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1 Conditional Posterior Probabilities for LDA

With symmetric Dirichlet priors over © ={61,...0p} and ®={¢,, . .. ¢}, the conditional poste-
rior probability, or predictive probability, of topic ¢ occurring in document d given the corresponding
topic assignments Z = {z(9}2_, for a corpus of documents W = {w(?}1_, is as follows:
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where topic ¢ occurs V¢4 times in 24 of length Ng = >~ Nyjq- In other words, the conditional
posterior distribution over topics for document d is a P6lya conditional distribution.

The conditional posterior distribution over words for topic ¢ is also a P6lya conditional distribution.

2 Joint Distributions for LDA

With symmetric priors, the joint distribution over topic assignments Z for documents W is
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where “< d,n” denotes a quantity involving data from documents 1, ..., d and, for document d,
positions 1,...,n — 1 only. In other words, the joint distribution over Z is a Pdlya distribution.

The joint distribution over W given Z is also a Pdlya distribution.

3 Variation of Information for Topic Models

The similarity between two sets of topic assignments Z and Z’ for documents W can be measured
using variation of information, introduced by Meila [2] and recently used by Goldwater and Griffiths
in the context of text processing [1]. Given two sets of topic assignments Z and Z’ for some WV (with
T and T” topics, respectively), computing the variation of information between Z and Z’, denoted
VI(Z, Z'), requires three distributions: P(z) over the T topics in Z, proportional to {N;}7_, for
Z; P(2') over the T” topics in Z’, proportional to { Ny }%_, for Z'; and P(z, z'), proportional to
the number of tokens assigned to topic ¢ in Z and topic ¢’ in Z’. VI(Z, Z’) is then

VI(Z,2')=H(z)+ H() — 21(2,2")
=H(z|2')+ H(Z'|2), 3)



where H (-) denotes the entropy of a random variable and I(-, -) denotes the mutual information be-
tween two random variables. If two sets of topic assignments Z and Z’ are identical, then VI (Z, Z')
will be zero. The higher the value of VI (Z, Z’), the greater the dissimilarity between Z and Z’.
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