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Abstract

The linear correlation coefficient is typically used to characterize and analyze de-
pendencies of neural spike counts. Here, we show that the correlation coefficient is
in general insufficient to characterize these dependencies. We construct two neu-
ron spike count models with Poisson-like marginals and varytheir dependence
structure using copulas. To this end, we construct a copula that allows to keep
the spike counts uncorrelated while varying their dependence strength. Moreover,
we employ a network of leaky integrate-and-fire neurons to investigate whether
weakly correlated spike counts with strong dependencies are likely to occur in
real networks. We find that the entropy of uncorrelated but dependent spike count
distributions can deviate from the corresponding distribution with independent
components by more than25 % and that weakly correlated but strongly dependent
spike counts are very likely to occur in biological networks. Finally, we introduce
a test for deciding whether the dependence structure of distributions with Poisson-
like marginals is well characterized by the linear correlation coefficient and verify
it for different copula-based models.

1 Introduction

The linear correlation coefficient is of central importancein many studies that deal with spike count
data of neural populations. For example, a low correlation coefficient is often used as an evidence
for independence in recorded data and to justify simplifying model assumptions (e.g. [1, 2]). In line
with this many computational studies constructed distributions for observed data based solely on
reported correlation coefficients [3, 4, 5, 6]. The correlation coefficient is in this sense treated as an
equivalent to the full dependence.

The correlation coefficient is also extensively used in combination with information measures such
as the Fisher information (for continuous variables only) and the Shannon information to assess the
importance of couplings between neurons for neural coding [7]. The discussion in the literature
encircles two main topics. On the one hand, it is debated whether pairwise correlations versus
higher order correlations across different neurons are sufficient for obtaining good estimates of the
information (see e.g. [8, 9, 10]). On the other hand, it is questioned whether correlationsmatter at
all (see e.g. [11, 12, 13]). In [13], for example, based on the correlation coefficient it was argued
that the impact of correlations is negligible for small populations of neurons.

The correlation coefficient is one measure of dependence among others. It has become common to
report only the correlation coefficient of recorded spike trains without reporting any other properties



of the actual dependence structure (see e.g. [3, 14, 15]). The problem with this common practice is
that it is unclear beforehand whether the linear correlation coefficient suffices to describe the depen-
dence or at least therelevantpart of the dependence. Of course, it is well known thatuncorrelated
does not implystatistically independent. Yet, it might seem likely that this is not important for
realistic spike count distributions which have a Poisson-like shape. Problems could be restricted
to pathological cases that are very unlikely to occur in realistic biological networks. At least one
might expect to find a tendency of weak dependencies for uncorrelated distributions with Poisson-
like marginals. It might also seem likely that these dependencies are unimportant in terms of typical
information measures even if they are present and go unnoticed or are ignored.

In this paper we show that these assumptions are false. Indeed, the dependence structure can have
a profound impact on the information of spike count distributions with Poisson-like single neuron
statistics. This impact can be substantial not only for large networks of neurons but even for two
neuron distributions. As a matter of fact, the correlation coefficient places only a weak constraint on
the dependence structure. Moreover, we show that uncorrelated or weakly correlated spike counts
with strong dependencies are very likely to be common in biological networks. Thus, it is not
sufficient to report only the correlation coefficient or to derive strong implications like independence
from a low correlation coefficient alone. At least a statistical test should be applied that states for
a given significance level whether the dependence is well characterized by the linear correlation
coefficient. We will introduce such a test in this paper. The test is adjusted to the setting that a
neuroscientist typically faces, namely the case of Poisson-like spike count distributions of single
neurons and small numbers of samples.

In the next section, we describe state-of-the-art methods for modeling dependent spike counts, to
compute their entropy, and to generate network models basedon integrate-and-fire neurons. Sec-
tion 3 shows examples of what can go wrong for entropy estimation when relying on the correlation
coefficient only. Emergences of such cases in simple networkmodels are explored. Section4 intro-
duces the linear correlation test which is tailored to the needs of neuroscience applications and the
section examines its performance on different dependence structures. The paper concludes with a
discussion of the advantages and limitations of the presented methods and cases.

2 General methods

We will now describe formal aspects of spike count models andtheir Shannon information.

2.1 Copula-based models with discrete marginals

A copula is a cumulative distribution function (CDF) which is defined on the unit hypercube and has
uniform marginals [16]. Formally, a bivariate copulaC is defined as follows:

Definition 1. A copulais a functionC : [0, 1]2 −→ [0, 1] such that:

1. ∀u, v ∈ [0, 1]: C(u, 0) = 0 = C(0, v) andC(u, 1) = u andC(1, v) = v.

2. ∀u1, v1, u2, v2 ∈ [0, 1] with u1 ≤ u2 andv1 ≤ v2:
C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1) ≥ 0.

Copulas can be used to couple arbitrary marginal CDF’sFX1
, FX2

to form a joint CDFF ~X , such that
F ~X(r1, r2) = C(FX1

(r1), FX2
(r2)) holds [16]. There are many families of copulas representing

different dependence structures. One example is the bivariate Frank family [17]. Its CDF is given
by

Cθ(u, v) =

{

− 1
θ ln

(

1 + (e−θu−1)(e−θv−1)
e−θ−1

)

if θ 6= 0,

uv if θ = 0.
(1)

The Frank family is commutative and radial symmetric: its probability densitycθ abides by
∀(u, v) ∈ [0, 1]2 : cθ(u, v) = cθ(1−u, 1−v) [17]. The scalar parameterθ controls the strength of de-
pendence. Asθ → ±∞ the copula approaches deterministic positive/negative dependence: knowl-
edge of one variable implies knowledge of the other (so-called Fŕechet-Hoeffding bounds [16]). The
linear correlation coefficient is capable of measuring thisdependence. Another example is the bi-
variate Gaussian copula family defined asCθ(u, v) = φθ(φ

−1(u), φ−1(v)), whereφθ is the CDF of



the bivariate zero-mean unit-variance multivariate normal distribution with correlationθ andφ−1 is
the inverse of the CDF of the univariate zero-mean unit-variance Gaussian distribution. This fam-
ily can be used to construct multivariate distributions with Gauss-like dependencies and arbitrary
marginals.

For a given realization~r, which can represent the counts of two neurons, we can setui = FXi
(ri)

andFX(~r) = Cθ(~u), whereFXi
can be arbitrary univariate CDF’s. Thereby, we can generatea

multivariate distribution with specific marginalsFXi
and a dependence structure determined byC.

Copulas allow us to have different discrete marginal distributions [18, 19]. Typically, the Poisson
distribution is a good approximation to spike count variations of single neurons [20]. For this distri-
bution the CDF’s of the marginals take the form

FXi
(r;λi) =

⌊r⌋
∑

k=0

λk
i

k!
e−λi ,

whereλi is the mean spike count of neuroni for a given bin size. We will also use the negative
binomial distribution as a generalization of the Poisson distribution:

FXi
(r;λi, υi) =

⌊r⌋
∑

k=0

λk
i

k!

1

(1 + λi

υi
)υi

Γ(υi + k)

Γ(υi)(υi + λi)k
,

whereΓ is the gamma function. The additional parameterυi controls the degree of overdispersion:

the smaller the value ofυi, the greater the Fano factor: the variance is given byλi +
λ2

i

υi
. As υi

approaches infinity, the negative binomial distribution converges to the Poisson distribution.

Likelihoods of discrete vectors can be computed by applyingthe inclusion-exclusion principle
of Poincaŕe and Sylvester. The probability of a realization(x1, x2) is given byP ~X(x1, x2) =
F ~X(x1, x2)−F ~X(x1 − 1, x2)−F ~X(x1, x2 − 1) + F ~X(x1 − 1, x2 − 1). Thus, we can compute the

probability mass of a realization~x using only the CDF of~X.

2.2 Computation of information entropy

The Shannon entropy [21] of dependent spike counts~X is a measure of the information that a
decoder is missing when it does not know the value~x of ~X. It is given by

H( ~X) = E[I( ~X)] =
∑

~x∈Nd

P ~X(~x)I(~x),

whereI(~x) = − log2(P ~X(~x)) is the self-information of the realization~x.

2.3 Leaky integrate-and-fire model

The leaky integrate-and-fire neuron is a simple neuron modelthat models only subthreshold mem-
brane potentials. The equation for the membrane potential is given by

τm
dV

dt
= EL − V + RmIs,

whereEL denotes the resting membrane potential,Rm is the total membrane resistance,Is is
the synaptic input current, andτm is the time constant. The model is completed by a rule which
states that wheneverV reaches a thresholdVth, an action potential is fired andV is reset to
Vreset [22]. In all of our simulations we usedτm = 20 ms, Rm = 20 MΩ, Vth = −50 mV,
andVreset = Vinit = −65 mV, which are typical values found in [22]. Current-based synaptic
input for an isolated presynaptic release that occurs at time t = 0 can be modeled by the so-called
α-function [22]: Is = Imax

t
τs

exp(1− t
τs

). The function reaches its peakIs at timet = τs and then
decays with time constantτs. We can model an excitatory synapse by a positiveImax and an in-
hibitory synapse by a negativeImax. We usedImax = 1 nA for excitatory synapses,Imax = −1 nA
for inhibitory synapses, andτs = 5 ms.
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Figure 1: Cumulative distribution functions (a-c) and probability density functions (d-f) of selected
Frank shuffle copulas. (a, d): Independence:θ1 = θ2 = 0. (b, e): Strong negative dependence
in outer square:θ1 = −30, θ2 = 5, ω = 0.2. (c, f): Strong positive dependence in inner square:
θ1 = −5, θ2 = 30, ω = 0.2.

3 Counter examples

In this section we describe entropy variations that can occur when relying on the correlation coeffi-
cient only. We will evaluate this effect for models of spike counts which have Poisson-like marginals
and show that such effects can occur in very simple biological networks.

3.1 Frank shuffle copula

We will now introduce the Frank shuffle copula family. This copula family allows arbitrarily strong
dependencies with a correlation coefficient of zero for attached Poisson-like marginals. It uses two
Frank copulas (see Section2.1) in different regions of its domain such that the linear correlation
coefficient would vanish.
Proposition 1. The following function defines a copula∀θ1, θ2 ∈ R, ω ∈ [0, 0.5] :

Cθ1,θ2,ω(u, v) =







Cθ1
(u, v) − ςθ1

(ω, ω, u, v) + zθ1,θ2,ω(min{u, v})ςθ2
(ω, ω, u, v) if (u, v) ∈

(ω, 1 − ω)2,

Cθ1
(u, v) otherwise,

whereςθ(u1, v1, u2, v2) = Cθ(u2, v2) − Cθ(u2, v1) − Cθ(u1, v2) + Cθ(u1, v1) andzθ1,θ2,ω(m) =
ςθ1

(ω, ω,m, 1 − ω)/ςθ2
(ω, ω,m, 1 − ω).

The proof of the copula properties is given in AppendixA. This family is capable of modeling
a continuum between independence and deterministic dependence while keeping the correlation
coefficient at zero. There are two regions: the outer region[0, 1]2 \ (ω, 1 − ω)2 contains a Frank
copula withθ1 and the inner square(ω, 1−ω)2 contains a Frank copula withθ2 modified by a factor
z. If we would restrict our analysis to copula-based distributions with continuous marginals it would
be sufficient to selectθ1 = −θ2 and to adjustω such that the correlation coefficient would vanish. In
such cases, the factorz would be unnecessary. For discrete marginals, however, this is not sufficient
as the CDF is no longer a continuous function ofω. Different copulas of this family are shown in
Fig. 1.

We will now investigate the impact of this dependence structure on the entropy of copula-based dis-
tributions with Poisson-like marginals while keeping the correlation coefficient at zero. Introducing
more structure into a distribution typically reduces its entropy. Therefore, we expect that the entropy
can vary considerably for different dependence strengths,even though the correlation is always zero.
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Figure 2: Entropy of distributions based on the Frank shufflecopulaCθ1,θ2,ω for ω = 0.05 and
different dependence strengthsθ1. The second parameterθ2 was selected such that the absolute
correlation coefficient was below10−10. For Poisson marginals, we selected ratesλ1 = λ2 = 5.
For 100 ms bins this would correspond to firing rates of50 Hz. For negative binomial marginals
we selected ratesλ1 = 2.22, λ2 = 4.57 and variancesσ2

1 = 4.24, σ2
2 = 10.99 (values taken from

experimental data recorded in macaque prefrontal cortex and 100 ms bins [18]). (a): Entropy of the
Cθ1,θ2,ω based models. (b): Difference between the entropy of theCθ1,θ2,ω-based models and the
model with independent elements in percent of the independent model.

Fig. 2(a) shows the entropy of the Frank shuffle-based models with Poisson and negative binomial
marginals for uncorrelated but dependent elements.θ1 was varied whileθ2 was estimated using
the line-search algorithm for constrained nonlinear minimization [23] with the absolute correlation
coefficient as the objective function. Independence is attained forθ1 = 0. With increasing depen-
dence the entropy decreases until it reaches a minimum atθ1 = −20. Afterward, it increases again.
This is due to the shape of the marginal distributions. The region of strong dependence shifts to a
region with small mass. Therefore, the actual dependence decreases. However, in this region the
dependency is almost deterministic and thus does not represent a relevant case.

Fig. 2(b) shows the difference to the entropy of corresponding models with independent elements.
The entropy deviated by up to25 % for the Poisson marginals and up to15 % for the negative
binomial marginals. So the entropy varies indeed considerably in spite of fixed marginals and un-
correlated elements.

We constructed a copula family which allowed us to vary the dependence strength systematically
while keeping the variables uncorrelated. It could be argued that this is a pathological example. In
the next section, however, we show that such effects can occur even in simple biologically realistic
network models.

3.2 LIF network

We will now explore the feasibility of uncorrelated spike counts with strong dependencies in a bio-
logically realistic network model. For this purpose, we setup a network of leaky integrate-and-fire
neurons (see Section2.3). The neurons have two common input populations which introduce oppo-
site dependencies (see Fig.3(a)). Therefore, the correlation should vanish for the right proportion of
input strengths. Note that the bottom input population doesnot contradict to Dale’s principle, since
excitatory neurons can project to both excitatory and inhibitory neurons.

We can find a copula family which can model this relation and has two separate parameters for the
strengths of the input populations:

Ccm
θ1,θ2

(u, v) =
1

2

(

max
{

u−θ1 + v−θ1 − 1, 0
})−1/θ1

+
1

2

(

u −
(

max
{

u−θ2 + (1 − v)−θ2 − 1, 0
})−1/θ2

)

,

(2)

whereθ1, θ2 ∈ (0,∞). It is a mixture of the well known Clayton copula and an one element survival
transformation of the Clayton copula [16]. As a mixture of copulas this function is again a copula.
A copula of this family is shown in Fig.3(b).

Fig. 3(c) shows the correlation coefficients of the network generated spike counts and ofCcm
θ1,θ2

fits. The rate of populationD that introduces negative dependence is kept constant, while the rate
of populationB that introduces positive dependence is varied. The resulting spike count statistics
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Figure 3: Strong dependence with zero correlation in a biological network model. (a): Neural net-
work models used to generate synthetic spike count data. Twoleaky integrate-and-fire neurons (LIF1
andLIF2, see Section2.3) receive spike inputs (circles for excitation, bars for inhibition) from four
separate populations of neurons (rectangular boxes and circles,A-D), but only two populations (B,
D) send input to both neurons. All input spike trains were Poisson-distributed. (b): Probability den-
sity of the Clayton mixture modelCcm

θ1,θ2
with θ1 = 1.5 andθ2 = 2.0. (c): Correlation coefficients of

network generated spike counts compared to correlations ofa maximum likelihood fit of theCcm
θ1,θ2

copula family to these counts. Solid line: correlation coefficients of counts generated by the network
shown in (a). Each neuron had a total inhibitory input rate of300 Hz and a total excitatory input rate
of 900 Hz. PopulationD had a rate of150 Hz. We increased the absolute correlation between the
spike counts by shifting the rates: we decreased the rates ofA andC and increased the rate ofB. The
total simulation time amounted to200 s. Spike counts were calculated for100 ms bins. Dashed line:
Correlation coefficients of the first mixture component ofCcm

θ1,θ2
. Dashed-dotted line: Correlation

coefficients of the second mixture component ofCcm
θ1,θ2

.

were close to typically recorded data. At approximately275 Hz the dependencies cancel each other
out in the correlation coefficient. Nevertheless, the mixture components of the copula reveal that
there are still dependencies: the correlation coefficient of the first mixture component that models
negative dependence is relatively constant, while the correlation coefficient of the second mixture
component increases with the rate of the corresponding input population. Therefore, correlation
coefficients of spike counts that do not at all reflect the truestrength of dependence are very likely
to occur in biological networks. Structures similar to the investigated network can be formed in any
feed-forward network that contains positive and negative weights.

Typically, the network structure is unknown. Hence, it is hard to construct an appropriate copula that
is parametrized such that individual dependence strengthsare revealed. The goal of the next section
is to assess a test that reveals whether the linear correlation coefficient provides an appropriate
measure for the dependence.

4 Linear correlation test

We will now describe a test for bivariate distributions withPoisson-like marginals that determines
whether the dependence structure is well characterized by the linear correlation coefficient. This test
combines a variant of theχ2 goodness-of-fit test for discrete multivariate data with a semiparametric
model of linear dependence. We fit the semiparametric model to the data and we apply the goodness-
of-fit test to see if the model is adequate for the data.

The semiparametric model that we use consists of the empirical marginals of the sample coupled by
a parametric copula family. A dependence structure is well characterized by the linear correlation
coefficient if it is Gauss-like. So one way to test for linear dependence would be to use the Gaussian
copula family. However, the likelihood of copula-based models relies on the CDF which has no
closed form solution for the Gaussian family. Fortunately,a whole class of copula families that are
Gauss-like exists. The Frank family is in this class [24] and its CDF can be computed very efficiently.
We therefore selected this family for our test (see Eq.1). The Frank copula has a scalar parameterθ.
The parameter relates directly to the dependence. With growing θ the dependence increases strictly



−60−40−200
0

0.5

1

θ
1

%
 A

cc
ep

ta
nc

e 
of

 H
0

 

 

Samples: 128

Samples: 256

Samples: 512

(a)

0 10 20
0

0.5

1

θ
1

%
 A

cc
ep

ta
nc

e 
of

 H
0

(b)

−10 0 10
0

0.5

1

θ

%
 A

cc
ep

ta
nc

e 
of

 H
0

(c)

−0.5 0 0.5
0

0.5

1

θ

%
 A

cc
ep

ta
nc

e 
of

 H
0

(d)

Figure 4: Percent acceptance of the linear correlation hypothesis for different copula-based models
with different dependence strengths and Poisson marginalswith ratesλ1 = λ2 = 5. We used100
repetitions each. The number of samples was varied between128 and512. On the x-axis we varied
the strength of the dependence by means of the copula parameters. (a): Frank shuffle family with
correlation kept at zero. (b): Clayton mixture familyCcm

θ1,θ2
with θ1 = 2θ2. (c): Frank family.

(d): Gaussian family.

monotonically. Forθ = 0 the Frank copula corresponds to independence. Therefore, the usualχ2

independence test is a special case of our linear correlation test.

The parameterθ of the Frank family can be estimated based on a maximum likelihood fit. However,
this is time-consuming. As an alternative we propose to estimate the copula parameterθ by means
of Kendall’s τ . Kendall’sτ is a measure of dependence defined asτ(~x, ~y) = c−d

c+d , wherec is the
number of elements in the set{(i, j)|(xi < xj andyi < yj) or (xi > xj andyi > yj)} andd is
the number of element in the set{(i, j)|(xi < xj andyi > yj) or (xi > xj andyi < yj)} [16].
For the Frank copula with continuous marginals the relationbetweenτ and θ is given byτθ =

1− 4
θ [1−D1(θ)], whereDk(x) is the Debye functionDk(x) = k

xk

∫ x

0
tk

exp(t)−1dt [25]. For discrete

marginals this is an approximate relation. Unfortunately,τ−1
θ cannot be expressed in closed form,

but can be easily obtained numerically using Newton’s method.

The goodness-of-fit test that we apply for this model is basedon theχ2 test [26]. It is widely
applied for testing goodness-of-fit or independence of categorical variables. For the test, observed
frequencies are compared to expected frequencies using thefollowing statistic:

X2 =
k

∑

i=1

(ni − m0i)
2

m0i
, (3)

whereni are the observed frequencies,moi are the expected frequencies, andk is the number of
bins. For a2-dimensional table the sum is over both indices of the table.If the frequencies are large
enough thenX2 is approximatelyχ2-distributed withdf = (N−1)(M −1)−s degrees of freedom,
whereN is the number of rows,M is the number of columns, and s is the number of parameters
in the H0 model (1 for the Frank family). Thus, for a given significance levelα the test accepts
the hypothesisH0 that the observed frequencies are a sample from the distribution formed by the
expected frequencies, ifX2 is less than the(1 − α) point of theχ2-distribution withdf degrees of
freedom.

Theχ2 statistic is an asymptotic statistic. In order to be of any value, the frequencies in each bin
must be large enough. As a rule of thumb, each frequency should be at least5 [26]. This cannot
be accomplished for Poisson-like marginals since there is an infinite number of bins. For such
cases Loukas and Kemp [27] propose the ordered expected-frequencies procedure. Theexpected
frequenciesm0 are sorted monotonically decreasing into a1-dimensional array. The corresponding
observed frequencies form another1-dimensional array. Then the frequencies in both arrays are
grouped from left to right such that the groupedm0 frequencies reach a specified minimum expected
frequency (MEF), e.g. MEF= 1 as in [27]. Theχ2 statistic is then estimated using Eq.3 with the
grouped expected and grouped observed frequencies.

To verify the test we applied it to samples from copula-baseddistributions with Poisson marginals
and four different copula families: the Frank shuffle family(Proposition1), the Clayton mixture
family (Eq. 2), the Frank family (Eq.1), and the Gaussian family (Section2.1). For the Frank
family and the Gaussian family the linear correlation coefficient is well suited to characterize their



dependence. We therefore expected that the test should accept H0, regardless of the dependence
strength. In contrast, for the Frank shuffle family and the Clayton mixture family the linear corre-
lation does not reflect the dependence strength. Hence, the test should rejectH0 most of the time
when there is dependence.

The acceptance rates for these copulas are shown in Fig.4. For each of the families there was no
dependence when the first copula parameter was equal to zero.The Frank and the Gaussian families
have only Gauss-like dependence, meaning the correlation coefficient is well-suited to describe the
data. In all of these cases the achieved Type I error was small, i.e. the acceptance rate ofH0 was
close to the desired value (0.95). The plots in (a) and (b) indicate the Type II errors:H0 was accepted
although the dependence structure of the counts was not Gauss-like. The Type II error decreased
for increasing sample sizes. This is reasonable sinceX2 is only asymptoticallyχ2-distributed.
Therefore, the test is unreliable when dependencies and sample sizes are both very small.

5 Conclusion

We investigated a worst-case scenario for reliance on the linear correlation coefficient for analyzing
dependent spike counts using the Shannon information. The spike counts were uncorrelated but had
a strong dependence. Thus, relying solely on the correlation coefficient would lead to an oversight of
such dependencies. Although uncorrelated with fixed marginals the information varied by more than
25 %. Therefore, the dependence was not negligible in terms of the entropy. Furthermore, we could
show that similar scenarios are very likely to occur in real biological networks. Our test provides a
convenient tool to verify whether the correlation coefficient is the right measure for an assessment of
the dependence. If the test rejects the Gauss-like dependence hypothesis, more elaborate measures
of the dependence should be applied. An adequate copula family provides one way to find such a
measure. In general, however, it is hard to find the right parametric family. Directions for future
research include a systematic approach for handling the alternative case when one has to deal with
the full dependence structure and a closer look at experimentally observed dependencies.

Acknowledgments. This work was supported by BMBF grant 01GQ0410.

A Proof of proposition 1

Proof. We show thatCθ1,θ2,ω is a copula. SinceCθ1,θ2,ω is commutative we assume w.l.o.g.u ≤ v.
For u = 0 or v = 0 and foru = 1 or v = 1 we haveCθ1,θ2,ω(u, v) = Cθ1

(u, v). Hence, property 1
follows directly fromCθ1

. It remains to show thatCθ1,θ2,ω is 2-increasing (property 2). We will
show this in two steps:

1) We show thatCθ1,θ2,ω is continuous: Forω2 = 1 − ω andu ∈ (ω, ω2):

lim
tրω2

Cθ1,θ2,ω(u, t) = Cθ1
(u, ω2) − ςθ1

(ω, ω, u, ω2) +
ςθ1

(ω, ω, u, ω2)

ςθ2
(ω, ω, u, ω2)

ςθ2
(ω, ω, u, ω2)

= Cθ1
(u, ω2).

Forv ∈ (ω, 1 − ω):

lim
tցω

Cθ1,θ2,ω(t, v) = Cθ1
(ω, v) − ςθ1

(ω, ω, ω, v) + lim
tցω

ςθ1
(ω, ω, t, 1 − ω)

ςθ2
(ω, ω, t, 1 − ω)

ςθ2
(ω, ω, t, v).

We can use l’Ĥopital’s rule sincelimtցω ςθ(ω, ω, t, 1 − ω) = 0. It is easy to verify that

∂Cθ

∂u
(v) =

e−θu(e−θv − 1)

e−θ − 1 + (e−θu − 1)(e−θv − 1)
.

Thus, the quotient is constant andlimtցω Cθ1,θ2,ω(t, v) = Cθ1
(ω, v) − 0 + 0.

2) Cθ1,θ2,ω has non-negative density almost everywhere on[0, 1]2. This is obvious foru1, v1 /∈
[ω, 1 − ω]2, becauseCθ1

is a copula. Straightforward but tedious algebra shows that∀u1, v1 ∈

(ω, 1 − ω)2 :
∂2Cθ1,θ2,ω

∂u∂v (u1, v1) ≥ 0.

Thus, Cθ1,θ2,ω is continuous and has density almost everywhere on[0, 1]2 and is therefore2-
increasing.
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