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Abstract
Conditional Random Sampling (CRS) was originally proposed for efficiently
computing pairwise (l2, l1) distances, in static, large-scale, and sparse data. This
study modifies the original CRS and extends CRS to handle dynamic or stream-
ing data, which much better reflect the real-world situation than assuming static
data. Compared with many other sketching algorithms for dimension reductions
such as stable random projections, CRS exhibits a significant advantage in that it
is “one-sketch-for-all.” In particular, we demonstrate the effectiveness of CRS in
efficiently computing the Hamming norm, the Hamming distance, the lp distance,
and the χ2 distance. A generic estimator and an approximate variance formula are
also provided, for approximating any type of distances.
We recommend CRS as a promising tool for building highly scalable systems, in
machine learning, data mining, recommender systems, and information retrieval.

1 Introduction
Learning algorithms often assume a data matrix A ∈ Rn×D with n observations and D attributes
and operate on the data matrix A through pairwise distances. The task of computing and maintaining
distances becomes non-trivial, when the data (both n and D) are large and possibly dynamic.

For example, if A denotes a term-doc matrix at Web scale with each row representing one Web page,
then n ≈ O(1010) (which may be verified by querying “A” or “The” in a search engine). Assuming
105 English words, the simplest uni-gram model requires the dimension D ≈ O(105); and a bi-gram
model can boost the dimension to D ≈ O(1010). Google book search program currently provides
data sets on indexed digital books up to five-grams. Note that the term-doc matrix is “transposable,”
meaning that one can treat either documents or terms as features, depending on applications.

Another example is the image data. The Caltech 256 benchmark contains n = 30, 608 images,
provided by two commercial firms. Using pixels as features, a 1024 × 1024 color image can be
represented by a vector of dimension D = 10242×3 = 3, 145, 728. Using histogram-based features
(e.g., [3]), D = 2563 = 16, 777, 216 is possible if one discretizes the RGB space into 2563 scales.

Text data are large and sparse, as most terms appear only in a small fraction of documents. For
example, a search engine reports 107 pagehits for the query “NIPS,” which is not common to the
general audience. Out of 1010 pages, 107 pagehits indicate a sparsity of 99.9%. (We define sparsity
as the percentage of zero elements.) In the absolute magnitude, however, 107 is actually very large.

Not all large-scale data are sparse. Image data are usually sparse when features are represented by
histograms; they are, however, dense when pixel-based features are used.

1.1 Pairwise Distances Used in Machine Learning

The lp distance and χ2 distance are both popular. Denote by u1 and u2 the leading two rows in
A ∈ Rn×D. The lp distance (raised to the pth power), and the χ2 distance, are, respectively,

dp(u1, u2) =

D∑
i=1

|u1,i − u2,i|p, dχ2(u1, u2) =

D∑
i=1

(u1,i − u2,i)
2

u1,i + u2,i
, (

0

0
= 0).

The χ2 distance is only a special case of Helbertian metrics, defined as,

dH,α,β (u1, u2) =
D∑

i=1

21/β
(

uα
1,i + uα

2,i

)1/α − 21/α
(

uβ
1,i + uβ

2,i

)1/β

21/α − 21/β
, α ∈ [1,∞), β ∈ [1/2, α] or β ∈ [−∞,−1].



Helbertian metrics are defined over probability space[7] and hence suitable for data generated from
histograms, e.g., the “bag-of-words” model. For applications in text and images using SVM, empir-
ical studies have demonstrated the superiority of Helbertian metrics over lp distances[3, 7, 9].

More generally, we are interested in any linear summary statistics which can be written in the form:

dg(u1, u2) =

D∑
i=1

g(u1,i, u2,i), (1)

for any generic function g. An efficient method for computing (1) for any g would be desirable.

1.2 Bottleneck in Distance/Kernel-based Learning Algorithms

A ubiquitous task in learning is to compute, store, update, and retrieve various types of distances[17].
For popular kernel SVM solvers including the SMO algorithm[16], storing and computing kernels
is the major bottleneck[2], because computing kernels is expensive, and more seriously, storing the
full kernel matrix in memory is infeasible when the number of observations n > 105.

One popular strategy is to evaluate kernels on the fly[2]. This works well in low-dimensional data
(i.e., relatively small D). With high-dimensional data, however, either computing distances on-
demand becomes too slow or the data matrix A ∈ Rn×D itself may not fit in memory.

We should emphasize that this challenge is a universal issue in distance-based methods, not limited
to SVMs. For example, popular clustering algorithms and multi-dimensional scaling algorithms
require frequently accessing a (di)similarity matrix, which is usually distance-based.

In addition to computing and storing distances, another general issue is that, for many real-world
applications, entries of the data matrix may be frequently updated, for example, data streams[15].
There have been considerable studies on learning from dynamic data, e.g., [5, 1]. Since streaming
data are often not stored (even on disks), computing and updating distances becomes challenging.

1.3 Contributions and Paper Organization

Conditional Random Sampling (CRS)[12, 13] was originally proposed for efficiently computing
pairwise (l2 and l1) distances, in large-scale static data. The contributions of this paper are:

1. We extend CRS to handle dynamic data. For example, entries of a matrix may vary over
time, or the data matrix may not be stored at all. We illustrate that CRS has the one-sketch-
for-all property, meaning that the same set of samples/sketches can be used for computing
any linear summary statistics (1). This is a significant advantage over many other dimen-
sion reduction or data stream algorithms. For example, the method of stable random
projections (SRP)[8, 10, 14] was designed for estimating the lp norms/distances for a fixed
p with 0 < p ≤ 2. Recently, a new method named Compressed Counting[11] is able to
very efficiently approximate the lp moments of data streams when p ≈ 1.

2. We introduce a modification to the original CRS and theoretically justify that this mod-
ification makes CRS rigorous, at least for computing the Hamming norm, an important
application in databases. We point out the original CRS was based on a heuristic argument.

3. We apply CRS for computing Hilbertian metrics[7], a popular family of distances for con-
structing kernels in SVM. We focus on a special case, by demonstrating that CRS is effec-
tive in approximating the χ2 distance.

Section 2 reviews the original CRS. Section 3 extends CRS to dynamic/streaming data. Section 4
focuses on using CRS to estimate the Hamming norm of a single vector, based on which Section 5
provides a generic estimation procedure for CRS, for estimating any linear summary statistics, with
the focus on the Hamming distance and the χ2 distance. Finally, Section 6 concludes the paper.

2 Conditional Random Sampling (CRS), the Original Version

Conditional Random Sampling (CRS)[12, 13] is a local sampling strategy. Since distances are local
(i.e., one pair at a time), there is no need to consider the whole matrix at one time.

As the first step, CRS applies a random permutation on the columns of A ∈ Rn×D. Figure 1(a)
provides an example of a column-permuted data matrix. The next step of CRS is to construct a



sketch for each row of the data matrix. A sketch can be viewed as a linked list which stores a small
fraction of the non-zero entries from the front of each row. Figure 1(b) demonstrates three sketches
corresponding to the three rows of the (column) permuted data matrix in Figure 1(a).
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(a) Permuted data matrix
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K  :   1 {5}   4 {1}   6 {7}  10 {8}   
K  :   2 {9}   3 {2}   5 {6}   8  {7}
K  :   2 {4}   5 {2}   9 {8}   12 {3}   

(b) Sketches

Figure 1: (a): A data matrix with three rows and D = 16 columns. We assume the columns are
already permuted. (b): Sketches are the first ki non-zero entries ascending by IDs (here ki = 4).

In Figure 1, the sketch for row ui is denoted by Ki. Each element of Ki is a tuple “ID {val},” where
“ID” is the column ID after the permutation and “{val}” is the value of that entry.

Consider two rows u1 and u2. The last (largest) IDs of sketches K1 and K2 are max(ID(K1)) = 10
and max(ID(K2)) = 8, respectively. Here, “ID(K)” stands for the vector of IDs in the sketch K. It is
clear that K1 and K2 contain all information about u1 and u2 from columns 1 to min(10, 8) = 8.
Had we directly taken the first Ds = 8 columns from the permuted data matrix, we would obtain the
same non-zero entries as in K1 and K2, if we exclude elements in K1 and K2 whose IDs > Ds = 8.
in this example, the element 10{8} in sketch K1 is excluded.

On the other hand, since the columns are already permuted, any Ds columns constitute a random
sample of size Ds. This means, by only looking at sketches K1 and K2, one can obtain a “random”
sample of size Ds. By statistics theory, one can easily obtain an unbiased estimate of any linear
summary statistics from a random sample. Since Ds is unknown until we look at K1 and K2 together,
[13] viewed this as a random sample conditioning on Ds.

Note that the Ds varies pairwise. When considering the rows u1 and u3, the sketches K1 and K3

suggest their Ds = min(max(ID(K1)), max(ID(K3))) = min(10,12) = 10.

In this study, we point out that, although the “conditioning” argument appeared intuitive, it is only a
(good) heuristic. There are two ways to understand why this argument is not strictly correct.

Consider a true random sample of size Ds, directly obtained from the first Ds columns of the
permuted data matrix. Assuming sparse data, elements at the Dsth column should be most likely
zero. However, in the “conditional random sample” obtained from CRS, at least one element at the
Dsth column is non-zero. Thus, the estimates of the original CRS are, strictly speaking, biased.

For a more obvious example, we can consider two rows with exactly one non-zero entry in each row
at the same column. The original CRS can not obtain an unbiased estimate unless Ds = D.

3 CRS for Dynamic Data and Introduction to Stable Random Projections

The original CRS was proposed for static data. In reality, the “data matrix” may be frequently
updated. When data arrive in a streaming fashion, they often will not be stored (even on disks)[15].
Thus, a one-pass algorithm is needed to compute and update distances for training. Learning with
dynamic (or incremental) data has become an active topic of research, e.g., [5, 1].

3.1 Dynamic/Streaming Data

We first consider only one data vector u of length D (viewed as one row in the data matrix). At each
time t, there is an input stream st = (it, It), it ∈ [1, D] which updates u (denoted by ut) by

ut[it] = H(ut−1[it], It),

where It is the increment/decrement at time t and H is an updating function. The so-called Turnstile
model [15] is extremely popular and assumes a linear updating function H, i.e.,

ut[it] = ut−1[it] + It. (2)

For example, ut[it] can represent the number of orders a “user” i has purchased up to time t, where
a user may be identified by his/her IP address (i.e., i ∈ [1, D = 264]); It is the number of orders the
user i orders (i.e., It > 0) or cancels (i.e., It < 0) at time t.



In terms of the data matrix A ∈ Rn×D, we can view it to be a collection of n data streams.

3.2 CRS for Streaming Data

For each stream ut, we maintain a sketch K with length (i.e., capacity) k. Each entry of K is a tuple
“ID{val}.” Initially, all entries are empty. The procedure for sketch construction works as follows:

1. Generate a random permutation π : [1, D] → [1, D].
2. For each st = (it, It), if π[it] > max(ID(K)) and the capacity of K is reached, do nothing.
3. Suppose π[it] ≤ max(ID(K)) or the capacity of K is not reached. If an entry with ID =

π[it] does not exist, insert a new entry. Otherwise, update that entry according to H.1

4. Apply the procedure to each data stream using the same random permutation mapping π.

Once sketches are constructed, the estimation procedure will be the same regardless whether the
original data are dynamic or static. Thus, we will use static data to verify some estimators of CRS.

3.3 (Symmetric) Stable Random Projections (SRP)

Since the method of (symmetric) stable random projections (SRP)[8, 10] has become a standard
algorithm for data stream computations, we very briefly introduce SRP for the sake of comparisons.

The procedure of SRP is to multiply the data matrix A ∈ Rn×D by a random matrix R ∈ RD×k,
whose entries are i.i.d. samples from a standard (symmetric) stable distribution S(p, 1), 0 < p ≤ 2.

Consider two rows, u1 and u2, in A. By properties of stable distributions, the projected vectors
v1 = RTu1 and v2 = RTu2 have i.i.d. stable entries, i.e., for j = 1 to k,

v1,j ∼ S

(
p, Fp =

D∑
i=1

|u1,i|p
)

, v1,j − v2,j ∼ S

(
p, dp =

D∑
i=1

|u1,i − u2,i|p
)

.

Thus, one can estimate an individual norm or distance from k samples. SRP is applicable to dy-
namic/streaming data, provided the data follow the Turnstile model in (2). Because the Turnstile
model is linear and matrix multiplication is also linear, one can conduct A×R incrementally.

Compared with Conditional Random Sampling (CRS), SRP has an elegant mathematical deriva-
tion, with various interesting estimators and rigorous sample complexity bounds, i.e., k can be pre-
determined in fully rigorous fashion. The accuracy of SRP is not affected by heavy-tailed data.

CRS, however, exhibits certain advantages over SRP:

• CRS is “one-sketch-for-all”. The same sketch of CRS can approximate any linear
summary statistics (1). SRP is limited to the lp norm and distance with 0 < p ≤ 2. One has
to conduct SRP 10 times (and store 10 sets of sketches) if 10 different p values are needed.

• CRS allows “term-weighting” in dynamic data. In machine learning, the distances
are often computed using weighted data (e.g., √u1,i or log(1 + u1,i)), which is critical for
good performance. For static data, one can first term-weight the data before applying SRP.
For dynamic data, however, there is no way to trace back the original data after projections.

• CRS is not restricted to the Turnstile model.
• CRS is not necessary less accurate, especially for sparse data or binary data.

4 Approximating Hamming Norms in Dynamic Data

Counting the Hamming norm (i.e., number of non-zeros) in an exceptionally long, dynamic vector
has important applications[4, 15]. For example, if a vector ut records the numbers of items users
have ordered, one meaningful question to ask may be “ how many distinct users are there?”

The purpose of this section is three-fold. (1) This is the case we can rigorously analyze CRS and
propose a truly unbiased estimator. (2) This analysis brings better insights and more reasonable
estimators for pairs of data vectors. (3) In this case, despite its simplicity, CRS theoretically achieves
similar accuracy as stable random projections (SRP). Empirically, CRS (slightly) outperforms SRP.

1We leave it for particular applications to decide whether an entry updated to zero should be discarded or
should be kept in the sketch. In reality, this case does not occur often. For example, the most important type of
data streams[15] is “insertion-only,” meaning that the values will never decrease.



4.1 The Proposed (Unbiased) Estimator and Variance

Suppose we have obtained the sketch K. For example, consider the first row in Figure 1: D = 16,
k = 4 and the number of non-zeros f = 7. Lemma 1 (whose proof is omitted) proposes an unbiased
estimator of f , denoted by f̂ , and a biased estimator based on the maximum likelihood, fmle.

Lemma 1

f̂ =
D(k − 1)

Z − 1
, Z = max(ID(K)), E

(
f̂
)

= f, D ≥ f ≥ k > 1

Var
(
f̂
)

< V U
f =

f2 − f

k − 2

D

D − 1
− (D − f)f

D − 1
, (k > 2)

Var
(
f̂
)

> V L
f = V U

f − (k − 1)f(f − 1)(f − 2)D

(k − 2)(k − 3)(D − 1)(D − 2)
, (k > 3).

Assume f/D is small and k/f is also small, then Var
(
f̂
)

= f2

k
+ O

(
1

k2

)
.

The maximum likelihood estimator is f̂mle = k(D+1)
Z

− 1.

Note that, since Var
(
f̂
)

/f2 ≈ 1/k, independent of the data, the estimator f̂ actually has the worst-
case complexity bound similar to that of SRP[10], although the precise constant is not easy to obtain.

4.2 The Approximation Using the Conditioning Argument

Interestingly, this estimator, f̂ = D(k−1)
max(ID(K))−1

, appears to be the estimator for a hypergeometric
random sample of size Ds = max(ID(K)) − 1. That is, suppose we randomly pick Ds balls (with-
out replacement) from a pool of D balls and we observe that k′ balls are red; then a natural (and
unbiased) estimator for the total number of red balls would be D

Ds
k′; here k′ = k − 1.

This seems to imply that the “conditioning” argument in the original CRS in Section 2 is “correct”
if we make a simple modification by using the Ds which is the original Ds minus 1. While this is
what we will recommend as the modified CRS, it is only a close approximation.

Consider f̂app = f̂ , where we assume f̂app is the estimator for the hypergeometric distribution, then

Var
(

f̂app|Ds = Z − 1
)

=
D2

D2
s

Ds
f

D

(
1− f

D

)
× D −Ds

D − 1
=

D

D − 1

(
D

Ds

− 1

)
f

(
1− f

D

)

Var
(

f̂app

)
= E

(
Var

(
f̂app|Ds

))
=

D

D − 1

(
E

(
D

Z − 1

)
− 1

)
f

(
1− f

D

)
=

Df

D − 1

(
f

k − 1
− 1

) (
1− f

D

)
(3)

4.3 Comparisons with Stable Random Projections (SRP)

Based on the observation that f = limp→0+

∑D
i=1 |ui|p, [4] proposed using SRP to approximate the

lp norm with very small p, as an approximation to f . For p → 0+, the recent work for SRP [10]
proposed the harmonic mean estimator. Recall that after projections v = RTu ∈ Rk consists of
i.i.d. stable samples with scale parameter Fp =

∑D
i=1 |ui|p. The harmonic mean estimator is

F̂p,hm =
− 2

π Γ(−p) sin
(

π
2 p

)
∑k

j=1 |vj |−p

(
k −

(
−πΓ(−2p) sin (πp)[
Γ(−p) sin

(
π
2 p

)]2 − 1

))
,

Var
(

F̂p,hm

)
= F

2
p

1

k

(
−πΓ(−2p) sin (πp)[
Γ(−p) sin

(
π
2 p

)]2 − 1

)
+ O

(
1

k2

)
.

lim
p→0+

− 2

π
Γ(−p) sin

(
π

2
p

)
→ 1, lim

p→0+
−−πΓ(−2p) sin (πp)[

Γ(−p) sin
(

π
2 p

)]2 − 1 → 1.

Denote this estimator by f̂srp (using p as small as possible), whose variance is Var
(
f̂srp

)
≈ f2

k
,

which is roughly equivalent to the variance of f̂ , the unbiased estimator for CRS.

We empirically compared CRS with SRP. Four word vectors were selected; entries of each vector
record the numbers of occurrences of the word in D = 216 Web pages. The data are very heavy-
tailed. The percentage of zero elements (i.e., sparsity) varies from 58% to 95%.

Figure 2 presents the comparisons. (1): It is possible that CRS may outperform SRP non-negligibly.
(2): The variance (3) based on the approximate “conditioning” argument is very accurate. (3): The
unbiased estimator f̂ is more accurate than f̂mle; the latter actually uses one more sample.



3 10 20 30 40

10
−1

10
0

k

S
ta

nd
ar

di
ze

d 
M

S
E

THIS
 

 

CRS
CRS+mle
SRP
1/k
Approx. Var

3 10 20 30 40

10
−1

10
0

k

S
ta

nd
ar

di
ze

d 
M

S
E

HAVE
 

 

CRS
CRS+mle
SRP
1/k
Approx. Var

3 10 20 30 40

10
−1

10
0

k

S
ta

nd
ar

di
ze

d 
M

S
E

ADDRESS
 

 

CRS
CRS+mle
SRP
1/k
Approx. Var

3 10 20 30 40

10
−1

10
0

k

S
ta

nd
ar

di
ze

d 
M

S
E

CUSTOMER
 

 

CRS
CRS+mle
SRP
1/k
Approx. Var

Figure 2: Comparing CRS with SRP for approximating Hamming norms in Web crawl data (four
word vectors), using the normalized mean square errors (MSE, normalized by f2). “CRS” and
“CRS+mle” respectively correspond to f̂ and f̂mle, derived in Lemma 1. ”SRP” corresponds to the
harmonic mean estimator of SRP using p = 0.04. “1/k” is the theoretical asymptotic variance of
both CRS and SRP. The curve labeled ”Approx. Var” is the approximate variance in (3).

5 The Modified CRS Estimation Procedure

The modified CRS estimation procedure is based on the theoretical analysis for using CRS to ap-
proximate Hamming norms. Suppose we are interested in the distance between rows u1 and u2 and
we have access to sketches K1 and K2. Our suggested “equivalent” sample size Ds would be

Ds = min{Z1 − 1, Z2 − 1}, Z1 = max(ID(K1), Z2 = max(ID(K2). (4)

We should not include elements in K1 and K2 whose IDs are larger than Ds

Consider K1 and K2 in Figure 1, the modified CRS adopts Ds = min(10−1, 8−1) = min(9, 7) =
7. Removing 10{8} from K1 and 8{7} from K2, we obtain a sample for u1 and u2:

ũ1,1 = 5, ũ1,4 = 1, ũ1,6 = 7, ũ2,2 = 9, ũ2,3 = 2, ũ2,5 = 6.

All other sample entries are zero: ũ1,2 = ũ1,3 = ũ1,5 = ũ1,7 = 0, ũ2,1 = ũ2,4 = ũ2,6 = ũ2,7 = 0.

5.1 A Generic Estimator and Approximate Variance
Rigorous theoretical analysis on one pair of sketches is difficult. We resort to the approximate
“conditioning” argument using the modified Ds in (4). We consider a generic distance dg(u1, u2) =∑D

i=1 g (u1,i, u2,i), and assume that, conditioning on Ds, the sample {ũ1,j , ũ2,j}Ds
j=1 is exactly

equivalent to the sample from randomly selected Ds columns without replacement. Under this
assumption, an “unbiased” estimator of dg(u1, u2) (and two special cases) would be

d̂g(u1, u2) =
D

Ds

D∑
i=1

g(ũ1,j , ũ2,j), d̂p =
D

Ds

Ds∑
j=1

|ũ1,j − ũ2,j |p, d̂χ2 =
D

Ds

Ds∑
j=1

(ũ1,j − ũ2,j)
2

ũ1,j + ũ2,j
.

A generic (approximate) variance formula can be obtained as follows:

Var
(

d̂g(u1, u2)|Ds

)
≈ D −Ds

D − 1
× D2

D2
s

Ds

(
E

(
g
2
(ũ1,j , ũ2,j)

)
− E2

(g(ũ1,j , ũ2,j))
)

=
D −Ds

D − 1

D2

D2
s

Ds


 1

D

D∑

i=1

g
2
(u1,i, u2,i)−

(
1

D

D∑

i=1

g(u1,i, u2,i)

)2

 =

D

D − 1

(
D

Ds

− 1

) (
dg2 −

d2
g

D

)
.

Var
(

d̂g(u1, u2)
)
≈ E

(
Var

(
d̂g(u1, u2)|Ds

))
=

D

D − 1

(
E

(
D

Ds

)
− 1

) (
dg2 −

d2
g

D

)

=
D

D − 1

(
E

(
max{ D

Z1 − 1
,

D

Z2 − 1
}
)
− 1

) (
dg2 −

d2
g

D

)

≈ D

D − 1

(
max

{
E

(
D

Z1 − 1

)
, E

(
D

Z2 − 1

)}
− 1

) (
dg2 −

d2
g

D

)

=
D

D − 1

(
max

{
f1

k1 − 1
,

f2

k2 − 1

}
− 1

) (
dg2 −

d2
g

D

)
. (5)

Here, k1 and k2 are the sketch sizes of K1 and K2, respectively, f1 and f2 are the numbers of non-
zeros in the original data, u1, u2, respectively. We have used the results in Lemma 1 and a common
statistical approximation: E(max(x, y)) ≈ max (E(x), E(y)).



From (5), we know the variance is affected by two factors. If the data are very sparse, i.e.,
max

{
f1

k1−1 , f2
k2−1

}
is small, then the variance also tends to be small. If the data are heavy-tailed,

i.e., Ddg2 À d2
g, then the variance tends to be large. Text data are often highly sparse and heavy-

tailed; but machine learning applications often need to use the weighted data (i.e., taking logarithm
or binary quantization). This is why we expect CRS will be successful in real applications, although
it in general does not have the worst-case performance guarantees.

The next two subsections apply CRS to estimating the Hamming distance and the χ2 distance.
Empirical studies [3, 7, 9] have demonstrated that, in text and image data, using the Hamming
distance or the χ2 distance for kernel SVMs achieved good performance.

5.2 Estimating the Hamming Distance

Following the definition of Hamming distance in [4]: h (u1, u2) =
∑D

i=1 1{u1,i − u2,i 6= 0}, we esti-
mate h using the modified CRS procedure, denoted by ĥ. The approximate variance (5) becomes

Var
(
ĥ
)
≈ D

D − 1

(
max

{
f1

k1 − 1
,

f2

k2 − 1

}
− 1

) (
h− h2

D

)
. (6)

We also apply SRP using small p and its most accurate harmonic mean estimator[10]. The empirical
comparisons in Figure 3 verify two points. (1): CRS can be considerably more accurate than SRP for
estimating Hamming distances in [4]. (2): The approximate variance formula (6) is very accurate.
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Figure 3: Approximating Hamming distances (h) using two pairs of words. The results are presented
in terms of the normalized (by h2) MSE. The curves labeled “Approx. Var” correspond to the
approximate variance of CRS in (6).

In this example, the seemingly impressive improvement of CRS over SRP is actually due to that we
used the definition of Hamming distance in [4]. An alternative definition of Hamming distance is
h(u1, u2) =

∑D
i=1[1 {u1,i 6= 0 and u2,i = 0} + 1 {u1,i = 0 and u2,i 6= 0}], which is basically the

lp distance after a binary term-weighting. As we have commented, if using SRP in dynamic data,
term-weighting is not possible; thus we only experimented with the definition in [4].

5.3 Estimating the χ2 Distance

We apply CRS to estimating the χ2 distance between u1 and u2: dχ2 (u1, u2) =
∑D

i=1

(u1,i−u2,i)
2

u1,i+u2,i
.

According to (5), the estimation variance should be approximately

D

D − 1

(
max

{
f1

k1 − 1
,

f2

k2 − 1

}
− 1

) (
D∑

i=1

(u1,i − u2,i)
4

(u1,i + u2,i)2
− d2

χ2

D

)
, (7)

which is affected only by the second moments, because
∑D

i=1

(u1,i−u2,i)
4

(u1,i+u2,i)2
≤ ∑D

i=1(u1,i + u2,i)
2.

There are proved negative results [6] that in the worst-case no efficient algorithms exist for approx-
imating the χ2 distances. CRS does not provide any worst-case guarantees; its performance relies
on the assumption that the data are often reasonably sparse and the second moments should be
reasonably bounded in machine learning applications.

Figure 4 presents some empirical study, using the same four words, plus the UCI Dexter data. Even
though the four words are fairly common (i.e., not very sparse) and they are heavy-tailed (no term-
weighting was applied), CRS still achieved good performance in terms of the normalized MSE (e.g.,
≤ 0.1) at reasonably small k. And again, the approximate variance formula (7) is accurate.

Results in the Dexter data set (which is more realistic for machine learning) are encouraging. Only
about k = 10 is needed to achieve small MSE.
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Figure 4: Left two panels: CRS for approximating the χ2 distance using two pairs of words (D =
216). The curves report the normalized MSE and the approximate variance in (7).
Right-most panel: The Dexter data, D = 20000, with 300 data points. We estimate all pairwise (i.e.,
44850 pairs) χ2 distances using CRS. The three curves report the quantiles of normalized MSEs.

6 Conclusion
The ubiquitous phenomenon of massive, high-dimensional, and possibly dynamic data, has brought
in serious challenges. It is highly desirable to achieve compact data presentation and efficiently
computing and retrieving summary statistics, in particular, various types of distances. Conditional
Random Sampling (CRS) provides a simple and effective mechanism to achieve this goal.

Compared with other “main stream” sketching algorithms such as stable random projections (SRP),
the major advantage of CRS is that it is “one-sketch-for-all,” meaning that the same set of sketches
can approximate any linear summary statistics. This would be very convenient in practice.

The major disadvantage of CRS is that it relies heavily on the data sparsity and also on the assump-
tion that in machine learning applications the “worst-case” data distributions are often avoided (e.g.,
through term-weighting). Also, the theoretical analysis is difficult, despite it is a simple algorithm.

Originally based on a heuristic argument, the preliminary version of CRS, was proposed as a tool
for computing pairwise l2 and l1 distances in static data. This paper provides a partial theoretical
justification of CRS and various modifications, to make the algorithm more rigorous and to extend
CRS for handling dynamic/streaming data. We demonstrate, empirically and theoretically, the ef-
fectiveness of CRS in approximating the Hamming norms/distances and the χ2 distances.
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