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Abstract

In this paper we study the problem of learning a low-rank (sparse) distance ma-
trix. We propose a novel metric learning model which can simultaneously con-
duct dimension reduction and learn a distance matrix. The sparse representation
involves a mixed-norm regularization which is non-convex. We then show that
it can be equivalently formulated as a convex saddle (min-max) problem. From
this saddle representation, we develop an efficient smooth optimization approach
[17] for sparse metric learning, although the learning model is based on a non-
differentiable loss function. Finally, we run experiments to validate the effective-
ness and efficiency of our sparse metric learning model on various datasets.

1 Introduction

For many machine learning algorithms, the choice of a distance metric has a direct impact on their
success. Hence, choosing a good distance metric remains a challenging problem. There has been
much work attempting to exploit a distance metric in many learning settings, e.g. [8, 9, 10, 12, 20,
22, 23, 25]. These methods have successfully indicated that a good distance metric can significantly
improve the performance of k-nearest neighbor classification and k-means clustering, for example.

A good choice of a distance metric generally preserves the distance structure of the data: the dis-
tance between examples exhibiting similarity should be relatively smaller, in the transformed space,
than between examples exhibiting dissimilarity. For supervised classification, the label information
indicates whether the pair set is in the same class (similar) or in the different classes (dissimilar). In
semi-supervised clustering, the side information conveys the information that a pair of samples are
similar or dissimilar to each other. Since it is very common that the presented data is contaminated
by noise, especially for high-dimensional datasets, a good distance metric should also be minimally
influenced by noise. In this case, a low-rank distance matrix would produce a better generalization
performance than non-sparse counterparts and provide a much faster and efficient distance calcula-
tion for test samples. Hence, a good distance metric should also pursue dimension reduction during
the learning process.

In this paper we present a novel approach to learn a low-rank (sparse) distance matrix. We
first propose in Section 2 a novel metric learning model for estimating the linear transforma-
tion (equivalently distance matrix) that combines and retains the advantages of existing methods
[8, 9, 12, 20, 22, 23, 25]. Our method can simultaneously conduct dimension reduction and learn a
low-rank distance matrix. The sparse representation is realized by a mixed-norm regularization used
in various learning settings [1, 18, 21]. We then show that this non-convex mixed-norm regulariza-
tion framework is equivalent to a convex saddle (min-max) problem. Based on this equivalent rep-
resentation, we develop, in Section 3, Nesterov’s smooth optimization approach [16, 17] for sparse
metric learning using smoothing approximation techniques, although the learning model is based on
a non-differentiable loss function. In Section 4, we demonstrate the effectiveness and efficiency of
our sparse metric learning model with experiments on various datasets.

1



2 Sparse Distance Matrix Learning Model

We begin by introducing necessary notation. Let Nn = {1, 2, . . . , n} for any n ∈ N. The space
of symmetric d times d matrices will be denoted by Sd. If S ∈ Sd is positive definite, we write
it as S º 0. The cone of positive semi-definite matrices is denoted by Sd

+ and denote by Od

the set of d times d orthonormal matrices. For any X, Y ∈ Rd×q, 〈X, Y 〉 := Tr(X>Y ) where
Tr(·) denotes the trace of a matrix. The standard Euclidean norm is denoted by ‖ · ‖. Denote by
z := {(xi, yi) : i ∈ Nn} a training set of n labeled examples with input xi = (x1

i , . . . , x
d
i ) ∈ Rd,

class label yi (not necessary binary) and let xij = xi − xj .

Let P = (P`k)`,k∈Nd
∈ Rd×d be a transformation matrix. Denote by x̂i = Pxi for any i ∈ Nn and

by x̂ = {x̂i : i ∈ Nn} the transformed data matrix. The linear transformation matrix P induces a
distance matrix M = P>P which defines a distance between xi and xj given by

dM (xi, xj) = (xi − xj)>M(xi − xj).
Our sparse metric learning model is based on two principal hypotheses: 1) a good choice of distance
matrix M should preserve the distance structure, i.e. the distance between similar examples should
be relatively smaller than between dissimilar examples; 2) a good distance matrix should also be
able to effectively remove noise leading to dimension reduction.

For the first hypothesis, the distance structure in the transformed space can be specified, for example,
by the following constraints: ‖P (xj − xk)‖2 ≥ ‖P (xi − xj)‖2 + 1,∀(xi, xj) ∈ S and (xj , xk) ∈
D, where S denotes the similarity pairs and D denotes the dissimilarity pairs based on the label
information. Equivalently,

‖x̂j − x̂k)‖2 ≥ ‖x̂i − x̂j‖2 + 1,∀(xi, xj) ∈ S and (xj , xk) ∈ D. (1)
For the second hypothesis, we use a sparse regularization to give a sparse solution. This regu-
larization ranges from element-sparsity for variable selection to a low-rank matrix for dimension
reduction [1, 2, 3, 13, 21]. In particular, for any ` ∈ Nd, denote the `-th row vector of P by P`

and ‖P`‖ = (
∑

k∈Nd
P 2

`k)
1
2 . If ‖P`‖ = 0 then the `-th variable in the transformed space becomes

zero, i.e. x`
i = P`xi = 0 which means that ‖P`‖ = 0 has the effect of eleminating `-th variable.

Motivated by the above observation, a direct way would be to enforce a L1-norm across the vector
(‖P1‖, . . . , ‖Pd‖), i.e.

∑
`∈Nd

‖P`‖. This L1-regularization yields row-vector (feature) sparsity of
x̂ which plays the role of feature selection. Let W = P>P = (W1, . . . , Wd) and we can easily
show that

W` ≡ 0 ⇐⇒ P` ≡ 0.

Motivated by this observation, instead of L1-regularization over vector (‖P1‖, . . . , ‖Pd‖) we can
enforce L1-norm regularization across the vector (‖W1‖, . . . , ‖Wd‖). However, a low-dimensional
projected space x̂ does not mean that its row-vector (feature) should be sparse. Ideally, we ex-
pect that the principal component of x̂ can be sparse. Hence, we introduce an extra orthonormal
transformation U ∈ Od and let x̂i = PUxi. Denote a set of triplets T by

T = {τ = (i, j, k) : i, j, k ∈ Nn , (xi, xj) ∈ S and (xj , xk) ∈ D}. (2)
By introducing slack variables ξ in constraints (1), we propose the following sparse (low-rank)
distance matrix learning formulation:

min
U∈Od

min
W∈Sd

+

∑
τ ξτ + γ||W ||2(2,1)

s.t. 1 + x>ijU
>WUxij ≤ x>kjU

>WUxkj + ξτ ,

ξτ ≥ 0, ∀τ = (i, j, k) ∈ T , and W ∈ Sd
+.

(3)

where ||W ||(2,1) =
∑

`(
∑

k w2
k`)

1
2 denotes the (2, 1)-norm of W . A similar mixed (2, 1)-norm

regularization was used in [1, 18] for multi-task learning and multi-class classification to learn the
sparse representation shared across different tasks or classes.

2.1 Equivalent Saddle Representation

We now turn our attention to an equivalent saddle (min-max) representation for sparse metric learn-
ing (3) which is essential for developing optimization algorithms in the next section. To this end, we
need the following lemma which develops and extends a similar version in multi-task learning [1, 2]
to the case of learning a positive semi-definite distance matrix.
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Lemma 1. Problem (3) is equivalent to the following convex optimization problem

min
Mº0

∑

τ=(i,j,k)∈T
(1 + x>ijMxij − x>kjMxkj)+ + γ(Tr(M))2 (4)

Proof. Let M = UWU> in equation (3) and then W = U>MU . Hence, (3) is reduced to the
following

min
M∈Sd

+

min
U∈Od

∑
τ

ξτ + γ||U>MU ||2(2,1) (5)

s.t. x>ijMxij ≤ x>kjMxkj + ξτ ,

ξτ ≥ 0 ∀τ = (i, j, k) ∈ T , and M ∈ Sd
+.

Now, for any fixed M in equation (5), by the eigen-decomposition of M there exists Ũ ∈ Od

such that M = Ũ>λ(M)Ũ . Here, the diagonal matrix λ(M) = diag(λ1, λ2, . . . , λd) where λi is
the i-th eigenvalue of M . Let V = ŨU ∈ Od, and then we have minU∈Od ||U>MU ||(2,1) =
minU∈Od ||(ŨU)>λ(M)ŨU ||(2,1) = minV ∈Od ||V >λ(M)V ||(2,1). Observe that

||V >λ(M)V ||(2,1) =
∑

i(
∑

j(
∑

k VkiλkVkj)2)
1
2

=
∑

i

(∑
k,k′(

∑
j VkiVk′i)λkVkjλk′Vk′j

) 1
2 =

∑
i

(∑
k λ2

kV 2
ki

) 1
2

(6)

where, in the last equality, we use the fact that V ∈ Od, i.e.
∑

j VkjVk′j = δkk′ . Applying Cauchy-

Schwartz’s inequality implies that
∑

k λkV 2
ki ≤

(∑
k λ2

kV 2
ki

) 1
2 (

∑
k V 2

ki)
1
2 =

(∑
k λ2

kV 2
ki

) 1
2 . Putting

this back into (6) yields ||V >λ(M)V ||(2,1) ≥
∑

i

∑
k λkV 2

ki =
∑

k λk = Tr(M), where we use the
fact V ∈ Od again. However, if we select V to be identity matrix Id, ||V >λ(M)V ||(2,1) = Tr(M).
Hence, minU∈Od ||U>MU ||(2,1) = minV ∈Od ||V >λ(M)V ||(2,1) = Tr(M). Putting this back into
equation (5) the result follows.

From the above lemma, we are ready to present an equivalent saddle (min-max) representation of
problem (3). First, let Q1 = {uτ : τ ∈ T , 0 ≤ uτ ≤ 1} and Q2 = {M ∈ Sd

+ : Tr(M) ≤
√

T/γ }
where T is the cardinality of triplet set T i.e. T = #{τ ∈ T }.
Theorem 1. Problem (4) is equivalent to the following saddle representation

min
u∈Q1

max
M∈Q2

{
〈

∑

τ=(i,j,k)∈T
uτ (xjkx>jk − xijx

>
ij),M〉 − γ(Tr(M))2

}
−

∑

t∈T
uτ (7)

Proof. Suppose that M∗ is an optimal solution of problem (4). By its definition, there holds
γ(Tr(M∗))2 ≤ ∑

τ∈T (1+x>kjMxik−x>kjMxkj)+ + γ(Tr(M))2 for any M º 0. Letting M = 0
yields that Tr(M∗) ≤

√
T/γ. Hence, problem (4) is identical to

min
M∈Q2

∑

τ=(i,j,k)∈T
(1 + x>ijMxij − x>kjMxkj)+ + γ(Tr(M))2. (8)

Observe that s+ = max{0, s} = maxα{sα : 0 ≤ α ≤ 1}. Consequently, the
above equation can be written as minM∈Q2 max0≤u≤1

∑
τ∈T uτ (1 + x>kjMxik − x>ijMxij) +

γ(Tr(M))2. By the min-max theorem (e.g. [5]), the above problem is equivalent to
minu∈Q1 maxM∈Q2

{∑
τ∈T uτ (−x>ijMxij + x>jkMxjk)− γ(Tr(M))2

}
−∑

τ∈T ut. Combining

this with the fact that x>jkMxjk − x>ijMxij = 〈xjkx>jk − xijx
>
ij ,M〉 completes the proof of the

theorem.

2.2 Related Work

There is a considerable amount of work on metric learning. In [9], an information-theoretic approach
to metric learning (ITML) is developed which equivalently transforms the metric learning problem
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to that of learning an optimal Gaussian distribution with respect to an relative entropy. The method
of Relevant Component analysis (RCA)[7] attempts to find a distance metric which can minimize
the covariance matrix imposed by the equivalence constraints. In [25], a distance metric for k-means
clustering is then learned to shrink the averaged distance within the similar set while enlarging the
average distance within the dissimilar set simultaneously. All the above methods generally do not
yield sparse solutions and only work within their special settings. Maximally Collapsing Metric
Learning (MCML) tries to map all points in a same class to a single location in the feature space via
a stochastic selection rule. There are many other metric learning approaches in either unsupervised
or supervised learning setting, see [26] for a detailed review. We particularly mention the following
work which is more related to our sparse metric learning model (3).

• Large Margin Nearest Neighbor (LMNN) [23, 24]: LMNN aims to explore a large margin nearest
neighbor classifier by exploiting nearest neighbor samples as side information in the training set.
Specifically, let Nk(x) denotes the k-nearest neighbor of sample x and define the similar set S =
{(xi, xj) : xi ∈ N (xj), yi = yj} and D = {(xj , xk) : xk ∈ N (xj), yk 6= yj}. Then, recall that the
triplet set T is given by equation (2), the framework LMNN can be rewritten as the following:

min
Mº0

∑

τ=(i,j,k)∈T
(1 + x>ijMxij − x>kjMxkj)+ + γTr(CM) (9)

where the covariance matrix C over the similar set S is defined by C =
∑

(xi,xj)∈S(xi − xj)(xi −
xj)>. From the above reformulation, we see that LMNN also involves a sparse regularization term
Tr(CM). However, the sparsity of CM does not imply the sparsity of M , see the discussion in the
experimental section. Large Margin Component Analysis (LMCA) [22] is designed for conducting
classification and dimensionality reduction simultaneously. However, LMCA controls the sparsity
by directly specifying the dimensionality of the transformation matrix and it is an extended version
of LMNN. In practice, this low dimensionality is tuned by ad hoc methods such as cross-validation.

• Sparse Metric Learning via Linear Programming (SMLlp) [20]: the spirit of this approach is
closer to our method where the following sparse framework was proposed:

min
Mº0

∑

t=(i,j,k)∈T
(1 + x>ijMxij − x>kjMxkj)+ + γ

∑

`,k∈Nd

|M`k| (10)

However, the above 1-norm term
∑

`,k∈Nd
|M`k| can only enforce the element sparsity of M . The

learned sparse model would not generate an appropriate low-ranked principal matrix M for metric
learning. In order to solve the above optimization problem, [10] further proposed to restrict M to the
space of diagonal dominance matrices: a small subspace of the positive semi-definite cone. Such a
restriction would only result in a sub-optimal solution, although the final optimization is an efficient
linear programming problem.

3 Smooth Optimization Algorithms

Nesterov [17, 16] developed an efficient smooth optimization method for solving convex program-
ming problems of the form minx∈Q f(x) where Q is a bounded closed convex set in a finite-
dimensional real vector space E. This smooth optimization usually requires f to be differentiable
with Lipschitz continuous gradient and it has an optimal convergence rate of O(1/t2) for smooth
problems where t is the iteration number. Unfortunately, we can not directly apply the smooth opti-
mization method to problem (4) since the hinge loss there is not continuously differentiable. Below
we show the smooth approximation method [17] can be approached through the saddle representa-
tion (7).

3.1 Nesterov’s Smooth Approximation Approach

We briefly review Nesterov’s approach [17] in the setting of a general min-max problem using
smoothing techiniques. To this end, we introduce some useful notation. Let Q1 (resp. Q2) be non-
empty convex compact sets in finite-dimensional real vector spaces E1 (resp. E2) endowed with
norm ‖ · ‖1 (resp. ‖ · ‖2). Let E∗

2 be the dual space of E2 with standard norm defined, for any
s ∈ E∗

2 , by ‖s‖∗2 = max{〈s, x〉2 : ‖x‖2 = 1}, where the scalar product 〈·, ·〉2 denotes the value
of s at x. Let A : E1 → E∗

2 be a linear operator. Its adjoint operator A∗ : E2 → E∗
1 is defined,
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Smooth Optimization Algorithm for Sparse Metric Learning (SMLsm)
1. Let ε > 0, t = 0 and initialize u(0) ∈ Q1, M (−1) = 0 and let L = 1

2µ

∑
τ∈T ‖Xτ‖22

2. Compute Mµ(u(t)) and ∇φµ(u(t)) = (−1 + 〈Xτ ,Mµ(u(t))〉 : τ ∈ T )
and let M (t) = t

t+2M (t−1) + 2
t+2Mµ(ut)

3. Compute z(t) = arg minz∈Q1

{
L
2 ‖u(t) − z‖2 +∇φµ(u(t))>(z − u(t))

}

4. Compute v(t) = arg minv∈Q1

{
L
2 ‖u(0) − v‖2 +

∑t
i=0(

i+1
2 )

(
φµ(u(i)) +∇φµ(u(i))>(v − u(i))

)}

5. Set u(t+1) = 2
t+3v(t) + t+1

t+3z(t)

6. Set t ← t + 1. Go to step 2 until the stopping criterion less than ε

Table 1: Pseudo-code of first order Nesterov’s method

for any x ∈ E2 and u ∈ E1, by 〈Au, x〉2 = 〈A∗x, u〉1. The norm of such a operator is defined by
‖A‖1,2 = maxx,u {〈Au, x〉2 : ‖x‖2 = 1, ‖u‖1 = 1} .

Now, the min-max problem considered in [17, Section 2] has the following special structure:

min
u∈Q1

{
φ(u) = φ̂(u) + max{〈Au, x〉2 − f̂(x) : x ∈ Q2}

}
. (11)

Here, φ̂(u) is assumed to be continuously differentiable and convex with Lipschitz continuous gra-
dient and f̂(x) is convex and differentiable. The above min-max problem is usually not smooth and
Nesterov [17] proposed a smoothing approximation approach to solve the above problem:

min
u∈Q1

{
φµ(u) = φ̂(u) + max{〈Au, x〉2 − f̂(x)− µd2(x) : x ∈ Q2}

}
. (12)

Here, d2(·) is a continuous proxy-function, strongly convex on Q2 with some convexity parameter
σ2 > 0 and µ > 0 is a small smoohting parameter. Let x0 = arg minx∈Q2 d2(x). Without loss
of generality, assume d2(x0) = 0. The strong convexity of d2(·) with parameter σ2 means that
d2(x) ≥ 1

2σ2‖x − x0‖22. Since d2(·) is strongly convex, the solution of the maximization problem
φ̂µ(u) := max{〈Au, x〉2 − f̂(x)− µd2(x) : x ∈ Q2} is unique and differentiable, see [6, Theorem
4.1]. Indeed, it was established in [17, Theorem 1 ] that the gradient of φµ is given by

∇φ̂µ(u) = A∗xµ(u) (13)

and it has a Lipschitz constant L = ‖A‖21,2
µσ2

, i.e. ‖A∗xµ(u1) − A∗xµ(u2)‖∗1 ≤
‖A‖21,2

µσ2
‖u1 − u2‖1.

Hence, the proxy-function d2 can be regarded as a generalized Moreau-Yosida regularization term
to smooth out the objective function.

As mentioned above, function φµ in problem (12) is differentiable with Lipschitz continuous gra-
dients. Hence, we can apply the optimal smooth optimization scheme [17, Section 3] to the
smooth approximate problem (12). The optimal scheme needs another proxy-function d(u) as-
sociated with Q1. Assume that d(u0) = minu∈Q1 d(u) = 0 and it has convexity parameter σ i.e.
d(u) ≥ 1

2σ‖u− u0‖1. For this special problem (12), the primal solution u∗ ∈ Q1 and dual solution
x∗ ∈ Q2 can be simultaneously obtained, see [17, Theorem 3]. Below, we will apply this general
scheme to solve the min-max representation (7) of the sparse metric learning problem (3), and hence
solves the original problem (4).

3.2 Smooth Optimization Approach for Sparse Metric Learning

We now turn our attention to developing a smooth optimization approach for problem (4). Our main
idea is to connect the saddle representation (7) in Theorem 1 with the special formulation (11).

To this end, firstly let E1 = RT with standard Euclidean norm ‖ · ‖1 = ‖ · ‖ and E2 = Sd with
Frobenius norm defined, for any S ∈ Sd, by ‖S‖22 =

∑
i,j∈Nd

S2
ij . Secondly, the closed convex sets

are respectively given by Q1 = {u = (uτ : τ ∈ T ) ∈ [0, 1]T } and Q2 = {M ∈ Sd
+ : Tr(M) ≤√

T/γ}. Then, define the proxy-function d2(M) = ‖M‖2. Consequently, the proxy-function d2(·)
is strongly convex on Q2 with convexity parameter σ2 = 2. Finally, for any τ = (i, j, k) ∈ T , let
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Xτ = xjkx>jk − xijx
>
ij . In addition, we replace the variable x by M and φ̂(u) = −∑

τ∈T uτ in
(12), f̂(M) = γ(Tr(M))2. Finally, define the linear operator A : RT → (Sd)∗, for any u ∈ RT , by

Au =
∑

τ∈T
uτXτ . (14)

With the above preparations, the saddle representation (7) exactly matches the special structure (11)
which can be approximated by problem (12) with µ sufficiently small. The norm of the linear
operator A can be estimated as follows.

Lemma 2. Let the linear operator A be defined as above, then ‖A‖1,2 ≤
(∑

τ∈T ‖Xτ‖22
) 1

2
where,

for any M ∈ Sd, ‖M‖2 denotes the Frobenius norm of M .

Proof. For any u ∈ Q1 and M ∈ Sd, we have that

Tr
((∑

τ∈T uτXτ

)
M

) ≤ (∑
τ∈T uτ‖Xτ‖2

)‖M‖2
≤ ‖M‖2

(∑
τ∈T u2

τ

) 1
2
(∑

τ∈T ‖Xτ‖22
) 1

2 = ‖M‖2‖u‖1
(∑

τ∈T ‖Xτ‖22
) 1

2 .

Combining the above inequality with the definition that ‖A‖1,2 = max
{

Tr
(
(
∑

τ∈T uτXτ )M
)

:

‖u‖1 = 1, ‖M‖2 = 1
}

yields the desired result.

We now can adapt the smooth optimization [17, Section 3 and Theorem 3] to solve the smooth
approximation formulation (12) for metric learning. To this end, let the proxy-function d in Q1 be
the standard Euclidean norm i.e. for some u(0) ∈ Q1 ⊆ RT , d(u) = ‖u − u(0)‖2. The smooth
optimization pseudo-code for problem (7) (equivalently problem (4)) is outlined in Table 1. One can
stop the algorithm by monitoring the relative change of the objective function or change in the dual
gap.

The efficiency of Nesterov’s smooth optimization largely depends on Steps 2, 3, and 4 in Table 1.
Steps 3 and 4 can be solved straightforward where z(t) = min(max(0, u(t)−∇φµ(u(t))/L), 1) and
v(t) = min(max(0, u(0) −∑t

i=0(i + 1)∇φµ(u(i))/2L), 1). The solution Mγ(u) in Step 2 involves
the following problem

Mµ(u) = arg max{〈
∑

τ∈T
uτXτ ,M〉 − γ(Tr(M))2 − µ‖M‖22 : M ∈ Q2}. (15)

The next lemma shows it can be efficiently solved by quadratic programming (QP).
Lemma 3. Problem (15) is equivalent to the following

s∗ = arg max
{∑

i∈Nd

λisi−γ(
∑

i∈Nd

si)2−µ
∑

i∈Nd

s2
i :

∑

i∈Nd

si ≤
√

T/γ, and si ≥ 0 ∀i ∈ Nd

}
(16)

where λ = (λ1, . . . , λd) are the eigenvalues of
∑

t∈T utXt. Moreover, if we denotes the eigen-
decomposition

∑
t∈T utXt by

∑
t∈T utXt = Udiag(λ)U> with some U ∈ Od then the optimal

solution of problem (15) is given by Mµ(u) = Udiag(s∗)U>.

Proof. We know from Von Neumann’s inequality (see [14] or [4, Page 10]), for all X, Y ∈ Sd,
that Tr(XY ) ≤ ∑

i∈Nd
λi(X)λi(Y ) where λi(X) and λi(Y ) are the eigenvalues of X and Y in

non-decreasing order, respectively. The equality is attained whenever X = Udiag(λ(X))U>, Y =
Udiag(λ(Y ))U> for some U ∈ Od. The desired result follows by applying the above inequality
with X =

∑
τ∈T uτXτ and Y = M.

It was shown in [17, Theorem 3] that the iteration complexity is of O(1/ε) for finding a ε-optimal
solution if we choose µ = O(ε). This is usually much better than the standard sub-gradient descent
method with iteration complexity typically O(1/ε2). As listed in Table 1, the complexity for each
iteration mainly depends on the eigen-decomposition on

∑
t∈Nt

utXt and the quadratic program-
ming to solve problem (15) which has complexityO(d3). Hence, the overall iteration complexity of
the smooth optimization approach for sparse metric learning is of the order O(d3/ε) for finding an
ε-optimal solution. As a final remark, the Lipschitz given by the L = 1

2µ

∑
τ ‖Xτ‖2 could be too

loose in reality. One can use the line search scheme [15] to further accelerate the algorithm.
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4 Experiments

In this section we compared our proposed method with four other methods including (1) the
LMNN method [23], (2) the Sparse Metric Learning via Linear Programming (SMLlp) [20], (3)
the information-theoretic approach for metric learning (ITML) [9], and (4) the Euclidean distance
based k-Nearest Neighbor (KNN) method (called Euc for brevity). We also implemented the iter-
ative sub-gradient descent algorithm [24] to solve the proposed framework (4) (called SMLgd) in
order to evaluate the efficiency of the proposed smooth optimization algorithm SMLsm. We try to
exploit all these methods to learn a good distance metric and a KNN classifier is used to examine
the performance of these different learned metrics.

The comparison is done on four benchmark data sets: Wine, Iris, Balance Scale, and Ionosphere,
which were obtained from the UCI machine learning repository. We randomly partitioned the
data sets into a training and test sets by using a ratio 0.85. We then trained each approach on
the training set, and performed evaluation on the test sets. We repeat the above process 10 times
and then report the averaged result as the final performance. All the approaches except the Eu-
clidean distance need to define a triplet set T before training. Following [20], we randomly gen-
erated 1500 triplets for SMLsm, SMLgd, SMLlp, and LMNN. The number of nearest neighbors
was adapted via cross validation for all the methods in the range of {1, 3, 5, 7}. The trade-off
parameter for SMLsm, SMLgd, SMLlp, and LMNN was also tuned via cross validation from
{10−5, 10−4, 10−3, 10−2, 10−1, 100, 101, 102}.

The first part of our evaluations focuses on testing the learning accuracy. The result can be seen
in Figure 1 (a)-(d) respectively for the four data sets. Clearly, the proposed SMLsm demonstrates
best performance. Specifically, SMLsm outperforms the other four methods in Wine and Iris, while
it ranks the second in Balance Scale and Ionosphere with slightly lower accuracy than the best
method. SMLgd showed different results with SMLsm due to the different optimization methods,
which we will discuss shortly in Figure 1 (i)-(l). We also report the dimension reduction Figure 1(e)-
(h). It is observed that our model outputs the most sparse metric. This validates the advantages
of our approach. That is, our method directly learns both an accurate and sparse distance metric
simultaneously. In contrast, other methods only touch this topic marginally: SMLlp is not optimal,
as they exploited the one-norm regularization term and also relaxed the learning problem; LMNN
aims to learn a metric with a large-margin regularization term, which is not directly related to sparsity
of the distance matrix. ITML and Euc do not generate a sparse metric at all. Finally, in order to
examine the efficiency of the proposed smooth optimization algorithm, we plot the convergence
graphs of SMLsm versus those of SMLgd in Figure 1(i)-(l). As observed, SMLsm converged much
faster than SMLgd in all the data sets. SMLgd sometimes oscillated and may incur a long tail due
to the non-smooth nature of the hinge loss. For some data sets, it converged especially slow, which
can be observed in Figure (k) and (l).

5 Conclusion

In this paper we proposed a novel regularization framework for learning a sparse (low-rank) distance
matrix. This model was realized by a mixed-norm regularization term over a distance matrix which
is non-convex. Using its special structure, it was shown to be equivalent to a convex min-max
(saddle) representation involving a trace norm regularization. Depart from the saddle representation,
we successfully developed an efficient Nesterov’s first-order optimization approach [16, 17] for our
metric learning model. Experimental results on various datasets show that our sparse metric learning
framework outperforms other state-of-the-art methods with higher accuracy and significantly smaller
dimensionality. In future, we are planning to apply our model to large-scale datasets with higher
dimensional features and use the line search scheme [15] to further accelerate the algorithm.
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Figure 1: Performance comparison among different methods. Subfigures (a)-(d) present the aver-
age error rates; (e)-(h) plots the average dimensionality used in different methods; (i)-(l) give the
convergence graph for the sub-gradient algorithm and the proposed smooth optimization algorithm.
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