our
assumption that events cause some optimal arm to beconificsigtly suboptimal (see Section 2),
an incorrect prediction should result@ N G, # (), wherei is a phase before the putative event,
andj is a phase after it. However, to ensure that the estim@iemndG; are reliable, we require
that phases andj are full. And to ensure that the full phases closest to a petatzent are not too
far from it, we insert a full testing phase every other phase.

Algorithm 1 swc Algorithm

1: Given: Parametel, a(L, eg)-testablebandi t , and a safel assi fi er.
2: for phasej = 1,2, ... do

Initialize bandi t . Let¢; be current round.

4: if jis oddthen

5 for roundt =¢; ... t; + L do

6: Select armi, according tdbandi t .
7
8

Observep, (i) and updatéandi t .
Let i be the most recent full phase befgre

9: If Gj N Gj_ # () let l;; =f al se and pass training exampﬁetj,ltj) tocl assifier.
10: else

11: for roundt =t¢;, t; +1, ... do

12: Select arm, according tdbandi t .

13: Observep,(i;) and updatéandi t ; pass context, tocl assi fi er.

14: if cl assi fi er predicts “positive'then

15: Terminate inner for loop.

Let S be the set of all contexts which correspond to an event. Whenl#ssifier receives a context
2 and predicts a “positive”, this prediction is calledrae positiveif x € S, and afalse positive
otherwise. Likewise, when the classifier predicts a “negatithe prediction is called ue negative

if z ¢ S, and afalse negativetherwise. The sampler, [) is correctly labeledf | = (z € S).

We make the following two assumptions. First,assi fi er is safefor a given concept class:
if it inputs only correctly labeled samples, it never outpatfalse negative. Secorldandi t is
(L, ¢)-testable in the following sense. Consider an event-free rubahdi t , and let(G*,G™)
be its L-th round guess. Then with probability at least 7—2, each optimal arm lies it but
notinG~, and any arm that is at leassuboptimal lies inG~ but not inG*. So an(L, ¢)-testable

3Following established convention, we call the options available to a bandittalgd'arms”. In our setting,
each arm corresponds to a search result.



bandit algorithm is one that, aftérrounds, has a good guess of which arms are optimal and which
are at least-suboptimal.

For correctness, we requiteandi t to be (L, es)-testable, whereg is the minimum shift. The
performance obandi t is quantified via itevent-free regret i.e. regret on the event-free runs.
Likewise, for correctness we need assi fi er to be safe; we quantify its performance via the
maximum possible number of false positives, in the pre@ssas defined below. We assume that the
state ofcl assi fi er is updated only if it receives a labeled sample, and considgme in which

in each round, cl assi fi er receives a context, ¢ S, outputs a (false) positive, and receives
a (correctly) labeled sample:, f al se). For a given context set and a given concept class,

let the FP-complexity of the classifier be the maximal possible number of roundsiah & game,
where the maximum is taken over all event oragfes F and all possible sequencés;}. Put
simply, the FP-complexity ofl assi fi er is the maximum number of consecutive false positives
it can make when given correctly labeled examples.

We will discuss efficient implementations of a safieassi fi er and a(L, ¢)-testablebandi t

in Sections 5 and Section 6, respectively. We present plevgimarantees foewc in a modular
way, in terms of FP-complexity, event-free regret, and thmber of events. The main technical
difficulty in the analysis is that the correct operation af tomponents awc — cl assi fi er
andbandi t — is interdependent. In particular, one challenge is to laedents that occur during
the firstL rounds of a phase; these events may potentially “contasditia¢ L-th round guesses and
cause incorrect feedback¢d assi fi er.

Theorem 1. Consider an instance of the eventful bandit problem with lmemof roundsT’, n
arms, k events and minimum shift,. Consider algorithmswc with parameter. and compo-
nentscl assi fi er andbandi t such that for this problem instancel assi fi er is safe, and
bandi t is (L, eg)-testable. If any two events are at le&dt rounds apart, then the regret efvc
is

R(T) < (2k+d) Ro(T) + (k+ d) Ro(L) + kL. (1)
whered is the FP-complexity of the classifier afit} () is the event-free regret dfandi t .

Remarks.The proof is available in the full version [20]. In our implemtations obandi t, L =
O( log T') suffices. In thetk L term in (1), thek can be replaced by the number of testing phases
that contain both a false positive in rouhaf the phase and an actual event later in the phase; this
number can potentially be much smaller than

5 Safe Classifier

We seek a classifier that is safe for a given concept ctaaed has low FP-complexity. We present
a classifier whose FP-complexity is bounded in terms of theviing property of F:

Definition 1. Define thesafe functionSr : 2¥ — 2% of F as follows: z € Sz(N) if and only
if there is no concepf € F such that: f(y) = —1forall y € N and f(z) = +1. Thediameter
of 7, denotedir, is equal to the length of the longest sequenge .., z,, € X such thatr; ¢
Sr({z1,...,x¢—1}) forallt =1,...,m.

So if N contains only true negatives, thé- (V) contains only true negatives. This property sug-
gests thatSr can be used to construct a safe classiiaf e , which operates as follows: It
maintains a set dfal se-labeled exampled/, initially empty. When input an unlabeled context
Saf e outputs a positive prediction if and onlyif ¢ Sz(N). After making a positive predic-
tion, Saf eC inputs a labeled example:;, !). If [ = false, thenx is added taV; otherwisex is
discarded. Clearh&af eCl is a safe classifer.

In the full version [20], we show that the FP-complexity $df eCl is at most the diameteir,
which is to be expected: FP-complexity is a property of agifaes, and diameter is the completely
analogous property fdf . Moreover, we give examples of common concept classes Witieatly
computable safe functions. For exampleFifis the space of hyperplanes with “margin” at least
(probably the most commonly-used concept class in mackaming), therS(N) is the convex
hull of the examples iV, extended in all directions by&a

By usingSaf eCl as our classifier, we introduek- into the regret bound dfwc, and this quantity
can be large. However, in Section 7 we show that the regrahpélgorithm must depend odz,
unless it depends strongly on the number of roufids



6 Testable Bandit Algorithms

In this section we will consider the stochasti@rmed bandit problem. We are looking fak, €)-
testable algorithms with low regret. Ttiewill need to be sufficiently large, on the ordert@fne—2).

A natural candidate would be algorithmcel from [2] which does very well on regret. Un-
fortunately, it does not come with a guarantee(bf ¢)-testability. One simple fix is to choose
at random between arms in the firbtrounds, use these samples to form the best guess, in
a straightforward way, and then rwncsl. However, in the firstl rounds this algorithm in-
curs regret of2(L), which is very suboptimal. For instance, focsl the regret would be

R(L) < O(min(% log L, /nLTog L)).

In this section, we develop an algorithm which has the samestédound ascsl, and is(L, €)-
testable. We state this result more generally, in termstohating expected payoffs; we believe it
may be of independent interest. T, ¢)-testability is then an easy corollary.

Since our analysis in this section is for the event-freersgttve can drop the subscripfrom much
of our notation. Lep(u) denote the (time-invariant) expected payoff of arnLet p* = max, p(u),
and letA(u) = p* — p(u) be the “suboptimality” of arm:. For roundt, let . (u) be the sample
average of armx, and letn; (u) be the number of times armhas been played.

We will use a slightly modified algorithrvcel from [2], with a significantly extended analysis.
Recall that in each round algorithm ucsl chooses an arm with the highestndex I;(u) =

pe(u) +re(u), wherer,(u) = 1/8log(t)/n.(u) is a term that we'll call theonfidence radiusshose
meaning is thalp(u) — p+(uw)| < r(u) with high probability. For our purposes here it is instrueti
to re-write the index as$;(u) = u:(u) + ar(u) for some parameter. Also, to better bound the
early failure probability we will re-define the confidencelits asr;(u) = \/8log(to + t)/n:(u)
for some parametey. We will denote this parameterized versionlbgsl(«, ty). Essentially, the
original analysis ofJcB1 in [2] carries over; we omit the details.

Our contribution concerns estimating théwu)’s. We estimate the maximal expected rewafd/ia
the sample average of an arm that has been played most often.gvecisely, in order to bound the
failure probability we consider a arm that has been playedtmiftenin the lastt/2 rounds For a
given roundt let v; be one such arm (ties broken arbitrarily), andAg{u) = u¢(v:) — pe(u) will

be our estimate of\(u). We express the “quality” of this estimate as follows:

Theorem 2. Consider the stochastie-armed bandits problem. Suppose algorithoB1(6, ty) has
been played fot steps, and + t, > 32. Then with probability at least — (¢, + ¢)~2 for any arm
u we have

[A(u) = Ag(u)] < FA) +6(t) )

whered(t) = O(/% log(t + to)).

Remark. Either we know thatA(u) is small, or we can approximate it up to a constant factor.
Specifically, if6(t) < 3 Aq(u) thenA(u) < 2A,(u) < 5A(u) elseA(u) < 45(t).

Let us converucBl(6,T)) into an(L, ¢)-testable algorithm, as long ds> Q(Z logT'). Thet-th
round best gues§s;, G; ) is defined asz;” = {u : Ay(u) < e/4} andG; = {u : Ay(u) >
€/2}. Then the resulting algorithm (4., €)-testable assuming thafL) < /4, whered(t) is from
Theorem 2. The proof is in the full version [20].

7 Upper and Lower Bounds

Plugging the classifier from Section 5 and the bandit algorifrom Section 6 into the meta-
algorithm from Section 4, we obtain the following numerigabrantee.

Theorem 3. Consider an instancé of the eventful bandit problem with with number of rounds
T, n arms andk events, minimum shifts, minimum suboptimality\, and concept class diam-
eter dr. Assume that any two events are at le2gtrounds apart, where, = ©(Z logT).

S

Consider theBwc algorithm with parameterL and componentgl assi fi er and bandi t
as presented, respectively, in Section 5 and Section 6. Themegret of BwcC is R(T) <

((3k +2dr) % + ki) (log T).



While the linear dependence aenin this bound may seem large, note that without additional as
sumptions, regret must be linearin since each arm must be pulled at least once. In an actual
search engine application, the arms can be restrictedytiahgatop ten results that match the query.

We now state two lower bounds about eventful bandit probjeims proofs are in the full ver-
sion [20]. Theorem 4 shows that in order to achieve regretithbbgarithmic in the number of
rounds, a context-aware algorithm is necessary, assuinérg ts at least one event. Incidentally,
this lowerbound can be easily extended to prove that, in mdeahno algorithm can achieve loga-
rithmic regret when an event oracfds not contained in the concept clags

Theorem 4. Consider the eventful bandit problem with number of roufid$wo arms, minimum
shift es and minimum suboptimalith, wherees = A = ¢, for an arbitrary e € (0, %). For any
context-ignoring bandit algorithr, there exists a problem instance with a single event such tha
regretR4(T) > Q(eV/T).

Theorem 5 proves that in Theorem 3, linear dependende -brl~ is essentially unavoidable. If
we desire a regret bound that has logarithmic dependenckeeonumber of rounds, then a linear
dependence ok + dr is necessary.

Theorem 5. Consider the eventful bandit problem with number of roufidand concept class
diameterdr. Let A be an eventful bandit algorithm. Then there exists a probtestance withn
arms, k events, minimum shify, minimum suboptimalith\, whereeg = A = ¢, for any given
values ofk > 1,n > 3, ande € (0, 1), such thatR 4(T) > Q(k 2) log(T'/k).

Moreover, there exists a problem instance with two armsnglsievent, event threshotl(1) and
minimum suboptimality® (1) such that regreR 4 (7)) > Q(max(T"/3, dr)) log T

8 Experiments

To truly demonstrate the benefitsmivC requires real-time manipulation of search results. Sinee w
did not have the means to deploy a system that monitors skigkActivity and correspondingly al-
ters search results with live users, we describe a collectiexperiments on synthetically generated
data.

We begin with a head-to-head comparisonsefc versus a baselinecgl algorithm and show
thatBwcC’s performance improves substantially upeasl. Next, we compare the performance of
these algorithms as we vary the fraction of intent-shiftjugries: as the fraction increasesyc’s
performance improves even further upon prior approachesallf; we compare the performance
as we vary the number of features. While our theoretical tesuiggest that regret grows with the
number of features in the context space, in our experime@surprisingly find thaBwc is robust

to higher dimensional feature spaces.

Setup: We synthetically generate data as follows. We assume thet #ire 100 queries where the
total number of times these queries are posed is 3M. Eacly dpaerfive search results for a user
to select from. If a query does not experience any events —itiig not “intent-shifting” — then
the optimal search result is fixed over time; otherwise thiintgd search result may change. Only
10% of the queries are intent-shifting, with at most 10 evqm@r such query. Due to the random
nature with which data is generated, regret is reported avenage over 10 runs. The event oracle
is an axis-parallel rectangle anchored at the origin, wipaiats inside the box are negative and
points outside the box are positive. Thus, if there are tvatuiees, say query volume and query
abandonment rate, an event occurs if and only if both themveland abandonment rate exceed
certain thresholds.

Bandit with Classifier (Bwc): Figure 1(a) shows the average cumulative regret over tintlereé
algorithms. Our baseline comparisondsBl which assumes that the best search result is fixed
throughout. In addition, we compare to an algorithm we cella, which uses the event oracle
to resetucBl whenever an event occurs. We also comparegxteB.s, but its performance was
dramatically worse and thus we have not included it in theréigu

In the early stages of the experiment before any intentispievent has happenedcsl performs
the best.BwC's safe classifier makes many mistakes in the beginning andetpiently pays the
price of believing that each query is experiencing an evdrdmn fact it is not. As time progresses,
BWC's classifier makes fewer mistakes, and consequently kndwesiwo resetyiceB1 more accu-



v ORA ]
4 ueet 0 178 174 378 172
ORA 17.2| 22.8 | 30.4 | 33.8 | 395
BWC 17.8| 246 | 39.9 | 46.7 | 99.4
ucel | 17.2| 34.1 | 114.9| 84.2 | 140.0
ExP3.s | 78.4 | 123.7 | 180.2 | 197.6 | 243.1
10 20 30 40
ORA 219 | 232 | 219 | 228
BWC 231 | 24.4 | 229 | 23.7
ucsl 323 | 335 | 31.1 | 374
EXP3.s | 111.6| 109.4 | 112.5| 121.3

Cumulative regret

0 0.5 1 15 2 25 3
Time (impressions) x10*

Figure 1: (a) (Left)Bwc's cumulative regret compared tocBl andoRA (UcBl with an oracle
indicating the exact locations of the intent-shifting eygib) (Right, Top Table) Final regret (in
thousands) as the fraction of intent-shifting queriesasariVith more intent-shifting querieswc’s
advantage over prior approaches improves. (c) (Rightdaoffable) Final regret (in thousands) as
the number of features grows.

rately. ucB1 alone ignores the context entirely and thus incurs subiatigriarger cumulative regret
by the end.

Fraction of Intent-Shifting Queries: In the next experiment, we varied the fraction of intent-
shifting queries. Figure 1(b) shows the result of changhegdistribution from 0, 1/8, 1/4, 3/8 and
1/2 intent-shifting queries. If there are no intent-shiftiqueries, themcB1's regret is the best. We
expect this outcome sin@wcC's classifier, because it is safe, initially assumes thatjadiries are
intent-shifting and thus needs time to learn that in fact nerigs are intent-shifting. On the other
hand, BwcC's regret dominates the other approaches, especially afabion of intent-shifting
gueries growsExP3.S's performance is quite poor in this experiment — even whégusries are
intent-shifting. The reason is that even when a query isitrgifting, there are at most 10 intent-
shifting events, i.e., each query’s intent is not shiftitigtae time.

With more intent-shifting queries, the expectation is tiegiret monotonically increases. In general,
this seems to be true in our experiment. There is howeverr@ase in regret going from 1/4 to 3/8
intent-shifting queries. We believe that this is due to th& that each query has at most 10 intent-
shifting events spread uniformly and it is possible thatréheere fewer events with potentially
smaller shifts in intent in those runs. In other words, ttendard deviation of the regret is large.
Over the ten 3/8 intent-shifting runs forA, Bwc, ucsl andexp3.s, the standard deviation was
roughly 1K, 10K, 12K and 6K respectively.

Number of Features: Finally, we comment on the performance of our approach asuh&er of
features grows. Our theoretical results suggestghat’'s performance should deteriorate as the
number of features grows. SurprisingBywc's performance is consistently close to the Oracle’s.
In Figure 1(b), we show the cumulative regret after 3M impi@ss as the dimensionality of the
context vector grows from 10 to 40 featureBwWC’s regret is consistently close torRA as the
number of features grows. On the other hamdg1'’s regret though competitive is worse thawc,
while EXP3.S's performance is across the board poor. Note that batBl andexp3.S's regret is
completely independent of the number of features. The atandeviation of the regret over the 10
runs is substantially lower than the previous experimeot.example, over 10 features, the standard
deviation was 355, 1K, 5K, 4K fobRA, BWC, uCcB1 andexP3.s, respectively.

9 Future Work

The main question left for future work is testing this apmio@ a real setting. Since gaining access
to live traffic is difficult, it would be interesting to find wayo rewind the search logs to simulate
live traffic.
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