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Abstract

The linear correlation coefficient is typically used to dwterize and analyze de-
pendencies of neural spike counts. Here, we show that thelation coefficient is
in general insufficient to characterize these dependengiesconstruct two neu-
ron spike count models with Poisson-like marginals and vheyr dependence
structure using copulas. To this end, we construct a copaladllows to keep
the spike counts uncorrelated while varying their depeodetrength. Moreover,
we employ a network of leaky integrate-and-fire neurons vestigate whether
weakly correlated spike counts with strong dependenciedilely to occur in
real networks. We find that the entropy of uncorrelated bpeddent spike count
distributions can deviate from the corresponding distiduwith independent
components by more th&d % and that weakly correlated but strongly dependent
spike counts are very likely to occur in biological netwark@ally, we introduce
a test for deciding whether the dependence structure oiftaisbns with Poisson-
like marginals is well characterized by the linear coriielatoefficient and verify
it for different copula-based models.

1 Introduction

The linear correlation coefficient is of central importairtenany studies that deal with spike count
data of neural populations. For example, a low correlatoefficient is often used as an evidence
for independence in recorded data and to justify simpldgyimodel assumptions (e.d., [2]). In line

with this many computational studies constructed distidims for observed data based solely on
reported correlation coefficient8,[4, 5, 6]. The correlation coefficient is in this sense treated as an
equivalent to the full dependence.

The correlation coefficient is also extensively used in cio@tion with information measures such
as the Fisher information (for continuous variables onty] the Shannon information to assess the
importance of couplings between neurons for neural codifilg The discussion in the literature
encircles two main topics. On the one hand, it is debated velgiairwise correlations versus
higher order correlations across different neurons arfecgrit for obtaining good estimates of the
information (see e.g8] 9, 10]). On the other hand, it is questioned whether correlatioaster at

all (see e.g.11, 12, 13]). In [13], for example, based on the correlation coefficient it wagiad
that the impact of correlations is negligible for small ptgpions of neurons.

The correlation coefficient is one measure of dependenceguuihers. It has become common to
report only the correlation coefficient of recorded spilegrts without reporting any other properties



of the actual dependence structure (see 8,d.4, 15]). The problem with this common practice is
that it is unclear beforehand whether the linear corretatimefficient suffices to describe the depen-
dence or at least thelevantpart of the dependence. Of course, it is well known tiatorrelated
does not implystatistically independentYet, it might seem likely that this is not important for
realistic spike count distributions which have a Poisska-thape. Problems could be restricted
to pathological cases that are very unlikely to occur inisialbiological networks. At least one
might expect to find a tendency of weak dependencies for veleded distributions with Poisson-
like marginals. It might also seem likely that these depeanas are unimportant in terms of typical
information measures even if they are present and go umtbticare ignored.

In this paper we show that these assumptions are false. dntteedependence structure can have
a profound impact on the information of spike count disttids with Poisson-like single neuron
statistics. This impact can be substantial not only fordamgtworks of neurons but even for two
neuron distributions. As a matter of fact, the correlatioafficient places only a weak constraint on
the dependence structure. Moreover, we show that unctedeta weakly correlated spike counts
with strong dependencies are very likely to be common indgiglal networks. Thus, it is not
sufficient to report only the correlation coefficient or taide strong implications like independence
from a low correlation coefficient alone. At least a statistitest should be applied that states for
a given significance level whether the dependence is welackerized by the linear correlation
coefficient. We will introduce such a test in this paper. Tést is adjusted to the setting that a
neuroscientist typically faces, namely the case of Pouigernspike count distributions of single
neurons and small numbers of samples.

In the next section, we describe state-of-the-art methodsibdeling dependent spike counts, to
compute their entropy, and to generate network models barsedtegrate-and-fire neurons. Sec-
tion 3 shows examples of what can go wrong for entropy estimaticgrwhlying on the correlation
coefficient only. Emergences of such cases in simple netmadels are explored. Sectidrintro-
duces the linear correlation test which is tailored to thedseof neuroscience applications and the
section examines its performance on different dependeineetisres. The paper concludes with a
discussion of the advantages and limitations of the pregemethods and cases.

2 General methods

We will now describe formal aspects of spike count modelsthait Shannon information.

2.1 Copula-based models with discrete marginals

A copulais a cumulative distribution function (CDF) whighdefined on the unit hypercube and has
uniform marginals 16]. Formally, a bivariate copul&’ is defined as follows:

Definition 1. A copulais a functionC : [0, 1]> — [0, 1] such that:
1. Vu,v € [0,1]: C(u,0) =0 = C(0,v) andC(u,1) =vandC(1,v) = v.

2. V’ul,l}l,UQ,’UQ S [0, 1] with u; < ug andvy < v
C(ug,v2) — Clug,v1) — C(uy,v3) + C(ug,vy) > 0.

Copulas can be used to couple arbitrary marginal CDK’s, F'x, to form a joint CDFF'g, such that
Fg¢(ri,re) = C(Fx,(r1), Fx,(r2)) holds [L6]. There are many families of copulas representing
different dependence structures. One example is the atealfirank family 17]. Its CDF is given

by

e—0—-1

Co(u,v) =
ol v) {uv if 6 = 0.

The Frank family is commutative and radial symmetric: it®kability densitycy abides by
V(u,v) € [0,1]? : cp(u,v) = cg(1—u, 1—v) [17]. The scalar parametércontrols the strength of de-
pendence. A8 — +oo the copula approaches deterministic positive/negatipedgence: knowl-
edge of one variable implies knowledge of the other (sceddfiechet-Hoeffding bound4.f]). The
linear correlation coefficient is capable of measuring ttépendence. Another example is the bi-
variate Gaussian copula family defined@gu, v) = ¢o(¢~(u), d~1(v)), wheregy is the CDF of

1 (e=%%_1)(e=9"—1) i
eln(l—i-—) if 6 0, @



the bivariate zero-mean unit-variance multivariate ndmigiribution with correlatiord and¢ " is

the inverse of the CDF of the univariate zero-mean unitavar@ Gaussian distribution. This fam-
ily can be used to construct multivariate distributionsha@auss-like dependencies and arbitrary
marginals.

For a given realizatiom, which can represent the counts of two neurons, we can;set Fy, (r;)
and Fx () = Cy(u), whereF, can be arbitrary univariate CDF's. Thereby, we can genexate
multivariate distribution with specific marginalsy, and a dependence structure determined’by

Copulas allow us to have different discrete marginal distions [L8, 19]. Typically, the Poisson
distribution is a good approximation to spike count vaoas of single neurong)]. For this distri-
bution the CDF’s of the marginals take the form

where )\; is the mean spike count of neurérior a given bin size. We will also use the negative
binomial distribution as a generalization of the Poissatritiution:

SESV | T(vs + k)

Fx. (r; \i,v;) = a0 ’
X, (T‘, v ) . k! (1 + %)Uz F(Ui)(Ui + /\L)k

wherel is the gamma function. The additional parametecontrols the degree of overdispersion:

the smaller the value af;, the greater the Fano factor: the variance is givempy- 2—2 As v;
approaches infinity, the negative binomial distributiomegrges to the Poisson distribution.

Likelihoods of discrete vectors can be computed by applyhey inclusion-exclusion principle
of Poincaé and Sylvester. The probability of a realizatiom , z2) is given by Py (x1,z2) =
Fg(r1,22) — Fg(rr — 1, 22) — Fg(z1,22 — 1) + FX:(JUl_‘— 1,29 — 1). Thus, we can compute the
probability mass of a realizatiotiusing only the CDF ofX .

2.2 Computation of information entropy

The Shannon entropy2]] of dependent spike count¥ is a measure of the information that a
decoder is missing when it does not know the vafue# X. Itis given by

H(X)=E[[(X)] = ) Pe(@)I(3),
where!l(7) = —log,(Pg(Z)) is the self-information of the realization

2.3 Leaky integrate-and-fire model

The leaky integrate-and-fire neuron is a simple neuron mibdelmodels only subthreshold mem-
brane potentials. The equation for the membrane potestgVen by

v
rn

where E;, denotes the resting membrane potentid}, is the total membrane resistanck, is

the synaptic input current, ang, is the time constant. The model is completed by a rule which
states that whenevér reaches a thresholty;,, an action potential is fired antl is reset to
Vieset [22]. In all of our simulations we used,, = 20ms, R,, = 20 M, V;;, = —50mV,
and V... = Vinie = —65mV, which are typical values found ir2p]. Current-based synaptic
input for an isolated presynaptic release that occurs a&tim 0 can be modeled by the so-called
a-function 22]: I, = Imw— exp(1l— —) The function reaches its pedkat timet = 7, and then
decays with time constan’g We can model an excitatory synapse by a posifiyg, and an in-
hibitory synapse by a negativg,,,.. We used.,,,... = 1 nA for excitatory synapses$,,,.. = —1 nA

for inhibitory synapses, and = 5 ms.

=Ep -V + Rnls,
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Figure 1: Cumulative distribution functions (a-c) and bty density functions (d-f) of selected
Frank shuffle copulas. (a, d): Independenée:= 6, = 0. (b, e): Strong negative dependence
in outer squared; = —30,05 = 5,w = 0.2. (c, f): Strong positive dependence in inner square:
91 = —5, 92 = 30,0.) =0.2.

3 Counter examples

In this section we describe entropy variations that can oatien relying on the correlation coeffi-
cient only. We will evaluate this effect for models of spilaiats which have Poisson-like marginals
and show that such effects can occur in very simple bioldgieavorks.

3.1 Frank shuffle copula

We will now introduce the Frank shuffle copula family. Thigpota family allows arbitrarily strong
dependencies with a correlation coefficient of zero forchttal Poisson-like marginals. It uses two
Frank copulas (see Secti@l) in different regions of its domain such that the linear etation
coefficient would vanish.

Proposition 1. The following function defines a coputé;, 6> € R, w € [0,0.5] :

Co, (u,v) — sp, (w, w, u, v) + 2g, 0, w(MiNfu, v})6p, (W, w,u,v) if (u,v) €
Cal,eg,w(uvv) - (W,l _w)z,
Co, (u,v) otherwise

wheregg (u1, v1, ug, v2) = Cp(ug, v2) — Co(uz, v1) — Co(u1,v2) + Cy(ur, v1) and zg, g, (M) =
S, (w,w,m, 1 — w) /g, (w,w,m, 1 — w).

The proof of the copula properties is given in Appendix This family is capable of modeling
a continuum between independence and deterministic depeadwvhile keeping the correlation
coefficient at zero. There are two regions: the outer reffion? \ (w,1 — w)? contains a Frank
copula withd; and the inner squarey, 1 —w)? contains a Frank copula with modified by a factor

z. If we would restrict our analysis to copula-based distiis with continuous marginals it would
be sufficient to seled; = —605 and to adjusi such that the correlation coefficient would vanish. In
such cases, the factewould be unnecessary. For discrete marginals, howeveristhiot sufficient
as the CDF is no longer a continuous functionwofDifferent copulas of this family are shown in
Fig. 1.

We will now investigate the impact of this dependence stmecon the entropy of copula-based dis-
tributions with Poisson-like marginals while keeping tlegrelation coefficient at zero. Introducing

more structure into a distribution typically reduces ittrepy. Therefore, we expect that the entropy
can vary considerably for different dependence strenegies) though the correlation is always zero.
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Figure 2: Entropy of distributions based on the Frank shuffipulaCy, ¢, ., for w = 0.05 and
different dependence strengthis The second parametés was selected such that the absolute
correlation coefficient was belon0—'°. For Poisson marginals, we selected ratgs= \, = 5.
For 100 ms bins this would correspond to firing rates &f Hz. For negative binomial marginals
we selected rates; = 2.22, A\, = 4.57 and variances? = 4.24, o3 = 10.99 (values taken from
experimental data recorded in macaque prefrontal cortéX @hms bins [18]). (a): Entropy of the
Cy, .0, .~ based models. (b): Difference between the entropy olthe, ..-based models and the
model with independent elements in percent of the indepandedel.

Fig. 2(a) shows the entropy of the Frank shuffle-based models vaitssBn and negative binomial
marginals for uncorrelated but dependent elemefitswas varied whiled; was estimated using
the line-search algorithm for constrained nonlinear mination [23] with the absolute correlation
coefficient as the objective function. Independence isregthford, = 0. With increasing depen-
dence the entropy decreases until it reaches a minim#mn-at—20. Afterward, it increases again.
This is due to the shape of the marginal distributions. Tlgéoreof strong dependence shifts to a
region with small mass. Therefore, the actual dependenceases. However, in this region the
dependency is almost deterministic and thus does not emragelevant case.

Fig. 2(b) shows the difference to the entropy of correspondingefsodith independent elements.
The entropy deviated by up 5 % for the Poisson marginals and up 16 % for the negative
binomial marginals. So the entropy varies indeed consiolgiia spite of fixed marginals and un-
correlated elements.

We constructed a copula family which allowed us to vary thpetielence strength systematically
while keeping the variables uncorrelated. It could be alghat this is a pathological example. In
the next section, however, we show that such effects carr evem in simple biologically realistic
network models.

3.2 LIF network

We will now explore the feasibility of uncorrelated spikeuods with strong dependencies in a bio-
logically realistic network model. For this purpose, we gt network of leaky integrate-and-fire
neurons (see Sectidh3d). The neurons have two common input populations which éhtoe oppo-
site dependencies (see Fa§a)). Therefore, the correlation should vanish for thetrfgloportion of
input strengths. Note that the bottom input population de<ontradict to Dale’s principle, since
excitatory neurons can project to both excitatory and it neurons.

We can find a copula family which can model this relation ansltixd separate parameters for the
strengths of the input populations:

1 —~1/6:
Cilo, (u,0) =5 (max{u= +v=% —1,0}) e

1 —0, —0, —1/6> @
5 (= (max{u® + (1= v) % — 1,047,

whered, 05 € (0, 00). Itis a mixture of the well known Clayton copula and an onerelat survival
transformation of the Clayton copula€]. As a mixture of copulas this function is again a copula.
A copula of this family is shown in Fig3(b).

Fig. 3(c) shows the correlation coefficients of the network geteerapike counts and afyg™,

fits. The rate of populatio® that introduces negative dependence is kept constante Wiel rate
of populationB that introduces positive dependence is varied. The regudfpike count statistics
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Figure 3: Strong dependence with zero correlation in a bgiokd network model. (a): Neural net-
work models used to generate synthetic spike count dataléaiy integrate-and-fire neurordifl
andLIF2, see Sectio.3) receive spike inputs (circles for excitation, bars forilbition) from four
separate populations of neurons (rectangular boxes atlds;iA-D), but only two populationsR,

D) send input to both neurons. All input spike trains were Saisdistributed. (b): Probability den-
sity of the Clayton mixture modél§;", with 6; = 1.5 andf, = 2.0. (c): Correlation coefficients of
network generated spike counts compared to correlatioasidximum likelihood fit of the”§",)
copula family to these counts. Solid line: correlation ¢ieefnts of counts generated by the network
shown in (a). Each neuron had a total inhibitory input ratd0ofHz and a total excitatory input rate
of 900 Hz. PopulationD had a rate ofi50 Hz. We increased the absolute correlation between the
spike counts by shifting the rates: we decreased the ratesnfiC and increased the rate Bf The
total simulation time amounted 90 s. Spike counts were calculated fy0 ms bins. Dashed line:
Correlation coefficients of the first mixture component(gf™, . Dashed-dotted line: Correlation
coefficients of the second mixture componentigf’,, .

were close to typically recorded data. At approximaily Hz the dependencies cancel each other
out in the correlation coefficient. Nevertheless, the nrixttcomponents of the copula reveal that
there are still dependencies: the correlation coefficiéthe first mixture component that models
negative dependence is relatively constant, while theetaiion coefficient of the second mixture
component increases with the rate of the corresponding ipppulation. Therefore, correlation
coefficients of spike counts that do not at all reflect the stwength of dependence are very likely
to occur in biological networks. Structures similar to thedstigated network can be formed in any
feed-forward network that contains positive and negatieaims.

Typically, the network structure is unknown. Hence, it isth@ construct an appropriate copula that
is parametrized such that individual dependence strergéhevealed. The goal of the next section
is to assess a test that reveals whether the linear coomlatiefficient provides an appropriate
measure for the dependence.

4 Linear correlation test

We will now describe a test for bivariate distributions wiRbisson-like marginals that determines
whether the dependence structure is well characterizelgdiyniear correlation coefficient. This test
combines a variant of the? goodness-of-fit test for discrete multivariate data witemiparametric
model of linear dependence. We fit the semiparametric modkktdata and we apply the goodness-
of-fit test to see if the model is adequate for the data.

The semiparametric model that we use consists of the erapimarginals of the sample coupled by
a parametric copula family. A dependence structure is wedlacterized by the linear correlation
coefficient if it is Gauss-like. So one way to test for lineapdndence would be to use the Gaussian
copula family. However, the likelihood of copula-based migdelies on the CDF which has no
closed form solution for the Gaussian family. Fortunatalwhole class of copula families that are
Gauss-like exists. The Frank family is in this clag4][and its CDF can be computed very efficiently.
We therefore selected this family for our test (see BqThe Frank copula has a scalar parameter
The parameter relates directly to the dependence. Withiggofvthe dependence increases strictly
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Figure 4: Percent acceptance of the linear correlation tigsis for different copula-based models
with different dependence strengths and Poisson margivilisates\; = A, = 5. We usedl 00
repetitions each. The number of samples was varied beth&eand512. On the x-axis we varied
the strength of the dependence by means of the copula paraméa): Frank shuffle family with
correlation kept at zero. (b): Clayton mixture famiy;", with 6, = 26,. (c): Frank family.
(d): Gaussian family.

monotonically. For® = 0 the Frank copula corresponds to independence. Therefareisualy?
independence test is a special case of our linear correlsss.

The parametef of the Frank family can be estimated based on a maximumHigeti fit. However,
this is time-consuming. As an alternative we propose toredt the copula parametgéby means
of Kendall's7. Kendall’sT is a measure of dependence defined @3 i) = Ejrg, wherec is the
number of elements in the séti, j)|(z; < x; andy; < y;) or (z; > x; andy; > y;)} andd is
the number of element in the sgfi, j)|(z; < x; andy; > y;) or (z; > z; andy; < y;)} [16].
For the Frank copula with continuous marginals the relabetweenr and @ is given byr, =
1—3[1— D1(6)], whereDy(z) is the Debye functioDy, (z) = & [ ﬁdt [25]. For discrete
marginals this is an approximate relation. Unfortunate{y} cannot be expressed in closed form,
but can be easily obtained numerically using Newton’s natho

The goodness-of-fit test that we apply for this model is bamedhe y? test R6]. It is widely
applied for testing goodness-of-fit or independence ofgmateal variables. For the test, observed
frequencies are compared to expected frequencies usirigliteing statistic:

x2 " (ni — moi)? 3
3o’ ®
=1

wheren,; are the observed frequencies,; are the expected frequencies, and the number of
bins. For &-dimensional table the sum is over both indices of the tdbtee frequencies are large
enough thenX ? is approximatelyy2-distributed withdf = (N —1)(M —1) — s degrees of freedom,
where N is the number of rows)M is the number of columns, and s is the number of parameters
in the Hy model (1 for the Frank family). Thus, for a given significance levethe test accepts
the hypothesidi, that the observed frequencies are a sample from the distnibformed by the
expected frequencies, X2 is less than thé1 — «) point of the2-distribution withdf degrees of
freedom.

The 2 statistic is an asymptotic statistic. In order to be of anjeathe frequencies in each bin
must be large enough. As a rule of thumb, each frequency dhxmubt least [26]. This cannot

be accomplished for Poisson-like marginals since theraigmfinite number of bins. For such
cases Loukas and Kem@1] propose the ordered expected-frequencies procedure eXpected
frequenciesn, are sorted monotonically decreasing intb-dimensional array. The corresponding
observed frequencies form anothedimensional array. Then the frequencies in both arrays are
grouped from left to right such that the groupeg frequencies reach a specified minimum expected
frequency (MEF), e.g. MEE 1 as in R7]. The x? statistic is then estimated using Ejwith the
grouped expected and grouped observed frequencies.

To verify the test we applied it to samples from copula-badisttibutions with Poisson marginals
and four different copula families: the Frank shuffle fam(iBropositionl), the Clayton mixture
family (Eq. 2), the Frank family (Eql), and the Gaussian family (Secti@l). For the Frank
family and the Gaussian family the linear correlation caoeédfit is well suited to characterize their



dependence. We therefore expected that the test shoulgtadgeregardless of the dependence
strength. In contrast, for the Frank shuffle family and thay@n mixture family the linear corre-
lation does not reflect the dependence strength. Henceeshshould reject/, most of the time
when there is dependence.

The acceptance rates for these copulas are shown irtFigor each of the families there was no
dependence when the first copula parameter was equal tolzexd-rank and the Gaussian families
have only Gauss-like dependence, meaning the correlatiefficent is well-suited to describe the
data. In all of these cases the achieved Type | error was sheallthe acceptance rate &f, was
close to the desired value.5). The plots in (a) and (b) indicate the Type Il errof; was accepted
although the dependence structure of the counts was notsdies The Type |l error decreased
for increasing sample sizes. This is reasonable siXiéds only asymptoticallyy2-distributed.
Therefore, the test is unreliable when dependencies anplsaizes are both very small.

5 Conclusion

We investigated a worst-case scenario for reliance ontieaticorrelation coefficient for analyzing
dependent spike counts using the Shannon information. Jike sounts were uncorrelated but had
a strong dependence. Thus, relying solely on the correlabefficient would lead to an oversight of
such dependencies. Although uncorrelated with fixed malgihe information varied by more than
25 %. Therefore, the dependence was not negligible in termseoémtropy. Furthermore, we could
show that similar scenarios are very likely to occur in raaldgical networks. Our test provides a
convenient tool to verify whether the correlation coeffitties the right measure for an assessment of
the dependence. If the test rejects the Gauss-like depeadspothesis, more elaborate measures
of the dependence should be applied. An adequate copuléyfprovides one way to find such a
measure. In general, however, it is hard to find the rightpatec family. Directions for future
research include a systematic approach for handling teenaliive case when one has to deal with
the full dependence structure and a closer look at expetattgobserved dependencies.

Acknowledgments. This work was supported by BMBF grant 01GQ0410.

A Proof of proposition 1

Proof. We show that’y, 4, ., is a copula. Sinc€y, g, ., is commutative we assume w.l.og< v.
Foru = 0orv = 0and foru = 1 orv = 1 we haveCy, g, ..(u,v) = Cy, (u,v). Hence, property 1
follows directly fromCyp,. It remains to show that’y, 4, ., iS 2-increasing (property 2). We will
show this in two steps:

1) We show thaty, g, ., is continuous: Fows = 1 —w andu € (w, ws):
So, (w,w7u,w2)

w,w, u,w
gaz(w’wvuaw2)<02( B 2)

lim Cp, 0, w(u,t) = Co, (u,w2) — 5o, (w, w, u,w2) +
t,wa

= Cp, (u,w2).
Forv € (w,1 —w):
lim Cy, 0, .w(t,v) = Cp, (w,v) — ¢, (W, w,w,v) + lim G _w)gg (w,w, t,v).
Nw TR ' U N\ gy (Wyw, B, 1 —w) 2T
We can use I'@pital’s rule sincdimy\ , sp(w,w,t,1 —w) = 0. Itis easy to verify that
9Cy e~ (e —1)

ou () = e — 1+ (e7u —1)(e 0 —1)°
Thus, the quotient is constant alidh,~ ., Co, ¢, .« (t,v) = Co, (w,v) — 0+ 0.

2) Cy, 0, has non-negative density almost everywherg®n]?. This is obvious foru;,v; ¢

[w,1 — w]?, because’y, is a copula. Straightforward but tedious algebra shows\thatv; €
8%C, w

(w, 1 —w)? : =522 (g, v1) > 0.

Thus, Cy, ¢, is continuous and has density almost everywhergom]?> and is therefore-

increasing. O
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