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Abstract

This paper addresses the problem of noisy Generalized Binary Search (GBS).
GBS is a well-known greedy algorithm for determining a binary-valued hypothe-
sis through a sequence of strategically selected queries. At each step, a query is
selected that most evenly splits the hypotheses under consideration into two dis-
joint subsets, a natural generalization of the idea underlying classic binary search.
GBS is used in many applications, including fault testing, machine diagnostics,
disease diagnosis, job scheduling, image processing, computer vision, and active
learning. In most of these cases, the responses to queries can be noisy. Past work
has provided a partial characterization of GBS, but existing noise-tolerant ver-
sions of GBS are suboptimal in terms of query complexity. This paper presents
an optimal algorithm for noisy GBS and demonstrates its application to learning
multidimensional threshold functions.

1 Introduction
This paper studies learning problems of the following form. Consider a finite, but potentially very
large, collection of binary-valued functionsH defined on a domainX . In this paper,H will be called
the hypothesis space and X will be called the query space. Each h ∈ H is a mapping from X to
{−1, 1}. Assume that the functions in H are unique and that one function, h∗ ∈ H, produces the
correct binary labeling. The goal is to determine h∗ through as few queries from X as possible. For
each query x ∈ X , the value h∗(x), corrupted with independently distributed binary noise, is ob-
served. If the queries were noiseless, then they are usually called membership queries to distinguish
them from other types of queries [Ang01]; here we will simply refer to them as queries. Problems
of this nature arise in many applications , including channel coding [Hor63], experimental design
[Rén61], disease diagnosis [Lov85], fault-tolerant computing [FRPU94], job scheduling [KPB99],
image processing [KK00], computer vision [SS93, GJ96], computational geometry [AMM+98], and
active learning [Das04, BBZ07, Now08].

Past work has provided a partial characterization of this problem. If the responses to queries are
noiseless, then selecting the optimal sequence of queries from X is equivalent to determining an
optimal binary decision tree, where a sequence of queries defines a path from the root of the tree
(corresponding to H) to a leaf (corresponding to a single element of H). In general the deter-
mination of the optimal tree is NP-complete [HR76]. However, there exists a greedy procedure
that yields query sequences that are within an O(log |H|) factor of the optimal search tree depth
[GG74, KPB99, Lov85, AMM+98, Das04], where |H| denotes the cardinality of H. The greedy
procedure is referred to as Generalized Binary Search (GBS) [Das04, Now08] or the splitting al-
gorithm [KPB99, Lov85, GG74]), and it reduces to classic binary search in special cases [Now08].
The GBS algorithm is outlined in Figure 1(a). At each step GBS selects a query that results in
the most even split of the hypotheses under consideration into two subsets responding +1 and −1,
respectively, to the query. The correct response to the query eliminates one of these two subsets
from further consideration. Since the hypotheses are assumed to be distinct, it is clear that GBS
terminates in at most |H| queries (since it is always possible to find query that eliminates at least
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Generalized Binary Search (GBS)
initialize: i = 0,H0 = H.
while |Hi| > 1
1) Select xi = arg minx∈X |

∑
h∈Hi

h(x)|.
2) Obtain response yi = h∗(xi).
3) SetHi+1 = {h ∈ Hi : h(xi) = yi},
i = i+ 1.

Noisy Generalized Binary Search (NGBS)
initialize: p0 uniform overH.
for i = 0, 1, 2, . . .
1) xi = arg minx∈X |

∑
h∈H pi(h)h(x)|.

2) Obtain noisy response yi.
3) Bayes update pi → pi+1; Eqn. (1).

hypothesis selected at each step:
ĥi := arg maxh∈H pi(h)

(a) (b)

Figure 1: Generalized binary search (GBS) algorithm and a noise-tolerant variant (NGBS).

one hypothesis at each step). In fact, there are simple examples demonstrating that this is the best
one can hope to do in general [KPB99, Lov85, GG74, Das04, Now08]. However, it is also true that
in many cases the performance of GBS can be much better [AMM+98, Now08]. In general, the
number of queries required can be bounded in terms of a combinatorial parameter of H called the
extended teaching dimension [Ang01, Heg95] (also see [HPRW96] for related work). Alternatively,
there exists a geometric relation between the pair (X ,H), called the neighborly condition, that is
sufficient to bound the number of queries needed [Now08].

The focus of this paper is noisy GBS. In many (if not most) applications it is unrealistic to assume
that the responses to queries are without error. Noise-tolerant versions of classic binary search have
been well-studied. The classic binary search problem is equivalent to learning a one-dimensional
binary-valued threshold function by selecting point evaluations of the function according to a bisec-
tion procedure. A noisy version of classic binary search was studied first in the context of channel
coding with feedback [Hor63]. Horstein’s probabilistic bisection procedure [Hor63] was shown to
be optimal (optimal decay of the error probability) [BZ74] (also see[KK07]).

One straightforward approach to noisy GBS was explored in [Now08]. The idea is to follow the GBS
algorithm, but to repeat the query at each step multiple times in order to decide whether the response
is more probably +1 or −1. The strategy of repeating queries has been suggested as a general
approach for devising noise-tolerant learning algorithms [Kää06]. This simple approach has been
studied in the context of noisy versions of classic binary search and shown to be suboptimal [KK07].
Since classic binary search is a special case of the general problem, it follows immediately that the
approach proposed in [Now08] is suboptimal. This paper addresses the open problem of determining
an optimal strategy for noisy GBS. An optimal noise-tolerant version of GBS is developed here. The
number of queries an algorithm requires to confidently identify h∗ is called the query complexity of
the algorithm. The query complexity of the new algorithm is optimal, and we are not aware of any
other algorithm with this capability.

It is also shown that optimal convergence rate and query complexity is achieved for a broad class
of geometrical hypotheses arising in image recovery and binary classification. Edges in images and
decision boundaries in classification problems are naturally viewed as curves in the plane or sur-
faces embedded in higher-dimensional spaces and can be associated with multidimensional thresh-
old functions valued +1 and −1 on either side of the curve/surface. Thus, one important setting for
GBS is when X is a subset of d dimensional Euclidean space and the setH consists of multidimen-
sional threshold functions. We show that our algorithm achieves the optimal query complexity for
actively learning multidimensional threshold functions in noisy conditions.

The paper is organized as follows. Section 2 describes the Bayesian algorithm for noisy GBS and
presents the main results. Section 3 examines the proposed method for learning multidimensional
threshold functions. Section 4 discusses an agnostic algorithm that performs well even if h∗ is not
in the hypothesis spaceH. Proofs are given in Section 5.

2 A Bayesian Algorithm for Noisy GBS
In noisy GBS, one must cope with erroneous responses. Specifically, assume that the binary response
y ∈ {−1, 1} to each query x ∈ X is an independent realization of the random variable Y satisfying
P(Y = h∗(x)) > P(Y = −h∗(x)), where h∗ ∈ H is fixed but unknown. In other words, the
response is only probably correct. If a query x is repeated more than once, then each response is
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an independent realization of Y . Define the noise-level for the query x as αx := P(Y = −h∗(x)).
Throughout the paper we will let α := supx∈X αx and assume that α < 1/2.

A Bayesian approach to noisy GBS is investigated in this paper. Let p0 be a known probability mea-
sure over H. That is, p0 : H → [0, 1] and

∑
h∈H p0(h) = 1. The measure p0 can be viewed as an

initial weighting over the hypothesis class, expressing the fact that all hypothesis are equally reason-
able prior to making queries. After each query and response (xi, yi), i = 0, 1, . . . , the distribution
is updated according to

pi+1(h) ∝ pi(h)β(1−zi(h))/2(1− β)(1+zi(h))/2, (1)
where zi(h) = h(xi)yi, h ∈ H, β is any constant satisfying 0 < β < 1/2, and pi+1(h) is
normalized to satisfy

∑
h∈H pi+1(h) = 1 . The update can be viewed as an application of Bayes rule

and its effect is simple; the probability masses of hypotheses that agree with the label yi are boosted
relative to those that disagree. The parameter β controls the size of the boost. The hypothesis with
the largest weight is selected at each step: ĥi := arg maxh∈H pi(h). If the maximizer is not unique,
one of the maximizers is selected at random. The goal of noisy GBS is to drive the error P(ĥi 6= h∗)
to zero as quickly as possible by strategically selecting the queries. A similar procedure has been
shown to be optimal for noisy (classic) binary search problem [BZ74, KK07]. The crucial distinction
here is that GBS calls for a fundamentally different approach to query selection.

The query selection at each step must be informative with respect to the distribution pi. For example,
if the weighted prediction

∑
h∈H pi(h)h(x) is close to zero for a certain x, then a label at that point is

informative due to the large disagreement among the hypotheses. This suggests the following noise-
tolerant variant of GBS outlined in Figure 1. This paper shows that a slight variation of the query
selection in the NGBS algorithm in Figure 1 yields an algorithm with optimal query complexity.

It is shown that as long as β is larger than the noise-level of each query, then the NGBS produces
a sequence of hypotheses, ĥ0, ĥ1, . . . , such that P(ĥn 6= h∗) is bounded above by a monotonically
decreasing sequence (see Theorem 1). The main interest of this paper is an algorithm that drives the
error to zero exponentially fast, and this requires the query selection criterion to be modified slightly.
To see why this is necessary, suppose that at some step of the NGBS algorithm a single hypothesis
(e.g., h∗) has the majority of the probability mass. Then the weighted prediction will be almost
equal to the prediction of that hypothesis (i.e., close to +1 or −1 for all queries), and therefore the
responses to all queries are relatively certain and non-informative. Thus, the convergence of the
algorithm could become quite slow in such conditions. A similar effect is true in the case of noisy
(classic) binary search [BZ74, KK07]. To address this issue, the query selection criterion is modified
via randomization so that the response to the selected query is always highly uncertain.

In order to state the modified selection procedure and the main results, observe that the query space
X can be partitioned into equivalence subsets such that every h ∈ H is constant for all queries in
each such subset. Let A denote the smallest such partition. Note that X =

⋃
A∈AA. For every

A ∈ A and h ∈ H, the value of h(x) is constant (either +1 or −1) for all x ∈ A; denote this value
by h(A). As first noted in [Now08],A can play an important role in GBS. In particular, observe that
the query selection step in NGBS is equivalent to an optimization over A rather that X itself. The
randomization of the query selection step is based on the notion of neighboring sets in A.

Definition 1 Two sets A,A′ ∈ A are said to be neighbors if only a single hypothesis (and its
complement, if it also belongs toH) outputs a different value on A and A′.

The modified NGBS algorithm is outlined in Figure 2. Note that the query selection step is identical
to that of the original NGBS algorithm, unless there exist two neighboring sets with strongly bipolar
weighted responses. In the latter case, a query is randomly selected from one of these two sets with
equal probability, which guarantees a highly uncertain response.

Theorem 1 Let P denotes the underlying probability measure (governing noises and algorithm ran-
domization). If β > α, then both the NGBS and modified NGBS algorithms, in Figure 1(b) and
Figure 2, respectively, generate a sequence of hypotheses such that P(ĥn 6= h∗) ≤ an < 1, where
{an}n≥0 is a monotonically decreasing sequence.

The condition β > α ensures that the update (1) is not overly aggressive. We now turn to the
matter of sufficient conditions guaranteeing that P(ĥn 6= h∗) → 0 exponentially fast with n. The
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Modified NGBS
initialize: p0 uniform overH.
for i = 0, 1, 2, . . .
1) Let b = minA∈A |

∑
h∈H pi(h)h(A)|. If there exists neighboring sets A and A′

with
∑
h∈H pi(h)h(A) > b and

∑
h∈H pi(h)h(A′) < −b , then select xi from

A or A′ with probability 1/2 each. Otherwise select xi from the set Amin =
arg minA∈A |

∑
h∈H pi(h)h(A)|. In the case that the sets above are non-unique,

choose at random any one satisfying the requirements.
2) Obtain noisy response yi.
3) Bayes update pi → pi+1; Eqn. (1).

hypothesis selected at each step:
ĥi := arg maxh∈H pi(h)

Figure 2: Modified NGBS algorithm.

exponential convergence rate of classic binary search hinges on the fact that the hypotheses can be
ordered with respect to X . In general situations, the hypothesis space cannot be ordered in such a
fashion, but the neighborhood graph of A provides a similar local structure.

Definition 2 The pair (X ,H) is said to be neighborly if the neighborhood graph of A is connected
(i.e., for every pair of sets in A there exists a sequence of neighboring sets that begins at one of the
pair and ends with the other).

In essence, the neighborly condition simply means that each hypothesis is locally distinguishable
from all others. By ‘local’ we mean in the vicinity of points x where the output of the hypothesis
changes from +1 to −1. The neighborly condition was first introduced in [Now08] in the analysis
of GBS. It is shown in Section 3 that the neighborly condition holds for the important case of
hypothesis spaces consisting of multidimensional threshold functions. If (X ,H) is neighborly, then
the modified NGBS algorithm guarantees that P(ĥi 6= h∗)→ 0 exponentially fast.

Theorem 2 Let P denotes the underlying probability measure (governing noises and algorithm ran-
domization). If β > α and (X ,H) is neighborly, then the modified NGBS algorithm in Figure 2
generates a sequence of hypotheses satisfying

P(ĥn 6= h∗) ≤ |H| (1− λ)n ≤ |H| e−λn , n = 0, 1, . . .

with exponential constant λ = min
{

1−c∗
2 , 1

4

}(
1− β(1−α)

1−β − α(1−β)
β

)
, where

c∗ := min
P

max
h∈H

∣∣∣∣∫
X
h(x) dP (x)

∣∣∣∣ . (2)

The exponential convergence rate1 is governed by the key parameter 0 ≤ c∗ < 1. The minimizer in
(2) exists because the minimization can be computed over the space of finite-dimensional probability
mass functions over the elements of A. As long as no hypothesis is constant over the whole of
X , the value of c∗ is typically a small constant much less than 1 that is independent of the size
of H (see [Now08, Now09] and the next section for concrete examples). In such situations, the
convergence rate of modified NGBS is optimal, up to constant factors. No other algorithm can solve
the noisy GBS problem with a lower query complexity. The query complexity of the modified NGBS
algorithm can be derived as follows. Let δ > 0 be a prespecified confidence parameter. The number
of queries required to ensure that P(ĥn 6= h∗) ≤ δ is n ≥ λ−1 log |H|δ = O(log |H|δ ), which is the
optimal query complexity. Intuitively, O(log |H|) bits are required to encode each hypothesis. More
formally, the classic noisy binary search problem satisfies the assumptions of Theorem 2 [Now08],

1Note that the factor
“
1− β(1−α)

1−β
− α(1−β)

β

”
in the exponential rate parameter λ is a positive constant

strictly less than 1. For a noise level α this factor is maximized by a value β ∈ (α, 1/2) which tends to
(1/2 + α)/2 as α tends to 1/2.
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and hence it is a special case of the general problem. It is known that the optimal query complexity
for noisy classic binary search is O(log |H|δ ) [BZ74, KK07].

We contrast this with the simple noise-tolerant GBS algorithm based on repeating each query in the
standard GBS algorithm of Figure 1(a) multiple times to control the noise (see [Kää06, Now08] for
related derivations). It follows from Chernoff’s bound that the query complexity of determining the
correct label for a single query with confidence at least 1 − δ is O( log(1/δ)

|1/2−α|2 ). Suppose that GBS

requires n0 queries in the noiseless situation. Then using the union bound, we require O( log(n0/δ)
|1/2−α|2 )

queries at each step to guarantee that the labels determined for all n0 queries are correct with prob-
ability 1 − δ. If (X ,H) is neighborly, then GBS requires n0 = O(log |H|) queries in noiseless
conditions [Now08]. Therefore, under the conditions of Theorem 2, the query complexity of the
simple noise-tolerant GBS algorithm is O(log |H| log log |H|

δ ), a logarithmic factor worse than the
optimal query complexity.

3 Noisy GBS for Learning Multidimensional Thresholds
We now apply the theory and modified NGBS algorithm to the problem of learning multidimensional
threshold functions from point evaluations, a problem that arises commonly in computer vision
[SS93, GJ96, AMM+98], image processing [KK00], and active learning [Das04, BBZ07, CN08,
Now08]. In this case, the hypotheses are determined by (possibly nonlinear) decision surfaces in
d-dimensional Euclidean space (i.e., X is a subset of Rd), and the queries are points in Rd. It
suffices to consider linear decision surfaces of the form ha,b(x) := sign(〈a, x〉+ b), where a ∈ Rd,
‖a‖2 = 1, b ∈ R, |b| ≤ c for some constant c < ∞, and 〈a, x〉 denotes the inner product in Rd.
Note that hypotheses of this form can be used to represent nonlinear decision surfaces by applying
a nonlinear mapping to the query space.

Theorem 3 Let H be a finite collection of hypotheses of form sign(〈a, x〉 + b), for some constant
c <∞. Then the hypotheses selected by the modified NGBS algorithm with β > α satisfy

P(ĥn 6= h∗) ≤ |H| e−λn ,

with λ = 1
4

(
1− β(1−α)

1−β − α(1−β)
β

)
. Moreover, ĥn can be computed in time polynomial in |H|.

Based on the discussion at the end of the previous section, we conclude that the query complexity
of the modified NGBS algorithm is O(log |H|); this is the optimal up to constant factors. The only
other algorithm with this capability that we are aware of was analyzed in [BBZ07], and it is based
on a quite different approach tailored specifically to linear threshold problem.

4 Agnostic Algorithms
We also mention the possibility of agnostic algorithms guaranteed to find the best hypothesis in H
even if the optimal hypothesis h∗ is not inH and/or the assumptions of Theorem 2 or 3 do not hold.
The best hypothesis inH is the one that minimizes the error with respect to a given probability mea-
sure on X , denoted by PX . The following theorem, proved in [Now09], demonstrates an agnostic
algorithm that performs almost as well as empirical risk minimization (ERM) in general, and has
the optimal O(log |H|/δ) query complexity when the conditions of Theorem 2 hold.

Theorem 4 Let PX denote a probability distribution on X and suppose we have a query budget
of n. Let h1 denote the hypothesis selected by modified NGBS using n/3 of the queries and let h2

denote the hypothesis selected by ERM from n/3 queries drawn independently from PX . Draw the
remaining n/3 queries independently from P∆, the restriction of PX to the set ∆ ⊂ X on which h1

and h2 disagree, and let R̂∆(h1) and R̂∆(h2) denote the average number of errors made by h1 and
h2 on these queries. Select ĥ = arg min{R̂∆(h1), R̂∆(h2)}. Then, in general,

E[R(ĥ)] ≤ min{E[R(h1)],E[R(h2)]} +
√

3/n ,

where R(h), h ∈ H, denotes the probability of error of h with respect to PX and E denotes the
expectation with respect to all random quantities. Furthermore, if the assumptions of Theorem 2
hold with noise bound α, then

P(ĥ 6= h∗) ≤ Ne−λn/3 + 2e−n|1−2α|2/6 .
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5 Appendix: Proofs

5.1 Proof of Theorem 1

Let E denote expectation with respect to P, and define Cn := (1 − pn(h∗))/pn(h∗). Note that
Cn ∈ [0,∞) reflects the amount of mass that pn places on the suboptimal hypotheses. First note
that

P(ĥn 6= h∗) ≤ P(pn(h∗) < 1/2) = P(Cn > 1) ≤ E[Cn] , by Markov’s inequality.

Next, observe that

E[Cn] = E[(Cn/Cn−1)Cn−1] = E [E[(Cn/Cn−1)Cn−1|pn−1]]
= E [Cn−1 E[(Cn/Cn−1)|pn−1]] ≤ E[Cn−1] max

pn−1
E[(Cn/Cn−1)|pn−1]

≤ C0

(
max

i=0,...,n−1
max
pi

E[(Ci+1/Ci)|pi]
)n

.

Note that because p0 is assumed to be uniform, C0 = |H| − 1. A similar conditioning tech-
nique is employed for interval estimation in [BZ74]. The rest of the proof entails showing that
E[(Ci+1/Ci)|pi] < 1, which proofs the result, and requires a very different approach than [BZ74].

The precise form of p1, p2, . . . is derived as follows. Let δi = (1 +
∑
h pi(h) zi(h))/2, the

weighted proportion of hypotheses that agree with yi. The factor that normalizes the updated dis-
tribution in (1) is related to δi as follows. Note that

∑
h pi(h)β(1−zi(h))/2(1 − β)(1+zi(h))/2 =∑

h:zi(h)=−1 pi(h)β +
∑
h:zi(h)=1 pi(h)(1− β) = (1− δi)β + δi(1− β). Thus,

pi+1(h) = pi(h)
β(1−zi(h))/2(1− β)(1+zi(h))/2

(1− δi)β + δi(1− β)

Denote the reciprocal of the update factor for pi+1(h∗) by

γi :=
(1− δi)β + δi(1− β)

β(1−Zi(h∗))/2(1− β)(1+Zi(h∗))/2
, (3)

where zi(h∗) = h∗(xi)yi, and observe that pi+1(h∗) = pi(h∗)/γi. Thus,

Ci+1

Ci
=

(1− pi(h∗)/γi)pi(h∗)
pi(h∗)/γi(1− pi(h∗))

=
γi − pi(h∗)
1− pi(h∗)

.

Now to bound maxpi E[Ci+1/Ci|pi] < 1 we will show that maxpi E[γi|pi] < 1. To accomplish
this, we will assume that pi is arbitrary.

For every A ∈ A and every h ∈ H let h(A) denote the value of h on the set A. Define δ+
A =

(1 +
∑
h pi(h)h(A))/2, the proportion of hypotheses that take the value +1 on A. Note that for

every A we have 0 < δ+
A < 1, since at least one hypothesis has the value −1 on A and p(h) > 0 for

all h ∈ H. Let Ai denote that set that xi is selected from, and consider the four possible situations:

h∗(xi) = +1, yi = +1 : γi =
(1−δ+Ai

)β+δ+Ai
(1−β)

1−β

h∗(xi) = +1, yi = −1 : γi =
δ+Ai

β+(1−δ+Ai
)(1−β)

β

h∗(xi) = −1, yi = +1 : γi =
(1−δ+Ai

)β+δ+Ai
(1−β)

β

h∗(xi) = −1, yi = −1 : γi =
δ+Ai

β+(1−δ+Ai
)(1−β)

1−β

To bound E[γi|pi] it is helpful to condition on Ai. Define qi := Px,y|Ai
(h∗(x) 6= Y ). If h∗(Ai) =

+1, then

E[γi|pi, Ai] =
(1− δ+

Ai
)β + δ+

Ai
(1− β)

1− β
(1− qi) +

δ+
Ai
β + (1− δ+

Ai
)(1− β)

β
qi

= δ+
Ai

+ (1− δ+
Ai

)
[
β(1− qi)

1− β
+
qi(1− β)

β

]
.
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Define γ+
i (Ai) := δ+

Ai
+ (1− δ+

Ai
)
[
β(1−qi)

1−β + qi(1−β)
β

]
. Similarly, if h∗(Ai) = −1, then

E[γi|pi, Ai] = (1− δ+
Ai

) + δ+
Ai

[
β(1− qi)

1− β
+
qi(1− β)

β

]
=: γ−i (Ai)

By assumption qi ≤ α < 1/2, and since α < β < 1/2 the factor β(1−qi)
1−β + qi(1−β)

β ≤ β(1−α)
1−β +

α(1−β)
β < 1. Define

ε0 := 1− β(1− α)
1− β

− α(1− β)
β

,

to obtain the bounds

γ+
i (Ai) ≤ δ+

Ai
+ (1− δ+

Ai
)(1− ε0) , (4)

γ−i (Ai) ≤ δ+
Ai

(1− ε0) + (1− δ+
Ai

) . (5)

Since both γ+
i (Ai) and γ−i (Ai) are less than 1, it follows that E[γi|pi] < 1. �

5.2 Proof of Theorem 2

The proof amounts to obtaining upper bounds for γ+
i (Ai) and γ−i (Ai), defined above in (4) and

(5). For every A ∈ A and any probability measure p on H the weighted prediction on A is defined
to be W (p,A) :=

∑
h∈H p(h)h(A), where h(A) is the constant value of h for every x ∈ A. The

following lemma plays a crucial role in the analysis of the modified NGBS algorithm.

Lemma 1 If (X ,H) is neighborly, then for every probability measure p onH there either exists a set
A ∈ A such that |W (p,A)| ≤ c∗ or a pair of neighboring sets A,A′ ∈ A such that W (p,A) > c∗

and W (p,A′) < −c∗.

Proof of Lemma 1: Suppose that minA∈A |W (p,A)| > c∗. Then there must exist A,A′ ∈ A
such that W (p,A) > c∗ and W (p,A′) < −c∗, otherwise c∗ cannot be the minimax moment
of H. To see this suppose, for instance, that W (p,A) > c∗ for all A ∈ A. Then for every
distribution P on X we have

∫
X
∑
h∈H p(h)h(x)dP (x) > c∗. This contradicts the definition of

c∗ since
∫
X
∑
h∈H p(h)h(x)dP (x) ≤

∑
h∈H p(h)|

∫
X h(x) dP (x)| ≤ maxh∈H |

∫
X h(x) dP (x)|.

The neighborly condition guarantees that there exists a sequence of neighboring sets beginning at A
and ending at A′. Since |W (p,A)| > c∗ on every set and the sign of W (p, ·) must change at some
point in the sequence, it follows that there exist neighboring sets satisfying the claim. �

Now consider two distinct situations. Define bi := minA∈A |W (pi, A)|. First suppose that there do
not exist neighboring sets A and A′ with W (pi, A) > bi and W (pi, A′) < −bi. Then by Lemma 1,
this implies that bi ≤ c∗, and according the query selection step of the modified NGBS algorithm,
Ai = arg minA |W (pi, A)|. Note that because |W (pi, Ai)| ≤ c∗, (1− c∗)/2 ≤ δ+

Ai
≤ (1 + c∗)/2.

Hence, both γ+
i (Ai) and γ−i (Ai) are bounded above by 1− ε0(1− c∗)/2.

Now suppose that there exist neighboring sets A and A′ with W (pi, A) > bi and W (pi, A′) < −bi.
Recall that in this case Ai is randomly chosen to be A or A′ with equal probability. Note that
δ+
A > (1 + bi)/2 and δ+

A′ < (1− bi)/2. If h∗(A) = h∗(A′) = +1, then applying (4) results in

E[γi|pi, Ai ∈ {A,A′}] <
1
2

(1 +
1− bi

2
+

1 + bi
2

(1− ε0)) =
1
2

(2− ε0
1 + bi

2
) ≤ 1− ε0/4 ,

since bi > 0. Similarly, if h∗(A) = h∗(A′) = −1, then (5) yields E[γi|pi, Ai ∈ {A,A′}] <
1− ε0/4. If h∗(A) = −1 on A and h∗(A′) = +1, then applying (5) on A and (4) on A′ yields

E[γi|pi, Ai ∈ {A,A′}] ≤
1
2
(
δ+
A(1− ε0) + (1− δ+

A) + δ+
A′ + (1− δ+

A′)(1− ε0)
)

=
1
2

(1− δ+
A + δ+

A′ + (1− ε0)(1 + δ+
A − δ

+
A′))

=
1
2

(2− ε0(1 + δ+
A − δ

+
A′))

= 1− ε0

2
(1 + δ+

A − δ
+
A′) ≤ 1− ε0/2 ,

7



since 0 ≤ δ+
A − δ

+
A′ ≤ 1. The final possibility is that h∗(A) = +1 and h∗(A′) = −1. Apply (4) on

A and (5) on A′ to obtain

E[γi|pi, Ai ∈ {A,A′}] ≤
1
2
(
δ+
A + (1− δ+

A)(1− ε0) + δ+
A′(1− ε0) + (1− δ+

A′)
)

=
1
2

(1 + δ+
A − δ

+
A′ + (1− ε0)(1− δ+

A + δ+
A′))

Next, use the fact that because A and A′ are neighbors, δ+
A − δ

+
A′ = pi(h∗)− pi(−h∗); if −h∗ does

not belong toH, then pi(−h∗) = 0. Hence,

E[γi|pi, Ai ∈ {A,A′}] ≤
1
2

(1 + δ+
A − δ

+
A′ + (1− ε0)(1− δ+

A + δ+
A′))

=
1
2

(1 + pi(h∗)− pi(−h∗) + (1− ε0)(1− pi(h∗) + pi(−h∗)))

≤ 1
2

(1 + pi(h∗) + (1− ε0)(1− pi(h∗))) = 1− ε0

2
(1− pi(h∗)) ,

since the bound is maximized when pi(−h∗) = 0. Now bound E[γi|pi] by the maximum of the
conditional bounds above to obtain

E[γi|pi] ≤ max
{

1− ε0

2
(1− pi(h∗)) , 1− ε0

4
, 1− (1− c∗)ε0

2

}
,

and thus it is easy to see that

E
[
Ci+1

Ci
|pi
]

=
E [γi|pi]− pi(h∗)

1− pi(h∗)
≤ 1−min

{ε0

2
(1− c∗), ε0

4

}
. �

5.3 Proof of Theorem 3

First we show that the pair (Rd,H) is neighborly (Definition 2). Each A ∈ A is a polytope in Rd.
These polytopes are generated by intersections of the halfspaces corresponding to the hypotheses.
Any two polytopes that share a common face are neighbors (the hypothesis whose decision boundary
defines the face, and its complement if it exists, are the only ones that predict different values on
these two sets). Since the polytopes tessellate Rd, the neighborhood graph of A is connected.

Next consider the final bound in the proof of Theorem 2, above. We next show that the value of c∗,
defined in (2), is 0. Since the offsets b of the hypotheses are all less than c in magnitude, it follows
that the distance from the origin to the nearest point of the decision surface of every hypothesis is at
most c. Let Pr denote the uniform probability distribution on a ball of radius r centered at the origin
in Rd. Then for every h of the form sign(〈a, x〉+ b)∣∣∣∣∫

Rd

h(x) dPr(x)
∣∣∣∣ ≤ c

r
,

and limr→∞
∣∣∫
X h(x) dPr(x)

∣∣ = 0 and so c∗ = 0.

Lastly, note that the modified NGBS algorithm involves computing
∑
h∈H pi(h)h(A) for allA ∈ A

at each step. The computational complexity of each step is therefore proportional to the cardinality
of A, which is equal to the number of polytopes generated by intersections of half-spaces. It is
known that |A| =

∑d
i=0

(|H|
i

)
= O(|H|d) [Buc43]. �

8



References

[AMM+98] E. M. Arkin, H. Meijer, J. S. B. Mitchell, D. Rappaport, and S.S. Skiena. Decision trees
for geometric models. Intl. J. Computational Geometry and Applications, 8(3):343–
363, 1998.

[Ang01] D. Angluin. Queries revisited. Springer Lecture Notes in Comp. Sci.: Algorithmic
Learning Theory, pages 12–31, 2001.

[BBZ07] M.-F. Balcan, A. Broder, and T. Zhang. Margin based active learning. In Conf. on
Learning Theory (COLT), 2007.

[Buc43] R. C. Buck. Partition of space. The American Math. Monthly, 50(9):541–544, 1943.
[BZ74] M. V. Burnashev and K. Sh. Zigangirov. An interval estimation problem for controlled

observations. Problems in Information Transmission, 10:223–231, 1974.
[CN08] R. Castro and R. Nowak. Minimax bounds for active learning. IEEE Trans. Info.

Theory, pages 2339–2353, 2008.
[Das04] S. Dasgupta. Analysis of a greedy active learning strategy. In Neural Information

Processing Systems, 2004.
[FRPU94] U. Feige, E. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information.

SIAM J. Comput., 23(5):1001–1018, 1994.
[GG74] M. R. Garey and R. L. Graham. Performance bounds on the splitting algorithm for

binary testing. Acta Inf., 3:347–355, 1974.
[GJ96] D. Geman and B. Jedynak. An active testing model for tracking roads in satellite

images. IEEE Trans. PAMI, 18(1):1–14, 1996.
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