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Abstract

We propose a new approach to the problem of robust estimation in multiview ge-
ometry. Inspired by recent advances in the sparse recovery problem of statistics,
we define our estimator as a Bayesian maximum a posteriori with multivariate
Laplace prior on the vector describing the outliers. This leads to an estimator
in which the fidelity to the data is measured by the L∞-norm while the regular-
ization is done by the L1-norm. The proposed procedure is fairly fast since the
outlier removal is done by solving one linear program (LP). An important differ-
ence compared to existing algorithms is that for our estimator it is not necessary
to specify neither the number nor the proportion of the outliers. We present strong
theoretical results assessing the accuracy of our procedure, as well as a numerical
example illustrating its efficiency on real data.

1 Introduction

In the present paper, we are concerned with a class of non-linear inverse problems appearing in the
structure and motion problem of multiview geometry. This problem, that have received a great deal
of attention by the computer vision community in last decade, consists in recovering a set of 3D
points (structure) and a set of camera matrices (motion), when only 2D images of the aforemen-
tioned 3D points by some cameras are available. Throughout this work we assume that the internal
parameters of cameras as well as their orientations are known. Thus, only the locations of camera
centers and 3D points are to be estimated. In solving the structure and motion problem by state-of-
the-art methods, it is customary to start by establishing correspondences between pairs of 2D data
points. We will assume in the present study that these point correspondences have been already
established.

One can think of the structure and motion problem as the inverse problem of inverting the operatorO
that takes as input the set of 3D points and the set of cameras, and produces as output the 2D images
of the 3D points by the cameras. This approach will be further formalized in the next section.
Generally, the operator O is not injective, but in many situations (for example, when for each pair
of cameras there are at least five 3D points in general position that are seen by these cameras [23]),
there is only a small number of inputs, up to an overall similarity transform, having the same image
by O. In such cases, the solutions to the structure and motion problem can be found using algebraic
arguments.

The main flaw of algebraic solutions is their sensitivity to the noise in the data: very often, thanks
to the noise in the measurements, there is no input that could have generated the observed output.
A natural approach to cope with such situations consists in searching for the input providing the
closest possible output to the observed data. Then, a major issue is how to choose the metric in the
output space. A standard approach [16] consists in measuring the distance between two elements
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(a) (b) (c) (d) (e)
Figure 1: (a) One image from the dinosaur sequence. Camera locations and scene points estimated
by the blind L∞-cost minimization (b,c) and by the proposed “outlier aware” procedure (d,e).

of the output space in the Euclidean L2-norm. In the structure and motion problem with more than
two cameras, this leads to a hard non-convex optimization problem. A particularly elegant way of
circumventing the non-convexity issues inherent to the use of L2-norm consists in replacing it by the
L∞-norm [15, 18, 24, 25, 27, 13, 26]. It has been shown that, for a number of problems, L∞-norm
based estimators can be computed very efficiently using, for example, the iterative bisection method
[18, Algorithm 1, p. 1608] that solves a convex program at each iteration. There is however an
issue with the L∞-techniques that dampens the enthusiasm of practitioners: it is highly sensitive to
outliers (c.f . Fig. 1). In fact, among all Lq-metrics with q ≥ 1, the L∞-metric is the most seriously
affected by the outliers in the data. Two procedures have been introduced [27, 19] that make the
L∞-estimator less sensitive to outliers. Although these procedures demonstrate satisfactory empir-
ical performance, they suffer from a lack of sufficient theoretical support assessing the accuracy of
produced estimates.

The purpose of the present work is to introduce and to theoretically investigate a new procedure
of estimation in presence of noise and outliers. Our procedure combines L∞-norm for measuring
the fidelity to the data and L1-norm for regularization. It can be seen as a maximum a posteriori
(MAP) estimator under uniformly distributed random noise and a sparsity favoring prior on the
vector of outliers. Interestingly, this study bridges the work on the robust estimation in multiview
geometry [12, 27, 19, 21] and the theory of sparse recovery in statistics and signal processing [10,
2, 5, 6].

The rest of the paper is organized as follows. The next section gives the precise formulation of the
translation estimation and triangulation problem to which the presented methodology can be applied.
A brief review of the L∞-norm minimization algorithm is presented in Section 3. In Section 4, we
introduce the statistical framework and derive a new procedure as a MAP estimator. The main result
on the accuracy of this procedure is stated and proved in Section 5, while Section 6 contains some
numerical experiments. The methodology of our study is summarized in Section 7.

2 Translation estimation and triangulation

Let us start by presenting a problem of multiview geometry to which our approach can be success-
fully applied, namely the problem of translation estimation and triangulation in the case of known
rotations. For rotation estimation algorithms, we refer the interested reader to [22, 14] and the
references therein.

Let P∗i , i = 1, . . . ,m, be a sequence of m cameras that are known up to a translation. Recall that a
camera is characterized by a 3×4 matrix P with real entries that can be written as P = K[R|t], where
K is an invertible 3× 3 matrix called the camera calibration matrix, R is a 3× 3 rotation matrix and
t ∈ R3. We will refer to t as the translation of the camera P. We can thus write P∗i = Ki[Ri|t∗i ],
i = 1, . . . ,m. For a set of unknown scene points U∗j ,, j = 1, . . . , n, expressed in homogeneous
coordinates (i.e., U∗j is an element of the projective space P3), we assume that noisy images of each
U∗j by some cameras P∗i are observed. Thus, we have at our disposal the measurements

xij =
1

eT
3 P
∗
iU
∗
j

[
eT

1 P
∗
iU
∗
j

eT
2 P
∗
iU
∗
j

]
+ ξij ,

j = 1, . . . , n,
i ∈ Ij , (1)

where e`, ` = 1, 2, 3, stands for the unit vector of R3 having one as the `th coordinate and Ij is the
set of indices of cameras for which the point U∗j is visible. We assume that the set {U∗j} does not
contain points at infinity: U∗j = [X∗Tj |1]T for some X∗j ∈ R3 and for every j = 1, . . . , n.
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We are now in a position to state the problem of translation estimation and triangulation in the
context of multiview geometry. It consists in recovering the 3-vectors {t∗i } (translation estimation)
and the 3D points {X∗j} (triangulation) from the noisy measurements {xij ; j = 1, . . . , n; i ∈ Ij} ⊂
R2. In what follows, we use the notation θ∗ = (t∗T1 , . . . , t∗Tm ,X∗T1 , . . . ,X∗Tn )T ∈ R3(m+n). Thus,
we are interested in estimating θ∗.
Remark 1 (Cheirality). It should be noted right away that if the point U∗j is in front of the camera
P∗i , then eT

3 P
∗
iU
∗
j ≥ 0. This is termed cheirality condition. Furthermore, we will assume that none

of the true 3D points U∗j lies on the principal plane of a camera P∗i . This assumption implies that
eT

3 P
∗
iU
∗
j > 0 so that the quotients eT

` P
∗
iU
∗
j/e

T
3 P
∗
iU
∗
j , ` = 1, 2, are well defined.

Remark 2 (Identifiability). The parameter θ we have just defined is, in general, not identifiable from
the measurements {xij}. In fact, one easily checks that, for every α 6= 0 and for every t ∈ R3, the
parameters {t∗i ,X∗j} and {α(t∗i −Rit), α(X∗j + t)} generate the same measurements. To cope with
this issue, we assume that t∗1 = 03 and that mini,j eT

3 P
∗
iU
∗
j = 1. Thus, in what follows we assume

that t∗1 is removed from θ∗ and θ∗ ∈ R3(m+n−1). Further assumptions ensuring the identifiability
of θ∗ are given below.

3 Estimation by Sequential Convex Programming

This section presents results on the estimation of θ based on the reprojection error (RE) minimiza-
tion. This material is essential for understanding the results that are at the core of the present work.
In what follows, for every s ≥ 1, we denote by ‖x‖s the Ls-norm of a vector x, i.e.‖x‖ss =

∑
j |xj |s

if x = (x1, . . . , xd)T. As usual, we extend this to s = +∞ by setting ‖x‖∞ = maxj |xj |.
A classical method [16] for estimating the parameter θ is based on minimizing the sum of the
squared REs. This defines the estimator θ̂ as a minimizer of the cost function C2,2(θ) =

∑
i,j ‖xij−

xij(θ)‖22, where xij(θ) :=
[
eT

1 PiUj ; eT
2 PiUj

]
T/eT

3 PiUj is the 2-vector that we would obtain if θ
were the true parameter. It can also be written as

xij(θ) =
[
eT

1 Ki(RiXj + ti)
eT

3 Ki(RiXj + ti)
;
eT

2 Ki(RiXj + ti)
eT

3 Ki(RiXj + ti)

]T

. (2)

The minimization of C2,2 is a hard nonconvex problem. In general, it does not admit closed-form
solution and the existing iterative algorithms may often get stuck in local minima. An ingenious
idea to overcome this difficulty [15, 17] is based on the minimization of the L∞ cost function

C∞,s(θ) = max
j=1,...,n

max
i∈Ij

‖xij − xij(θ)‖s, s ∈ [1,+∞]. (3)

Note that the substitution of the L2-cost function by the L∞-cost function has been proved to lead
to improved algorithms in other estimation problems as well, cf., e.g., [8]. This cost function has
a clear practical advantage in that all its sublevel sets are convex. This property ensures that all
minima of C∞,s form a convex set and that an element of this set can be computed by solving
a sequence of convex programs [18], e.g., by the bisection algorithm. Note that for s = 1 and
s = +∞, the minimization of C∞,s can be recast in a sequence of LPs. The main idea behind the
bisection algorithm can be summarized as follows. We aim to designate an algorithm computing
θ̂s ∈ arg minθ C∞,s(θ), for any prespecified s ≥ 1, over the set of all vectors θ satisfying the
cheirality condition. Let us introduce the residuals rij(θ) = xij −xij(θ) that can be represented as

rij(θ) =
[
aT
ij1θ

cT
ijθ

;
aT
ij2θ

cT
ijθ

]T

, (4)

for some vectors aij`, cij ∈ R2. Furthermore, as presented in Remark 2, the cheirality conditions
imply the set of linear constraints cT

ijθ ≥ 1. Thus, the problem of computing θ̂s can be rewritten as

minimize γ subject to
{
‖rij(θ)‖s ≤ γ,
cT
ijθ ≥ 1.

(5)

Note that the inequality ‖rij(θ)‖s ≤ γ can be replaced by ‖AT
ijθ‖s ≤ γcT

ijθ with Aij = [aij1; aij2].
Although (5) is not a convex problem, its solution can be well approximated by solving a sequence
of convex feasibility problems.
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4 Robust estimation by linear programming

This and the next sections contain the main theoretical contribution of the present work. We start
with the precise formulation of the statistical model. We then exhibit a prior distribution on the
unknown parameters of the model that leads to a MAP estimator.

4.1 The statistical model
Let us first observe that, in view of (1) and (4), the model we are considering can be rewritten as[

aT
ij1θ

∗

cT
ijθ
∗ ;

aT
ij2θ

∗

cT
ijθ
∗

]T

= ξij , j = 1, . . . , n; i ∈ Ij . (6)

Let N = 2
∑n
j=1 Ij be the total number of measurements and let M = 3(n+m− 1) be the size of

the vector θ∗. Let us denote by A (resp. C) the M × N matrix formed by the concatenation of the
column-vectors aij` (resp. cij1). Similarly, let us denote by ξ theN -vector formed by concatenating
the vectors ξij . In these notation, Eq. (6) is equivalent to aT

pθ
∗ = (cT

pθ
∗)ξp, p = 1, . . . , N . This

equation defines the statistical model in the case where there is no outlier. To extend this model to
cover the situation where some outliers are present in the measurements, we introduce the vector
ω∗ ∈ RN defined by ω∗p = aT

pθ
∗ − (cT

pθ
∗)ξp so that ω∗p = 0 if the pth measurement is an inlier and

|ω∗p| > 0 otherwise. This leads us to the model:

ATθ∗ = ω∗ + diag(CTθ∗)ξ, (7)

where diag(v) stands for the diagonal matrix having the components of v as diagonal entries.

Statement of the problem: Given the matrices A and C, estimate the parameter-vector
β∗ = [θ∗T;ω∗T]T based on the following prior information:

C1 : Eq. (7) holds with some small noise vector ξ,
C2 : minp cT

pθ
∗ = 1,

C3 : ω∗ is sparse, i.e., only a small number of coordinates of ω∗ are different from zero.

4.2 Sparsity prior and MAP estimator
To derive an estimator of the parameter β∗, we place ourselves in the Bayesian framework. To this
end, we impose a probabilistic structure on the noise vector ξ and introduce a prior distribution on
the unknown vector β.

Since the noise ξ represents the difference (in pixels) between the measurements and the true image
points, it is naturally bounded and, generally, does not exceeds the level of a few pixels. Therefore,
it is reasonable to assume that the components of ξ are uniformly distributed in some compact set
of R2, centered at the origin. We assume in what follows that the subvectors ξij of ξ are uniformly
distributed in the square [−σ, σ]2 and are mutually independent. Note that this implies that all the
coordinates of ξ are independent. In practice, this assumption can be enforced by decorrelating the
measurements using the empirical covariance matrix [20]. We define the prior on θ as the uniform
distribution on the polytope P = {θ ∈ RM : CTθ ≥ 1}, where the inequality is understood compo-
nentwise. The density of this distribution is p1(θ) ∝ 1P(θ), where ∝ stands for the proportionality
relation and 1P(θ) = 1 if θ ∈ P and 0 otherwise. When P is unbounded, this results in an improper
prior, which is however not a problem for defining the Bayes estimator.

The task of choosing a prior on ω is more delicate in that it should reflect the information that ω
is sparse. The most natural prior would be the one having a density which is a decreasing function
of the L0-norm of ω, i.e., of the number of its nonzero coefficients. However, the computation of
estimators based on this type of priors is NP-hard. An approach for overcoming this difficulty relies
on using the L1-norm instead of the L0-norm. Following this idea, we define the prior distribution
on ω by the probability density p2(ω) ∝ f(‖ω‖1), where f is some decreasing function2 defined
on [0,∞). Assuming in addition that θ and ω are independent, we get the following prior on β:

π(β) = π(θ;ω) ∝ 1P(θ) · f(‖ω‖1). (8)

1To get a matrix of the same size as A, in the matrix C each column is duplicated two times.
2The most common choice is f(x) = e−x corresponding to the multivariate Laplace density.
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Theorem 1. Assume that the noise ξ has independent entries which are uniformly distributed in
[−σ, σ] for some σ > 0, then the MAP estimator β̂ = [θ̂T; ω̂T]T based on the prior π defined by Eq.
(8) is the solution of the optimization problem:

minimize ‖ω‖1 subject to
{
|aT
pθ − ωp| ≤ σcT

pθ, ∀p
cT
pθ ≥ 1, ∀p. (9)

The proof of this theorem is a simple exercise and is left to the reader.

Remark 3 (Condition C2). One easily checks that any solution of (9) satisfies condition C2. Indeed,
if for some solution β̂ it were not the case, then β̃ = β̂/minp cT

p θ̂ would satisfy the constraints of
(9) and ω̃ would have a smaller L1-norm than that of ω̂, which is in contradiction with the fact that
β̂ solves (9).

Remark 4 (The role of σ). In the definition of β̂, σ is a free parameter that can be interpreted as
the level of separation of inliers from outliers. The proposed algorithm implicitly assumes that all
the measurements xij for which ‖ξij‖∞ > σ are outliers, while all the others are treated as inliers.

If σ is unknown, a reasonable way of acting is to impose a prior distribution on the possible values of
σ and to define the estimator β̂ as a MAP estimator based on the prior incorporating the uncertainty
on σ. When there are no outliers and the prior on σ is decreasing, this approach leads to the estimator
minimizing the L∞ cost function. In the presence of outliers, the shape of the prior on σ becomes
more important for the definition of the estimator. This is an interesting point for future investigation.

4.3 Two-step procedure
Building on the previous arguments, we introduce the following two-step algorithm.

Input: {ap, cp; p = 1, . . . , N} and σ.
Step 1: Compute [θ̂T; ω̂T]T as a solution to (9) and set J = {p : ω̂p = 0} .
Step 2: Apply the bisection algorithm to the reduced data set {xp; p ∈ J}.

Two observations are in order. First, when applying the bisection algorithm at Step 2, we can use
C∞,s(θ̂) as the initial value of γu. The second observation is that a better way of acting would be to
minimize the weighted L1-norm of ω, where the weight assigned to ωp is inversely proportional to
the depth cT

pθ
∗. Since θ∗ is unknown, a reasonable strategy consists in adding a step in between Step

1 and Step 2, which performs the weighted minimization with weights {(cT
p θ̂)−1; p = 1, . . . , N}.

5 Accuracy of estimation

Let us introduce some additional notation. Recall the definition ofP and set ∂P = {θ : minp cTp θ =
1} and ∆P∗ = {θ − θ′ : θ,θ′ ∈ ∂P,θ 6= θ}. For every subset of indices J ⊂ {1, . . . , N}, we
denote by AJ theM×N matrix obtained from A by replacing the columns that have an index outside
J by zero. Furthermore, let us define

δJ(θ) = sup
θ′∈∂P,ATθ′ 6=ATθ

‖AT
J(θ′ − θ)‖2

‖AT(θ′ − θ)‖2
, ∀J ⊂ {1, . . . , N}, ∀θ ∈ ∂P. (10)

One easily checks that δJ ∈ [0, 1] and δJ ≤ δJ′ if J ⊂ J ′.

Assumption A: The real number λ defined by λ = ming∈∆P∗ ‖ATg‖2/‖g‖2 is strictly positive.

Assumption A is necessary for identifying the parameter vector θ∗ even in the case without outliers.
In fact, if ω∗ = 0, and if Assumption A is not fulfilled, then3 ∃g ∈ ∆P∗ such that ATg = 0. That
is, given the matrices A and C, there are two distinct vectors θ1 and θ2 in ∂P such that ATθ1 = ATθ2.
Therefore, if eventually θ1 is the true parameter vector satisfying C1 and C3, then θ2 satisfies these
conditions as well. As a consequence, the true vector cannot be accurately estimated.

3We assume for simplicity that ∂P is compact.
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5.1 The noise free case
To evaluate the quality of estimation, we first place ourselves in the case where σ = 0. The estimator
β̂ of β∗ is then defined as a solution to the optimization problem

min ‖ω‖1 over β =
[
θ
ω

]
s.t.

{
ATθ = ω
CTθ ≥ 1 . (11)

From now on, for every index set T and for every vector h, hT stands for the vector equal to h on
an index set T and zero elsewhere. The complementary set of T will be denoted by T c.
Theorem 2. Let Assumption A be fulfilled and let T0 (resp. T1) denote the index set corresponding
to the locations of S largest entries4 of ω∗ (resp. (ω∗ − ω̂)T c

0
). If δT0(θ∗) + δT0∪T1(θ∗) < 1 then,

for some constant C0, it holds:

‖β̂ − β∗‖2 ≤ C0‖ω∗ − ω∗S‖1, (12)

where ω∗S stands for the vector ω∗ with all but the S-largest entries set to zero. In particular, if ω∗

has no more than S nonzero entries, then the estimation is exact: β̂ = β∗.

Proof. We set h = ω∗ − ω̂ and g = θ∗ − θ̂. It follows from Remark 3 that g ∈ ∆P . To proceed
with the proof, we need the following auxiliary result, the proof of which can be easily deduced
from [4].

Lemma 1. Let v ∈ Rd be some vector and let S ≤ d be a positive integer. If we denote by T the
indices of S largest entries of the vector |v|, then ‖vT c‖2 ≤ S−1/2‖v‖1.

Applying Lemma 1 to the vector v = hT c
0

and to the index set T = T1, we get

‖h(T0∪T1)c‖2 ≤ S−1/2‖hT c
0
‖1. (13)

On the other hand, summing up the inequalities ‖hT c
0
‖1 ≤ ‖(ω∗−h)T c

0
‖1 +‖ω∗T c

0
‖1 and ‖ω∗T0

‖1 ≤
‖(ω∗−h)T0‖1 + ‖hT0‖1, and using the relation ‖(ω∗−h)T0‖1 + ‖(ω∗−h)T c

0
‖1 = ‖ω∗−h‖1 =

‖ω̂‖1, we get

‖hT c
0
‖1 + ‖ω∗T0

‖1 ≤ ‖ω̂‖1 + ‖ω∗T c
0
‖1 + ‖hT0‖1. (14)

Since β∗ satisfies the constraints of the optimization problem (11) a solution of which is β̂, we have
‖ω̂‖1 ≤ ‖ω∗‖1. This inequality, in conjunction with (13) and (14), implies

‖h(T0∪T1)c‖2 ≤ S−1/2‖hT0‖1 + 2S−1/2‖ω∗T c
0
‖1 ≤ ‖hT0‖2 + 2S−1/2‖ω∗T c

0
‖1, (15)

where the last step follows from the Cauchy-Schwartz inequality. Using once again the fact that
both β̂ and β∗ satisfy the constraints of (11), we get h = ATg. Therefore,

‖h‖2 ≤ ‖hT0∪T1‖2 + ‖h(T0∪T1)c‖2 ≤ ‖hT0∪T1‖2 + ‖hT0‖2 + 2S−1/2‖ω∗T c
0
‖1

= ‖AT
T0∪T1

g‖2 + ‖AT
T0

g‖2 + 2S−1/2‖ω∗T c
0
‖1 ≤ (δ2S + δS)‖ATg‖2 + 2S−1/2‖ω∗T c

0
‖1

= (δ2S + δS)‖h‖2 + 2S−1/2‖ω∗T c
0
‖1. (16)

Since ω∗T c
0

= ω∗ − ωS , the last inequality yields ‖h‖2 ≤
(
2S−1/2/(1 − δS − δ2S)

)
‖ω∗ − ω∗S‖1.

To complete the proof, it suffices to observe that

‖β̂ − β∗‖2 ≤ ‖g‖2 + ‖h‖2 ≤ λ−1‖Ag‖2 + ‖h‖2 =
(
λ−1 + 1

)
‖h‖2 ≤ C0‖ω∗ − ω∗S‖1.

Remark 5. The assumption δT0(θ∗) + δT0∪T1(θ∗) < 1 is close in spirit to the restricted isometry
assumption (cf., e.g., [10, 6, 3] and the references therein). It is very likely that results similar to
that of Theorem 2 hold under other kind of assumptions recently introduced in the theory of L1-
minimization [11, 29, 2]. This investigation is left for future research.

We emphasize that the constant C0 is rather small. For example, if δT0(θ∗) + δT0∪T1(θ∗) = 0.5,
then max(‖ω̂ − ω∗‖2, ‖AT(θ̂ − θ∗)‖2) ≤ (4/

√
S)‖ω∗ − ω∗S‖1.

4in absolute value
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5.2 The noisy case
The assumption σ = 0 is an idealization of the reality that has the advantage of simplifying the
mathematical derivations. While such a simplified setting is useful for conveying the main ideas
behind the proposed methodology, it is of major practical importance to discuss the extensions to the
more realistic noisy model. To this end, we introduce the vector ξ̂ of estimated residuals satisfying
ATθ̂ = ω̂ + diag(CTθ̂) ξ̂ and ‖ξ̂‖∞ ≤ σ.
Theorem 3. Let the assumptions of Theorem 2 be fulfilled. If for some ε > 0 we have
max(‖diag(CTθ̂)ξ̂‖2; ‖diag(CTθ∗)ξ‖2) ≤ ε, then

‖β̂ − β∗‖2 ≤ C0‖ω∗ − ω∗S‖1 + C1ε (17)
where C0 and C1 are some constants.

Proof. Let us define η = diag(CTθ∗)ξ and η̂ = diag(CTθ̂)ξ̂. On the one hand, in view of (15),
we have ‖h(T0∪T1)c‖2 ≤ ‖hT0‖2 + 2S−1/2‖ω∗T c

0
‖1 with h = ω∗ − ω̂. On the other hand, since

h = ATg + η̂ − η, we have
‖h(T0∪T1)c‖2 ≥ ‖AT

(T0∪T1)cg‖2 − ‖η̂(T0∪T1)c‖2 − ‖η(T0∪T1)c‖2 ≥ ‖AT
(T0∪T1)cg‖2 − 2ε

and ‖hT0‖2 ≤ ‖AT
T0

g‖2 + ‖η̂T0
‖2 + ‖ηT0

‖2 ≤ ‖AT
T0

g‖2 + 2ε. These inequalities imply that

‖ATg‖2 ≤ ‖AT
T0∪T1

g‖2 + ‖AT
T0

g‖2 + 4ε+ 2S−1/2‖ω∗T c
0
‖1

≤ (δT0∪T1 + δT0)‖ATg‖2 + 4ε+ 2S−1/2‖ω∗T c
0
‖1.

To complete the proof, it suffices to remark that

‖β̂ − β∗‖2 ≤ ‖h‖2 + ‖g‖2 ≤ ‖ATg‖2 + ‖g‖2 + 2ε ≤ (1 + λ−1)‖ATg‖2 + 2ε

≤ 1+λ−1

1−δT0∪T1−δT0
(4ε+ 2S−1/2‖ω∗T c

0
‖1).

5.3 Discussion
The main assumption in Theorems 2 and 3 is that δT0(θ∗)+δT0∪T1(θ∗) < 1. While this assumption
is by no means necessary, it should be recognized that it cannot be significantly relaxed. In fact, the
condition δT0(θ∗) < 1 is necessary for θ∗ to be consistently estimated. Indeed, if δT0(θ∗) = 1,
then it is possible to find θ′ ∈ ∂P such that AT

T c
0
θ∗ = AT

T c
0
θ′, which makes the problem of robust

estimation ill-posed, since both θ∗ and θ′ satisfy (7) with the same number of outliers.

Note also that the mapping J 7→ δJ(θ) is subadditive, that is δJ ∪ J ′(θ) ≤ δJ(θ) + δJ′(θ).
Therefore, the condition of Thm. 2 is fulfilled as soon as δJ(θ∗) < 1/3 for every index set J of
cardinality ≤ S. Thus, the condition maxJ:|J|≤S δS(θ∗) < 1/3 is sufficient for identifying θ∗ in
presence of S outliers, while maxJ:|J|≤S δS(θ∗) < 1 is necessary.

A simple upper bound on δJ , obtained by replacing the sup over ∂P by the sup over RM , is δJ(θ) ≤
‖OT
J‖, ∀θ ∈ ∂P , where O = O(A) stands for the Rank(A)×N matrix with orthonormal rows spanning

the image of AT. The matrix norm is understood as the largest singular value. Note that for a given
J , the computation of ‖OT

J‖ is far easier than that of δJ(θ).

We emphasize that the model we have investigated comprises the robust linear model as a particular
case. Indeed, if the last row of the matrix A is equal to zero as well as all the rows of C except the
last row which that has all the entries equal to one, then the model described by (7) is nothing else
but a linear model with unknown noise variance.

To close this section, let us stress that other approaches (cf., for instance, [9, 7, 1]) recently intro-
duced in sparse learning and estimation may potentially be useful for the problem of robust estima-
tion.

6 Numerical illustration

We implemented the algorithm in MatLab, using the SeDuMi package for solving LPs [28]. We
applied our algorithm of robust estimation to the well-known dinosaur sequence 5. which consists

5http://www.robots.ox.ac.uk/ ṽgg/data1.html

7



Figure 2: (a)-(c) Overhead view of the scene points estimated by the KK-procedure (a), by the SH-
procedure (b) and by our procedure. (d) Boxplots of the errors when estimating the camera centers
by our procedure (left) and by the KK-procedure. (e) Boxplots of the errors when estimating the
camera centers by our procedure (left) and by the SH-procedure.

of 36 images of a dinosaur on a turntable, see Fig. 1 (a) for one example. The 2D image points
which are tracked across the image sequence and the projection matrices of 36 cameras are provided
as well. There are 16,432 image points corresponding to 4,983 scene points. This data is severely
affected by outliers which results in a very poor accuracy of the “blind” L∞-cost minimization
procedure. Its maximal RE equals 63 pixel and, as shown in Fig. 1, the estimated camera centers are
not on the same plane and the scatter plot of scene points is inaccurate.

We ran our procedure with σ = 0.5 pixel. If for pth measurement |ωp/cT
pθ| was larger than σ/4,

then the it has been considered is an outlier and removed from the dataset. The corresponding 3D
scene point was also removed if, after the step of outlier removal, it was seen by only one camera.
This resulted in removing 1, 306 image points and 297 scene points. The plots (d) and (e) of Fig. 1
show the estimated camera centers and estimated scene points. We see, in particular, that the camera
centers are almost coplanar. Note that in this example, the second step of the procedure described in
Section 4.3 does not improve on the estimator computed at the first step. Thus, an accurate estimate
is obtained by solving only one linear program.

We compared our procedure with the procedures proposed by Sim and Hartley [27], hereafter
referred to as SH-procedure, and by Kanade and Ke [19], hereafter KK-procedure. For the SH-
procedure, we iteratively computed the L∞-cost minimizer by removing, at each step j, the mea-
surements that had a RE larger than Emax,j − 0.5ε, where Emax,j was the largest RE. We have
stopped the SH-procedure when the number of removed measurements exceeded 1,500. This num-
ber has been attained after 53 cycles. Therefore, the execution time was approximately 50 times
larger than for our procedure. The estimator obtained by SH-procedure has a maximal RE equal
to 1.33 pixel, whereas the maximal RE for our estimator is of 0.62 pixel. Concerning the KK-
procedure, we run it with the parameter value m = N − NO = 15, 000, which is approximately
the number of inliers detected by our method. Recall that the KK-procedure aims at minimizing the
mth largest RE. As shown in Fig. 2, our procedure performs better than that of [19].

7 Conclusion

In this paper, we presented a rigorous Bayesian framework for the problem of translation estima-
tion and triangulation that have leaded to a new robust estimation procedure. We have formulated
the problem under consideration as a nonlinear inverse problem with a high-dimensional unknown
parameter-vector. This parameter-vector encapsulates the information on the scene points and the
camera locations, as well as the information on the location of outliers in the data. The proposed
estimator exploits the sparse nature of the vector of outliers through L1-norm minimization. We
have given the mathematical proof of the result demonstrating the efficiency of the proposed esti-
mator under mild assumptions. Real data analysis conducted on the dinosaur sequence supports our
theoretical results.
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