
A Supplementary material  

 

A .1  MCMC a lgor i thm for  the  Thurs ton ian  Mode l  

In our estimation procedure, the goal is to draw samples for the latent variables 𝑥𝑖𝑗  , 𝑧𝑗 ,  𝜇0, 

𝜎0, 𝜇𝑖 , and 𝜎𝑖  given the observed orderings 𝒚j. For this model, we can estimate all latent 

variables through Gibbs sampling. We first sample a value for each 𝑥𝑖𝑗  conditional on all 

other variables according to:  

  𝑥𝑖𝑗  | 𝜇𝑖 ,  𝜎𝑖 ,  𝜇0,  𝜎0, 𝑧𝑗 , 𝑥𝑙 ,𝑗 , 𝑥𝑢 ,𝑗  ~  
N𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑   𝜇𝑖 ,  𝜎𝑖 , 𝑥𝑙 ,𝑗 , 𝑥𝑢 ,𝑗  𝑧𝑗 = 1

N𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑   𝜇0,  𝜎0, 𝑥𝑙 ,𝑗 , 𝑥𝑢 ,𝑗  𝑧𝑗 = 0,
   (A1) 

where the sampling distribution is the truncated normal with mean and standard deviation 

dependent on the latent state 𝑧𝑗 ; with 𝑧𝑗 = 1,  and  𝑧𝑗 = 0, the sample comes from the 

Thurstonian model and the guessing model respectively. The lower and upper bounds for 

truncated normal are determined by 𝑥𝑙 ,𝑗  and 𝑥𝑢 ,𝑗  respectively. The values 𝑥𝑙 ,𝑗  and 𝑥𝑢 ,𝑗  are 

based on the samples 𝒙𝑗  that are ordered right before and after the current value 𝑥𝑖𝑗  

respectively. Specifically, if π(𝑖) denotes the rank given to item 𝑖 and π−1 𝑖  denotes the 

item assigned to rank 𝑖, 𝑙 = π−1 π 𝑖 − 1 , and 𝑢 = π−1 π 𝑖 + 1 . We also define 𝑥𝑙 ,𝑗 = −∞ 

when π 𝑖 = 1, and 𝑥𝑢 ,𝑗 = ∞, when π 𝑖 = 𝑁. With these bounds, the observed data 

influences the possible locations for the samples. I t is guaranteed that the ordering of 

samples 𝒙𝑗  is consistent with the observed ordering 𝒚𝑗  for individual j.  

To sample 𝜇𝑖 , and 𝜎𝑖  given 𝒙, we have: 

  𝜎𝑖
2 | 𝜇𝑖 , 𝑠𝑖

2, 𝐳 ~ Inv-χ2 𝑀(𝑧=1) − 1, 𝑠𝑖
2   (A2) 

   𝜇𝑖  |  𝜎𝑖 , 𝑥 𝑖 , 𝐳 ~ N  𝑥 𝑖 ,  𝜎𝑖  𝑀 𝑧=1   ,  (A3) 

where 𝑠𝑖
2 and 𝑥 𝑖  are the variance and mean of all samples 𝒙𝑖  (restricted to individuals 

assigned to the Thurstonian model) for item i respectively, and 𝑀(𝑧=1) =  𝑧𝑗𝑗 , the number of 

individuals assigned to the Thurstonian model. Similar update equations were used to update 

 𝜇0 and 𝜎0 based on the samples of the individuals assigned to the guessing route:  

  𝜎0
2 | 𝜇0, 𝑠0

2 , 𝐳 ~ Inv-χ2 𝑀(𝑧=0) − 1, 𝑠0
2   (A4) 

   𝜇0 |  𝜎0, 𝑥 0, 𝐳 ~ N  𝑥 0,  𝜎0  𝑀 𝑧=0   .  (A5) 

In order to prevent a drift in the item positions during estimation (as there is no natural zero 

point), we fixed the minimum of 𝜇𝑖  to 0 and the maximum of 𝜇𝑖  to 1, and scaled the other 

variables accordingly. 

Finally, to sample the assignment of individuals to modeling routes, we use  

  𝑝 𝑧𝑗 = 𝑘 | 𝜇𝑖 ,  𝜎𝑖 ,  𝜇0,𝜎0, 𝑥𝑙 ,𝑗 , 𝑥𝑢 ,𝑗  ∝   
 𝑓  𝑥𝑖𝑗 | 𝜇𝑖 ,  𝜎𝑖 

𝑁
𝑖=1 𝑘 = 1

 𝑓  𝑥𝑖𝑗 | 𝜇0,  𝜎0 
𝑁
𝑖=1 𝑘 = 0.

   (A6) 

where 𝑓 𝑥 | 𝜇,𝜎  is the normal probability density function. In our procedure, we ran 20 

chains with a burn-in of 200 iterations. From each chain, we drew 20 samples with an 

interval of 10 iterations. In total, we collected 400 samples. To construct a single group 

answer, we analyzed the ordering of the items according to 𝜇𝑖 , separately for each sample, 

and then picked the mode of this distribution. This corresponds to the most likely order in 

the distribution over orders inferred by the model. 
 

  



A.2  MCMC a lgor i thm for Mal lows  Mode l  

 

In our MCMC algorithm for Mallows model, we use a combination of Metropolis-Hastings 

(MH) and Gibbs sampling steps. To estime 𝝎, we use the MH algorithm based on Lebanon 

and Lafferty (2002). The idea is to move the group estimate 𝝎 by transposing any randomly 

chosen pair of items. The proposal distribution 𝑞 𝝎∗|𝝎  is 

  𝑞 𝝎′|𝝎 =  
1  

𝑛
2
  if 𝑆(𝝎′,𝝎) = 1

0 otherwise,

   (A7) 

 

where 𝑆(𝝎′,𝝎) is the Cayley distance. The Metropolis-Hastings acceptance ratio is 

  

 min  1,
𝑞 𝝎 𝝎′  

𝑞 𝝎′  𝝎 

𝑝 𝒚 𝝎′ ,𝜃 ,𝒛 

𝑝 𝒚 𝝎,𝜃 ,𝒛 
 .  (A8) 

Note that the first likelihood ratio for the proposal distribution equals one because of the 

symmetry in the proposals. Also, in Eq 1., the normalization constant does not depend on 𝝎, 

which can be used to simplify the acceptance ratio to:  

 min  1, exp  −𝜃 𝑑 𝒚𝑗 ,𝝎′ − 𝑑 𝒚𝑗 ,𝝎 𝑧𝑗=1    , (A9) 

where the sum is taken over all individuals currently assigned to Mallows model. To 

facilitate the inference for 𝜃, we used a discretized set of 1000 𝜃 values, logarithmically 

spaced between 10-4 and 2. Let  𝑣𝑘  refer to the kth value in this set. We use a Gibbs sampling 

step for 𝜃 by sampling from the discrete distribution 

  𝑝 𝜃 = 𝑣𝑘 |𝝎, 𝒛,𝒚  ∝  exp  −𝑣𝑘  𝑑 𝒚𝑗 ,𝝎 𝑧𝑗=1 −   logΨ 𝑣𝑘 𝑧𝑗=1  .  (A10) 

Finally, we use a Gibbs sampling step to estimate the latent state 𝑧𝑗  

 𝑝 𝑧𝑗 = 𝑘|𝜃,𝝎, 𝒛−𝑗 ,𝒚𝑗  =  
1 N! k = 0

  exp −𝜃𝑑 𝒚𝑗 ,𝝎 − logΨ 𝜃   k = 1.
   (A11) 

In the MCMC procedure, we ran 20 chains with a burn-in of 200 iterations. From each chain, 

we drew 20 samples with an interval of 10 iterations. In total, we collected 400 samples. To 

construct a single group answer, we picked the most frequently occuring sampled ordering 

𝝎. 

 


