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Abstract

We propose new methodologies to detect anomalies in discrete-time processes
taking values in a probability space. These methods are based on the inference
of functionals whose evaluations on successive states visited by the process are
stationary and have low autocorrelations. Deviations fromthis behavior are used
to flag anomalies. The candidate functionals are estimated in a subspace of a
reproducing kernel Hilbert space associated with the original probability space
considered. We provide experimental results on simulated datasets which show
that these techniques compare favorably with other algorithms.

1 Introduction

Detecting abnormal points in small and simple datasets can often be performed by visual inspec-
tion, using notably dimensionality reduction techniques.However, non-parametric techniques are
often the only credible alternative to address these problems on the many high-dimensional, richly
structured data sets available today.

When carried out onindependent and identically distributed (i.i.d) observations, anomaly detection
is usually referred to as outlier detection and is in many ways equivalent to density estimation.
Several density estimators have been used in this context and we refer the reader to the exhaustive
review in [1]. Among such techniques, methods which estimate non-parametric alarm functions in
reproducing kernel Hilbert spaces (rkHs) are particularlyrelevant to our work. They form alarm
functions of the typef( · ) =

∑

i∈I cik(xi, · ), wherek is a positive definite kernel and(ci)i∈I

is a family of coefficients paired with a family(xi)i∈I of previously observed data points. A new
observationx is flagged as anomalous wheneverf(x) goes outside predetermined boundaries which
are also provided by the algorithm. Two well known kernel methods have been used so far for
this purpose, namely kernel principal component analysis (kPCA) [2] and one-class support vector
machines (ocSVM) [3]. The ocSVM is a popular density estimation tool and it is thus not surprising
that it has already found successful applications to detectanomalies in i.i.d data [4]. kPCA can also
be used to detect outliers as described in [5], where an outlier is defined as any point far enough
from the boundaries of an ellipsoid in the rkHs containing most of the observed points.

These outlier detection methods can also be applied todynamical systems. We now monitor discrete
time stochastic processesZ = (Zt)t∈N taking values in a spaceZ and, based on previous obser-
vationszt−1, · · · , z0, we seek to detect whether a new observationzt abnormally deviates from the
usual dynamics of the system. As explained in [1], this problem can be reduced to density estimation
when eitherZt or a suitable representation ofZt that includes a finite number of lags is Markovian,
i.e. when the conditional probability ofZt given its past depends only on the values taken byZt−1.
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In practice, anomaly detection then involves a two step procedure. It first produces an estimator
Ẑt of the conditional expectation ofZt givenZt−1 to extract an empirical estimator for the residues
ε̂t = Zt−Ẑt. Under an i.i.d assumption, abnormal residues can then be used to flag anomalies. This
approach and advanced extensions can be used both for multivariate data [6, 7] and linear processes
in functional spaces [8] using spaces of Hölderian functions.

The main contribution of our paper is to propose an estimation approach of alarm functionals that
can be used on arbitrary Hilbert spaces and which bypasses the estimation of residueŝεt ∈ Z by fo-
cusing directly on suitable properties for alarm functionals. Our approach is based on the following
intuition. Detecting anomalies in a sequence generated by white noise is a task which is arguably
easier than detecting anomalies in arbitrary time-series.In this sense, we look for functionalsα such
thatα(Zt) exhibits a stationary behavior with low autocorrelations,ideally white noise, which can
be used in turn to flag an anomaly wheneverα(Zt) departs from normality. We call functionalsα
that strike a good balance between exhibiting alow autocovariance of order 1 and ahigh variance on
successive valuesZt awhite functional of the processZ. Our definition can be naturally generalized
to higher autocovariance orders as the reader will naturally see in the remaining of the paper.

Our perspective is directly related to the concept of cointegration (see [9] for a comprehensive re-
view) for multivariate time series, extensively used by econometricians to study equilibria between
various economic and financial indicators. For a multivariate stochastic processX = (Xt)t∈Z tak-
ing values inRd, X is said to be cointegrated if there exists a vectora of R

d such that(aT Xt)t∈Z is
stationary. Economists typically interpret the weights ofa as describing a stablelinear relationship
between various (non-stationary) macroeconomic or financial indicators. In this work we discard the
immediate interpretability of the weights associated withlinear functionalsaT Xt to focus instead
on functionalsα in a rkHsH such thatα(Zt) is stationary, and use this property to detect anomalies.

The rest of this paper is organized as follows. In Section 2, we study different criterions to measure
the autocorrelation of a process, directly inspired by min/max autocorrelation factors [10] and the
seminal work of Box-Tiao [11] on cointegration. We study theasymptotic properties of finite sample
estimators of these criterions in Section 3 and discuss the practical estimation of white functionals
in Section 4. We discuss relationships with existing methods in Section 5 and provide experimental
results to illustrate the effectiveness of these approaches in Section 6.

2 Criterions to define white functionals

Consider a processZ = (Zt)t∈Z taking values in a probability spaceZ. Z will be mainly considered
in this work under the light of its mapping onto a rkHsH associated with a bounded and continuous
kernelk onZ × Z. Z is assumed to be second-order stationary, that is the densitiesp(Zt = z) and
joint densitiesp(Zt = z, Zt+k = z′ ) for k ∈ N are independent oft. Following [12, 13] we write

φt = ϕ(Zt) − Ep[ϕ(Zt)],

for the centered projection ofZ in H, whereϕ : z ∈ Z → k(z, ·) ∈ H is the feature map associated
with k. For two elementsα andβ of H we writeα ⊗ β for their tensor product, namely the linear
map ofH onto itself such thatα ⊗ β : x → 〈α, x〉H β. Using the notations of [14] we write

C = Ep[φt ⊗ φt], D = Ep[φt ⊗ φt+1],

respectively for the covariance and autocovariance of order 1 of φt. Both C andD are linear op-
erators ofH by weak stationarity [14, Definition 2.4] of(φt)t∈Z, which can be deduced from the
second-order stationarity ofZ. The following definitions introduce two criterions which quantify
how related two successive evaluations ofα(Zt) are.

Definition 1 (Autocorrelation Factor [10] ). Given an element α of H such that 〈α, Cα〉H > 0,
γ(α) is the absolute autocorrelation of α(Z) of order 1,

γ(α) = | corr(α(Zt), α(Zt+1)| =
|〈α, Dα〉H|

〈α, Cα〉H
. (1)

The condition〈α, Cα〉H > 0 requires thatvar α(φt) is not zero, which excludes constant or van-
ishing functions on the support of the density ofφt. Note also that definingγ requires no other
assumption than second-order stationarity ofZ.
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If we assume further thatφ is an autoregressive Hilbertian process of order 1 [14], ARH(1) for short,
there exists a compact operatorρ : H → H and aH strong white noise1 (εt)t∈Z such that

φt+1 = ρ φt + εt.

In their seminal work, Box and Tiao [11] quantify the predictability of the linear functionals of
a vector autoregressive process in terms of variance ratios. The following definition is a direct
adaptation of that principle to autoregressive processes in Hilbert spaces. From [14, Theorem 3.2]
we have thatC = ρ Cρ∗ + Cε where for any linear operatorA of H, A∗ is its adjoint.

Definition 2 (Predictability in the Box-Tiao sense[11]). Given an element α of H such that
〈α, Cα〉H > 0, the predictability λ(α) is the quotient

λ(α) =
var〈α, ρ φt〉H
var〈α, φt〉H

=
〈α, ρ C ρ∗α〉H
〈α, Cα〉H

=
〈α, DC−1D∗α〉H

〈α, Cα〉H
. (2)

The right hand-side of Equation (2) follows from the fact that ρ C = D andρ∗ = C−1D∗ [14],
the latter equality being always valid irrelevant of the existence ofC−1 on the whole ofH as noted
in [15]. Combining these two equalities givesρ Cρ∗ = DC−1D∗.

Bothγ andλ are convenient ways to quantify for a given functionf of H the independence off(Zt)
with its immediate past. We provide in this paragraph a common representation forλ andγ. For any
linear operatorA of H and any non-zero elementx of H writeR(A, x) for the Rayleigh quotient

R(A, x) =
〈x, Ax〉H
〈x, x〉H

.

We use the notations in [12] and introduce the normalized cross-covariance (or rather auto-
covariance in the context of this paper) operatorV = C− 1

2 DC− 1

2 . Note that for any skew-
symmetric operatorA, that isA = −A∗, we have that〈x, Ax〉H = 〈A∗x, x〉H = −〈Ax, x〉H = 0

and thusR(A, x) = R(A+A∗

2 , x). Bothλ andγ applied on a functionα ∈ H can thus be written as

γ(α) =

∣

∣

∣

∣

R

(

V + V ∗

2
, C

1

2 α

)∣

∣

∣

∣

, λ(α) = R(V V ∗, C
1

2 α).

As detailed in Section 4, our goal is to estimate functions inH from data such that they have either
low γ or λ values. Minimizingλ is equivalent to solving a generalized eigenvalue problem through
the Courant-Fisher-Weyl theorem. Minimizingγ is a more challenging problem since the operator
V + V ∗ is not necessarily positive definite. The S-lemma from control theory [16, Appendix B.2]
can be used to cast the problem of estimating functions with low γ as a semi-definite program. In
practice the eigen-decomposition ofV + V ∗ provides good approximate answers.

The formulation ofγ andλ as Rayleigh quotients is also useful to obtain the asymptotic convergence
of their empirical counterparts (Section 3) and to draw comparisons with kernel-CCA (Section 5).

3 Asymptotics and matrix expressions for empirical estimators of γ and λ

3.1 Asymptotic convergence of the normalized cross-covariance operatorV

The covariance operatorC and cross-covariance operatorD can be estimated through a finite sample
of points z0, · · · , zn translated into a sample of centered pointsφ1, · · · , φn in H, whereφi =
ϕ(zi) −

1
n+1

∑n
j=0 ϕ(zj). We write

Cn =
1

n − 1

n
∑

i=1

φi ⊗ φi, Dn =
1

n − 1

n−1
∑

i=1

φi ⊗ φi+1,

for the estimates ofC andD respectively which converge in Hilbert-Schmidt norm [14].Estimators
for γ or λ require approximatingC− 1

2 , which is a typical challenge encountered when studying

1namely a sequence(εt)t∈Z of H random variables such that (i)0 < E ‖εt‖
2 = σ2, E εt = 0 and the

covarianceCεt is constant, equal toCε; (ii) (εt) is a sequence of i.i.dH-random variables
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ARH(1) processes and more generally stationary linear processes in Hilbert spaces [14, Section
8]. This issue is addressed in this section through a Tikhonov-regularization, that is considering a
sequence of positive numbersǫn we write

Vn = (Cn + ǫnI)−
1

2 Dn(Cn + ǫnI)−
1

2 ,

for the empirical estimate ofV regularized byǫn. We have already assumed thatk is bounded and
continuous. The convergence ofVn to V in norm is ensured under the additional conditions below

Theorem 3. Assume that V is a compact operator, lim
n→∞

ǫn = 0 and lim
n→∞

(log n/n)
1

3

ǫn
= 0. Then

writing ‖ · ‖S for the Hilbert-Schmidt operator norm, lim
n→∞

‖Vn − V ‖S = 0.

Proof. The structure of the proof is identical to that of of [12, Theorem 1] except that the i.i.d
assumption does not hold here. In [12], the norm‖Vn − V ‖S is upper-bounded by the two terms
‖Vn − (C + ǫnI)−

1

2 D(C + ǫnI)−
1

2 ‖S + ‖(C + ǫnI)−
1

2 D(C + ǫnI)−
1

2 − V ‖S . The second term
converges under the assumption thatǫn → 0 [12, Lemma 7] while the first term decreases at a rate
that is proportional to the rates of‖Cn − C‖S and‖Dn − D‖S . With the assumptions above [14,
Corollary4.1,Theorem4.8] gives us that‖Cn−C‖S = O(( log n

n )
1

2 ) and‖Dn−D‖S = O(( log n
n )

1

2 ).
We use this result to substitute the latter rate to the fasterrate obtained for i.i.d observations in [12,
Lemma 5] and conclude the proof.

3.2 Empirical estimators and matrix expressions

Givenα ∈ H, consider the following estimators ofγ(α) andλ(α) defined in Equations (1) and (2),

γn(α) =

∣

∣

∣

∣

R

(

Vn + V ∗
n

2
, (Cn + ǫnI)

1

2 α

)∣

∣

∣

∣

=

∣

∣〈α, 1
2 (Dn + D∗

n)α〉H
∣

∣

〈α, (Cn + ǫnI)α〉H
,

λn(α) = R(VnV ∗
n , (Cn + ǫnI)

1

2 α) =
〈α, Dn(Cn + ǫnI)−1D∗

nα〉H
〈α, (Cn + ǫnI)α〉H

,

which converge to the adequate values through the convergence of (Cn + ǫnI)
1

2 , Vn + V ∗
n and

VnV ∗
n . The n observationsφ1, . . . , φn which define the empirical estimators above also span a

subspaceHn in H which can be used to estimate white functionals. Givenα ∈ Hn we use any
arbitrary decompositionα =

∑n
i=1 aiφi. We writeK for the originaln + 1 × n + 1 Gram matrix

[k(zi, zj)]i,j andK̄ for its centered counterpart̄K = (In−
1
n1n,n)K(In−

1
n1n,n) = [〈φi, φj〉H]i,j .

Because of the centeringspan{φ0, . . . , φn} is actually equal tospan{φ1, . . . , φn} and we will only
use then × n matrixK obtained by removing the first row and column ofK̄.

For an× n matrixM , we writeM−i for then× n− 1 matrix obtained by removing theith column
of M . With these notations,λn andγn take the following form when evaluated onα ∈ Hn,

γn(α) = γn

(

n
∑

i=1

aiφi

)

=
1

2

|aT (K−1K
T
−n + K−1K

T
−n)a|

aT (K2 + nǫnK)a
,

λn(α) = λn

(

n
∑

i=1

aiφi

)

=
a

T
K−1K

T
−n(K2 + nǫnK)−1

K−nK
T
−1a

aT (K2 + nǫnK)a
.

If ǫn follows the assumptions of Theorem 3, bothγn andλn converge toγ andλ pointwise inHn.

4 Selecting white functionals in practice

Both γ(α) andλ(α) are proxies to quantify the independence of successive observationsα(Zt).
Namely, functions with lowγ andλ are likely to have low autocorrelations and be stationary when
evaluated on the processZ, and the same can be said of functions with lowγn andλn asymptotically.
However, whenH is of high or infinite dimension, the direct minimization ofγn andλn is likely
to result in degenerate functions2 which may have extremely low autocovariance onZ but very low
variance as well. We select white functionals having this trade off in mind, such that both〈α, C, α〉H
is not negligible andγ or λ are low at the same time.

2Since the rank of operatorVn is actuallyn − 1, we are even guaranteed to find inHn a minimizer forγn

and another forλn with respectively zero predictability and zero absolute autocorrelation.
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4.1 Enforcing a lower bound on〈α, Cα〉H

We consider the following strategy: following the approachoutlined in [14, Section 8] to estimate
autocorrelation operators, and more generally in [17] in the context of kernel methods, we restrict
Hn to the directions spanned by thep first eigenfunctions of the operatorCn. Namely, supposeCn

can be decomposed asCn =
∑n

i=1 giei ⊗ ei whereei is an orthonormal basis of eigenvectors with
eigenvalues in decreasing orderg1 ≥ g2 ≥ · · · ≥ gn ≥ 0. For 1 ≤ p ≤ n We writeHp for the
span{e1, . . . , ep} of thep first eigenfunctions. Any functionα in Hp is such that〈α, Cnα〉H ≥ gp

and thus allows us to keep the empirical variance ofα(Zt) above a certain threshold. LetEp be the
n× p coordinate matrix of eigenvectors3 e1, . . . , ep expressed in the family ofn vectorsφ1, . . . , φn

andG thep × p diagonal matrix of terms(g1, . . . , gp). We consider now a functionβ =
∑p

i biei

in Hp, and note that

γn(β) =
1

2

|bT
E

T
p (K−1K

T
−n + K−1K

T
−n)Epb|

bT (G + nǫnI)b
, (3)

λn(β) =
b

T
E

T
p K−1K

T
−n(K2 + nǫnK)−1

K−nK
T
−1Epb

bT (G + nǫnI)b
. (4)

We define two different functions ofHp, βmac andβBT, as the the functionals inHp whose coeffi-
cients correspond to the eigenvector with minimal (absolute) eigenvalue of the two Rayleigh quo-
tients of Equations (3) and (4) respectively. We call these functionals the minimum autocorrelation
(MAC) and Box-Tiao (BT) functionals ofZ. Below is a short recapitulation of all the computational
steps we have described so far.

• Input : n + 1 observationsz0, · · · , zn ∈ Z of a time-seriesZ, a p.d. kernelk onZ × Z
and a parameterp (we propose an experimental methodology to setp in Section 6.3)

• Output : a real-valued functionf(·) =
∑n

i=0 cik(zi, ·) that is a white functional ofZ.
• Algorithm :

– Compute the(n + 1) × (n + 1) kernel matrixK, center it and drop the first row and
column to obtainK.

– StoreK’s p first eigenvectors and eigenvalues in matricesU anddiag(v1, · · · , vp).
– ComputeEp = Udiag(v1, · · · , vp)

−1/2 andG = 1
n diag(v1, · · · , vp).

– Compute the matrix numeratorN and denominatorD of either Equation (3) or Equa-
tion (4) and recover the eigenvectorb with minimal absolute eigenvalue of the gener-
alized eigenvalue problem(N,D)

– Seta = Epb ∈ R
n. Setc0 = − 1

n

∑n
1 aj andci = ai −

1
n

∑n
1 aj

5 Relation to other methods and discussion

The methods presented in this work offer numerous parallelswith other kernel methods such as
kernel-PCA or kernel-CCA which, similarly to the BT and MAC functionals, provide a canonical
decomposition ofHn into n ranked eigenfunctions.

WhenZ is finite dimensional, the authors of [18] perform PCA on a time-series samplez0, . . . , zn

and consider its eigenvector with smallest eigenvalue to detect cointegrated relationships in the pro-
cessZt. Their assumption is that a linear mappingαT Zt that has small variance on the whole
sample can be interpreted as an integrated relationship. Although the criterion considered by PCA,
namely variance, disregards the temporal structure of the observations and only focuses on the val-
ues spanned by the process, this technique is useful to get rid of all non-stationary components of
Zt. On the other hand, kernel-PCA [2], a non-parametric extension of PCA, can be naturally applied
for anomaly detection in an i.i.d. setting [5]. It is thus natural to use kernel-PCA, namely an eigen-
function with low variance, and hope that it will have low autocorrelation to define white functionals
of a process. Our experiments show that this is indeed the case and in agreement with [5] seem to

3Recall that if(ui, vi) are eigenvalue and eigenvector pairs ofK, the matrixE of coordinates of eigenfunc-
tionsei expressed in then pointsφ1, . . . , φn can be written asU diag(v

−1/2

i ) and the eigenvaluesgi are equal
to vi

n
if taken in the same order[2].
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indicate that the eigenfunctions which lie at the very low end of the spectrum, usually discarded as
noise and less studied in the literature, can prove useful for anomaly detection tasks.

kernel-CCA and variations such as NOCCO [12] are also directly related to the BT functional.
Indeed, the operatorV V ∗ used in this work to defineλ is used in the context of kernel-CCA to
extract one of the two functions which maximally correlate two samples, the other function being
obtained fromV ∗V . Notable differences between our approach and kernel-CCA are: 1. in the
context of this paper,V is anautocorrelation operator while the authors of [12] considernormalized
covariances between two different samples; 2. kernel-CCA assumes that samples are independently
and identically drawn, which is definitely not the case for the BT functional; 3. while kernel-CCA
maximizes the Rayleigh quotient ofV V ∗, we look for eigenfunctions which lie at the lower end of
the spectrum of the same operator. A possible extension of our work is to look for two functionalsf
andg which, rather than maximize the correlation of two distinctsamples as is the case in CCA, are
estimated tominimize the correlation betweeng(zt) andf(zt+1). This direction has been explored
in [19] to shed a new light on the Box-Tiao approach in the finite dimensional case.

6 Experimental results using a population dynamics model

6.1 Generating sample paths polluted by anomalies

We consider in this experimental section a simulated dynamical system perturbed by arbitrary
anomalies. To this effect, we use the Lotka-Volterra equations to generate time-series quantify-
ing the populations of different species competing for common resources. ForS species, the model
tracks the population levelXt,i at timet of each speciesi, which is a number bounded between0
and1. Values of0 and1 account respectively for the extinction and the saturationlevels of each
species. Writing◦ for the coordinate-wise kronecker product of vectors and matrices andh > 0 for
a discretization step, the population vectorXt ∈ [0, 1]S follows the discrete-time dynamic equation

Xt+1 = Xt +
1

h
r ◦ Xt ◦ (1S − AXt) .

We consider the following coefficients introduced in [20] which are known to yield chaotic behavior,

S = 4, r =







1
0.72
1.53
1.27






, A =







1 1.09 1.52 0
0 1 .44 1.36

2.33 0 1 .47
1.21 .51 .35 1






,

which can be turned into a stochastic system by adding an i.i.d. standard Gaussian noiseεt,

Zt+1 = Zt +
1

h
r ◦ Zt ◦ (14 − AZt) + σεεt. (5)

Whenever the equations generate coordinates below0 or above1, the violating coordinates are set
to 0 + u or 1 − u respectively, whereu is uniform over[0, 0.01].

We consider trajectories of length 800 of the Lotka-Volterra system described in Equation (5). For
each experiment we draw a starting pointZ0 randomly with uniform distribution on[0, 1]4, discard
the 10 first iterations and generate 400 iterations following Equation (5). Following this we select
randomly (uniformly over the remaining 400 steps) 40 time stampst1, · · · , t40 where we introduce
a random perturbation attk such thatZtk

, rather than following the dynamic of Equation (5) is
randomly perturbed by a noiseδt chosen uniformly over{−1, 1}4 with a magnitudeσδ, that is

Ztk
= Ztk−1 + σδδtk−1.

For all other timestampstk < t < tk+1, the system follows the usual dynamic of Equation (5).
Anomalies violate the usual dynamics in two different ways:first, they ignore the usual dynamical
equations and the current location of the process to create instead purely random increments; second,
depending on the magnitude ofσδ relative toσǫ, such anomalies may induce unusual jumps.

6.2 Estimation of white functionals and other alarm functions

We compare in this experiment five techniques to detect the anomalies described above: the Box-
Tiao functional and a variant described in the paragraph below, the minimal autocorrelation func-
tional, a one-class SVM and the low-variance functional defined by the(p + 1)th eigenfunction of
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Figure 1: The figure on the top plots a sample path of length 200of a 4-dimensional Lotka-Volterra
dynamic system with perturbations drawn withσε = .01 andσδ = 0.02. The data is split between
80 regular observations and 120 observations polluted by 10anomalies. All four functionals have
been estimated usingρ = 1, and we highlight by a red dot the values they take when an anomaly
is actually observed. The respective weights associated toeach of the 80 training observations are
displayed on the right of each methodology.

the empirical covarianceCn, given by kernel-PCA. All techniques are parameterized by akernelk.
Writing ∆zi = zi − zi−1, we use the following mixture of kernelsk :

k(zi, zj) = ρ e−100‖∆zi−∆zj‖
2

+ (1 − ρ)e−10‖zi−zj‖
2

, (6)

with ρ ∈ [0, 1]. The first term ink discriminates observations according to their location in[0, 1]4.
Whenρ = 0.5, k accounts for both the state of the system and its most recent increments, while
only increments are considered forρ = 1. Anomalies can be detected with both criterions, since
they can be tracked down when the process visits unusual regions or undergoes brusque and atypical
changes. The kernel widths have been set arbitrarily.

We discuss in this paragraph a variant of the BT functional. While the MAC functional is defined
and estimated in order to behave as closely as possible to random i.i.d noise, the BT functionalβBT
is tuned to be stationary as discussed in [11]. In order to obtain a white functional fromβBT it is
possible to model the time seriesβBT(zt) as an unidimensional autoregressive model, that is estimate
(on the training sample again) coefficientsr1, r2, . . . , rq such that

βBT(zt) =

q
∑

i=1

riβBT(zt−i) + ε̂BT
t .

Both the orderq and the autoregressive coefficients can be estimated on the training sample with
standard AR packages, using for instance Schwartz’s criterion to selectq. Note that althoughφ(Zt)
is assumed to be ARH(1), this does not necessarily translateinto the fact that the real-valued process
βBT(Zt) = 〈βBT, φt〉H is AR(1) as pointed out in [14, Theorem 3.4]. In practice however we use
the residualŝεBT

t = βBT(zt) −
∑p

i=1 riβBT(zt−i) to define theBox-Tiao residuals functional which
we writeβ̃BT.
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Figure 2: The three successive plot stand for three different values ofρ = 0, 0.5, 1. The detection
rate naturally increases with the size of the anomaly, to theextent that the task becomes only a gap
detection problem whenσδ becomes closer to0.05. FunctionalsβBT, β̃BT andβmac have a similar
performance and outperform other techniques when the task is most difficult andσδ is small.

6.3 Parameter selection methodology and numerical results

The BT functionalβBT and its residuals̃βBT, the MAC functionβmac, the one-class SVM̂focSVM
and thep + 1th eigenfunctionep+1 are estimated on a set of400 observations. We setp through the
rule that thep first directions must carry at least 98% of the total varianceof Cn, that isp is the first
integer such that

∑p
i=1 gi > 0.98·

∑n
i=1 gi. We fix theν paramater of the ocSVM to0.1. The BT and

MAC functionals additionally require the use of a regularization termǫn which we select by finding
the best ridge regressor ofφt+1 givenφt through a 4-fold cross validation procedure on the training
set. ForβBT, β̃BT, βmac and the kPCA functionalep+1 we use their respective empirical meanµ
and varianceσ on the training set to rescale and whiten their output on the test set, namely consider
values(f(z)−µ)/σ. Although more elaborate anomaly detection schemes on suchunidimensional
time-series might be considered, for the sake of simplicitywe treat directly these raw outputs as
alarm scores.

Having on the one hand the correct labels for anomalies and the scores for all detectors, we vary
the threshold at which an alarm is raised to produce ROC curves. We use the area under the curve
of each method on each sample path as a performance measure for that path. Figure 1 provides
a summary of the performance of each method on a unique samplepath of 200 observations and
10 anomalies. Perturbation parameters are set such thatσε = 0.01 andσδ varies between0.005
and0.055. For each couple(σε, σδ) we generate 500 draws and compute the mean AUC of each
technique on such draws. We report in Figure 2 these averagedperformances for three different
choices of the kernel, namely three different values forρ as defined in Equation (6).

6.4 Discussion

In the experimental setting, anomalies can be characterized as unusual increments between two
successive states of an otherwise smooth dynamical system.Anomalies are unusual due to their
size, controlled byσδ, and their directions, sampled in{−1, 1}4. When the stepσδ is relatively
small, it is difficult to flag correctly an anomaly without taking into account the system’s dynamic
as illustrated by the relatively poor performance of the ocSVM and the kPCA compared to the
BT, BTres and MAC functions. On the contrary, whenσδ is big, anomalies can be more simply
discriminated as big gaps. The methods we propose do not perform as well as the ocSVM in such a
setting. We can hypothesize two reasons for this: first, white functionals may be less useful in such
a regime that puts little emphasis on dynamics than a simple ocSVM with adequate kernel. Second,
in this study the BT and MAC functions flag anomalies wheneveran evaluation goes outside of a
certain bounding tube. More advanced detectors of a deviation or change from normality, such as
CUSUM [21], might be studied in future work.
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