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Abstract

We developed localized sliced inverse regression for supervised dimension re-
duction. It has the advantages of preventing degeneracy, increasing estimation
accuracy, and automatic subclass discovery in classification problems. A semi-
supervised version is proposed for the use of unlabeled data. The utility is illus-
trated on simulated as well as real data sets.

1 Introduction

The importance of dimension reduction for predictive modeling and visualization has a long and
central role in statistical graphics and computation In the modern context of high-dimensional data
analysis this perspective posits that the functional dependence between a response variabley and a
large set of explanatory variablesx ∈ R

p is driven by a low dimensional subspace of thep variables.
Characterizing this predictive subspace, supervised dimension reduction, requires both the response
and explanatory variables. This problem in the context of linear subspaces or Euclidean geometry
has been explored by a variety of statistical models such as sliced inverse regression (SIR, [10]),
sliced average variance estimation (SAVE, [3]), principal Hessian directions (pHd, [11]), (condi-
tional) minimum average variance estimation (MAVE, [18]), and extensions to these approaches. To
extract nonlinear subspaces, one can apply the aforementioned linear algorithms to the data mapped
into a feature space induced by a kernel function [13, 6, 17].

In machine learning community research on nonlinear dimension reduction in the spirit of [19] has
been developed of late. This has led to a variety of manifold learning algorithms such as isometric
mapping (ISOMAP, [16]), local linear embedding (LLE, [14]), Hessian Eigenmaps [5], and Lapla-
cian Eigenmaps [1]. Two key differences exist between the paradigm explored in this approach
and that of supervised dimension reduction. The first difference is that the above methods are un-
supervised in that the algorithms take into account only the explanatory variables. This issue can
be addressed by extending the unsupervised algorithms to use the label or response data [7]. The
bigger problem is that these manifold learning algorithms do not operate on the space of the ex-
planatory variables and hence do not provide a predictive submanifold onto which the data should
be projected. These methods are based on embedding the observed data onto a graph and then us-
ing spectral properties of the embedded graph for dimension reduction. The key observation in all
of these manifold algorithms is that metrics must be local and properties that hold in an ambient
Euclidean space are true locally on smooth manifolds.

This suggests that the use of local information in supervised dimension reduction methods may be
of use to extend methods for dimension reduction to the setting of nonlinear subspaces and subman-
ifolds of the ambient space. In the context of mixture modeling for classification two approaches
have been developed [9, 15].
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In this paper we extend SIR by taking into account the local structure of the explanatory variables.
This localized variant of SIR, LSIR, can be used for classification as well as regression applications.
Though the predictive directions obtained by LSIR are linear ones, they coded nonlinear informa-
tion. Another advantage of our approach is that ancillary unlabeled data can be easily added to the
dimension reduction analysis – semi-supervised learning.

The paper is arranged as follows. LSIR is introduced in Section 2 for continuous and categorical
response variables. Extensions are discussed in Section 3. The utility with respect to predictive accu-
racy as well as exploratory data analysis via visualization is demonstrated on a variety of simulated
and real data in Sections 4 and 5. We close with discussions in Section 6.

2 Localized SIR

We start with a brief review of SIR method and remark that the failure of SIR in some situations is
caused by ignoring local structures. Then we propose a generalization of SIR, called localized SIR,
by incorporating some localization idea from manifold learning. Connection to some existing work
is addressed at the end.

2.1 Sliced inverse regression

Assume the functional dependence between a response variableY and an explanatory variableX ∈
R

p is given by
Y = f(βt

1
X, . . . , βt

LX, ǫ), (1)

whereβl’s are unknown orthogonal vectors inRp andǫ is noise independent ofX . Let B denote
theL-dimensional subspace spanned byβl’s. ThenPBX , wherePB denotes the projection operator
onto spaceB, provides a sufficient summary of the information inX relevant toY . EstimatingB or
βl’s becomes the central problem in supervised dimension reduction. Though we defineB here via
a heuristic model assumption (1), a general definition based on conditional independence between
Y andX givenPBX can be found in [4]. Following [4], we refer toB as the dimension reduction
(d.r.) subspace andβl’s the d.r. directions.

Slice inverse regression (SIR) model is introduced [10] to estimate the d.r. directions. The idea
underlying this approach is that, ifX has an identity covariance matrix, the centered inverse regres-
sion curveE(X |Y ) − EX is contained in the d.r. spaceB under some design conditions; see [10]
for details. According to this result the d.r. directionsβl’s are given by the top eigenvectors of the
covariance matrixΓ = Cov(E(X |Y )). In general when the covariance matrix ofX is Σ, theβl’s
can be obtained by solving a generalized eigen decomposition problem

Γβ = λΣβ.

A simple SIR algorithm operates as the following on a set of samples{(xi, yi)}
n

i=1
:

1. Compute an empirical estimate ofΣ,

Σ̂ =
1

n

n∑

i=1

(xi − m)(xi − m)T

wherem = 1

n

∑n

i=1
xi is the sample mean.

2. Divide the samples intoH groups (orslices) G1, . . . , GH according to the value ofy.
Compute an empirical estimate ofΓ,

Γ̂ =

H∑

i=1

nh

n
(mh − m)(mh − m)T

wheremh = 1

nh

∑
j∈Gh

xj is the sample mean for groupGh with nh being the group size.

3. Estimate the d.r. directionsβ by solving a generalized eigen problem

Γ̂β = λΣ̂β. (2)
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WhenY takes categorical values as in classification problems, it is natural to divide the data into dif-
ferent groups by their group labels. Then SIR is equivalent to Fisher discriminant analysis (FDA).1

Though SIR has been widely used for dimension reduction and yielded many useful results in prac-
tice, it has some known problems. For example, it is easy to construct a functionf such that
E(X |Y = y) = 0 then SIR fails to retrieve any useful directions [3]. The degeneracy of SIR has also
restricted its use in binary classification problems where only one direction can be obtained. The
failure of SIR in these scenario is partly because the algorithm uses just the mean,E(X |Y = y), as
a summary of the information in each slice, which apparently is not enough. Generalizations of SIR
include SAVE [3], SIR-II [12] and covariance inverse regression estimation (CIRE, [2]) that exploit
the information from the second moment of the conditional distribution ofX |Y . However in some
scenario the information in each slice can not be well described by a global statistics. For example,
similar to themultimodalsituation considered by [15], the data in a slice may form two clusters,
then a good description of the data would not be a single number such as any moments, but the two
cluster centers. Next we will propose a new algorithm that is a generalization of SIR based on local
structures ofX in each slice.

2.2 Localization

A key principle in manifold learning is that the Euclidean representation of a data point inR
p is only

meaningful locally. Under this principle, it is dangerous to calculate the slice averagemh, whenever
the slice contains data that are far away. Instead some kind of local averages should be considered.
Motivated by this idea we introduce a localized SIR (LSIR) method for dimension reduction.

Here is the intuition for LSIR. Let us start with the transformed data set where the empirical co-
variance is identity, for example, the data set after PCA. In the original SIR method, we shift every
data pointxi to the corresponding group average, then apply PCA on the new data set to identify
SIR directions. The underline rational for this approach is that if a direction does not differentiate
different groups well, the group means projected to that direction would be very close, therefore
the variance of the new data set will be small at that direction. A natural way to incorporate local-
ization idea into this approach is to shift each data pointxi to the average of a local neighborhood
instead of the average of its global neighborhood (i.e., the whole group). In manifolds learning, local
neighborhood is often chosen byk nearest neighborhood (k-NN). Different from manifolds learning
that is designed for unsupervised learning, the neighborhood selection for LSIR that is designed for
supervised learning will also incorporate information from the response variabley.

Here is the mathematical description of LSIR. Recall that the group averagemh is used in estimating
Γ = Cov(E(X |Y )). The estimatêΓ is equivalent to the sample covariance of a data set{mi}

n
i=1

wheremi = mh, average of the groupGh to whichxi belongs. In our LSIR algorithm, we setmi

equal to some local average, and then use the corresponding sample covariance matrix to replaceΓ̂
in equation (2). Below we give the details of our LSIR algorithm:

1. ComputêΣ as in SIR.

2. Divide the samples intoH groups as in SIR. For each sample(xi, yi) we compute

mi,loc =
1

k

∑

j∈si

xj ,

where, withh being the group so thati ∈ Gh,

si = {j : xj belongs to thek nearest neighbors ofxi in Gh} .

Then we compute a localized version ofΓ by

Γ̂loc =
1

n

n∑

i=1

(mi,loc − m)(mi,loc − m)T .

3. Solve the generalized eigen decomposition problem

Γ̂locβ = λΣ̂β. (3)

1FDA is referred to as linear discriminant analysis (LDA) in some literatures.

3



The neighborhood sizek in LSIR is a tuning parameter specified by users. Whenk is large enough,
say, larger than the size of any group, thenΓ̂loc is the same aŝΓ and LSIR recovers all SIR directions.
With a moderate choice ofk, LSIR uses the local information within each slice and is expected to
retrieve directions lost by SIR in case of SIR fails due to degeneracy.

For classification problems LSIR becomes a localized version of FDA. Suppose the number of
classes isC, then the estimatêΓ from the original FDA is of rank at mostC − 1, which means
FDA can only estimate at mostC − 1 directions. This is why FDA is seldom used for binary clas-
sification problems whereC = 2. In LSIR we use more points to describe the data in each class.
Mathematically this is reflected by the increase of the rank ofΓ̂loc that is no longer bounded byC
and hence produces more directions. Moreover, if for some classes the data is composed of several
sub-clusters, LSIR can automatically identify these sub-cluster structures. As showed in one of our
examples, this property of LSIR is very useful in data analysis such as cancer subtype discovery
using genomic data.

2.3 Connection to Existing Work

The idea of localization has been introduced to dimension reduction for classification problems
before. For example, the local discriminant information (LDI) introduced by [9] is one of the early
work in this area. In LDI, the local information is used to compute the between-group covariance
matrixΓi over a nearest neighborhood at every data pointxi and then estimate the d.r. directions by
the top eigenvector of the averaged between-group matrix1

n

∑n

i=1
Γi. The local Fisher discriminant

analysis (LFDA) introduced by [15] can be regarded as an improvement of LDI with the within-class
covariance matrix also being localized.

Comparing to these two approaches, LSIR utilizes the local information directly at the point level.
One advantage of this simple localization is computation. For example, for a problem ofC classes,
LDI needs to computenC local mean points andn between-group covariance matrices, while LSIR
computes onlyn local mean points and one covariance matrix. Another advantage is LSIR can
be easily extended to handle unlabeled data in semi-supervised learning as explained in the next
section. Such an extension is less straightforward for the other two approaches that operate on the
covariance matrices instead of data points.

3 Extensions

Regularization. When the matrix̂Σ is singular or has a very large condition number, which is com-
mon in high-dimensional problems, the generalized eigen-decomposition problems (3) is unstable.
Regularization techniques are often introduced to address this issue [20]. For LSIR we adopt the
following regularization:

Γ̂locβ = λ(Σ̂ + s)β (4)

where the regularization parameters can be chosen by cross validation or other criteria (e.g. [20]).

Semi-supervised learning. In semi-supervised learning some data havey’s (labeleddata) and some
do not (unlabeleddata). How to incorporate the information from unlabeled data has been the main
focus of research in semi-supervised learning. Our LSIR algorithm can be easily modified to take
the unlabeled data into consideration. Sincey of an unlabeled sample can take any possible values,
we put the unlabeled data into every slice. So the neighborhoodsi is defined as the following: for
any point in thek-NN of xi, it belongs tosi if it is unlabeled, or if it is labeled and belongs to the
same slice asxi.

4 Simulations

In this section we apply LSIR to several synthetic data sets to illustrate the power of LSIR. The
performance of LSIR is compared with other dimension reduction methods including SIR, SAVE,
pHd, and LFDA.
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Method SAVE pHd LSIR (k = 20) LSIR (k = 40)
Accuracy 0.3451(±0.1970) 0.3454(±0.1970) 0.9534(±.0004) 0.9011(±.0008)

Table 1: Estimation accuracy (and standard deviation) of various dimension reduction methods for
semisupervised learning in Example 1.
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Figure 1: Result for Example 1. (a) Plot of data in the first two dimensions, where ‘+’ corresponds
to y = 1 while ’o’ corresponds toy = −1. The data points in red and blue are labeled and the
ones in green are unlabeled when the semisupervised setting is considered. (b) Projection of data
to the first two PCA directions. (c) Projection of data to the first two LSIR directions when all the
n = 400 data points are labeled. (d) Projection of the data to the first two LSIR directions when
only 20 points as indicated in (a) are labeled.

Let B̂ = (β̂1, · · · , β̂L) denote an estimate of the d.r. subspaceB where its columnŝβl’s are the
estimated d.r. directions. We introduce the following metric to measure the accuracy:

Accuracy(B̂, B) =
1

L

L∑

i=1

‖PBβ̂i‖
2 =

1

L

L∑

i=1

‖(BBT )β̂i‖
2.

In LSIR the influence of the parameterk, the size of local neighborhoods, is subtle. In our simulation
study, we found it usually good enough to choosek between 10 to 20, except for the semisupervised
setting (e.g. Example 1 below). But further study and a theoretical justification are necessary.

Example1. Consider a binary classification problem onR
10 where the d.r. directions are the first

two dimensions and the remaining eight dimensions are Gaussian noise. The data in the first two
relevant dimensions are plotted in Figure 1(a) with sample sizen = 400. For this example SIR
cannot identify the two d.r. directions because the group averages of the two groups are roughly the
same for the first two dimensions, due to the symmetry in the data. Using local average instead of
group average, LSIR can find both directions, see Figure 1(c). But so do SAVE and pHd since the
high-order moments also behave differently in the two groups.

Next we create a data set for semi-supervised learning by randomly selecting 20 samples, 10 from
each group, to be labeled and setting others to be unlabeled. The directions from PCA where one
ignores the labels do not agree with the discriminant directions as shown in Figure 1(b). So to
retrieve the relevant directions, the information from the labeled points has to be taken consideration.
We evaluate the accuracy of LSIR (the semi-supervised version), SAVE and pHd where the latter
two are operated on just the labeled set. We repeat this experiment 20 times and each time select a
different random set to be labeled. The averaged accuracy is reported in Table 1. The result for one
iteration is displayed in Figure 1 where the labeled points are indicated in (a) and the projection to
the top two directions from LSIR (withk = 40) is in (d). All the results clearly indicate that LSIR
out-performs the other two supervised dimension reduction methods.

Example2. We first generate a 10-dimensional data set where the first three dimensions are the
Swiss roll data [14]:

X1 = t cos t, X2 = 21h, X3 = t sin t,

wheret = 3π
2

(1 + 2θ), θ ∼ Uniform(0, 1) andh ∼ Uniform([0, 1]). The remaining 7 dimen-
sions are independent Gaussian noises. Then all dimensions are normalized to have unit variance.
Consider the following function:

Y = sin(5πθ) + h2 + ǫ, ǫ ∼ N(0, 0.12). (5)
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Figure 2: Estimation accuracy of various dimension methods for example 2.

We randomly choosen samples as a training set and letn change from200 to 1000 and compare the
estimation accuracy for LSIR with SIR, SAVE and pHd. The result is showed in Figure 2. SAVE
and pHd outperform SIR, but are still much worse comparing to LSIR.

Note that Swiss roll (the first three dimensions) is a benchmark data set in manifolds learning,
where the goal is to “unroll” the data into the intrinsic two dimensional space. Since LSIR is a
linear dimension reduction method we do not expect LSIR to unroll the data, but expect to retrieve
the dimensions relevant to the prediction ofY . Meanwhile, with the noise, manifolds learning
algorithms will not unroll the data either since the dominant directions are now the noise dimensions.

Example3. (Tai Chi) The Tai Chi figure is well known in Asian culture where the concepts of
Yin-Yang provide the intellectual framework for much of ancient Chinese scientific development.
A 6-dimensional data set for this example is generated as follows:X1 andX2 are from the Tai Chi
structure as shown in Figure 3(a) where the Yin and Yang regions are assigned class labelsY = −1
andY = 1 respectively.X3, . . . , X6 are independent random noise generated byN(0, 1).

The Tai Chi data set was first used as a dimension reduction example in [12, Chapter 14]. The
correct d.r. subspaceB is span(e1, e2). SIR, SAVE and pHd are all known to fail for this example.
By taking the local structure into account, LSIR can easily retrieve the relevant directions. Following
[12], we generaten = 1000 samples as the training data, then run LSIR withk = 10 and repeat
100 times. The average accuracy is98.6% and the result from one run is shown in Figure 3. For
comparison we also applied LFDA for this example. The average accuracy is82% which is much
better than SIR, SAVE and pHd but worse than LSIR.

Figure 3: Result for Tai Chi example. (a) The training data in first two dimensions; (b) The training
data projected onto the first two LSIR directions; (c) An independent test data projected onto the
first two LSIR directions.

5 Applications

In this section we apply our LSIR methods to two real data sets.

5.1 Digits recognition

The MNIST data set (Y. LeCun,http://yann.lecun.com/exdb/mnist/) is a well known benchmark data
set for classification learning. It contains60, 000 images of handwritten digits as training data and
10, 000 images as test data. This data set is commonly believed to have strong nonlinear structures.
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Figure 4: Result for leukemia data by LSIR. Red points are ALL and blue ones are AML

In our simulations, we randomly sampled1000 images (100 samples for each digit) as training set.
We apply LSIR and computedd = 20 e.d.r. directions. Then we project the training data and10000
test data onto these directions. Using a k-nearest neighbor classifier withk = 5 to classify the test
data, we report the classification error over100 iterations in Table 2. Compared with SIR method,
the classification accuracy are increased for almost all digits. The improvement for digits2, 3, 5 is
much significant.

digits 0 1 2 3 4 5 6 7 8 9 average
LSIR 0.0350 0.0098 0.1363 0.1055 0.1309 0.1175 0.0445 0.1106 0.1417 0.1061 0.0927
SIR 0.0487 0.0292 0.1921 0.1723 0.1327 0.2146 0.0816 0.1354 0.1981 0.1533 0.1358

Table 2: Classification error rate for digits classification by SIR and LSIR.

5.2 Gene expression data

Cancer classification and discovery using gene expression data becomes an important technique in
modern biology and medical science. In gene expression data number of genes is huge (usually up
to thousands) and the samples is quite limited. As a typical largep small n problem, dimension
reduction plays very essential role to understand the data structure and make inference.

Leukemia classification. We consider leukemia classification in [8]. This data has 38 training sam-
ples and 34 test samples. The training sample has two classes, AML and ALL, and the class ALL
has two subtypes. We apply SIR and LSIR to this data. The classification accuracy is similar by
predicting the test data with0 or 1 error. An interesting point is that LSIR automatically realizes
subtype discovery while SIR cannot. By project the training data onto the first two directions (Fig-
ure 4), we immediately notice that the ALL has two subtypes. It turns out that the6-samples cluster
are T-cell ALL and the19-samples cluster is B-cell ALL samples. Note that there are two samples
(which are T-cell ALL) cannot be assigned to each subtype only by visualization. This means LSIR
only provides useful subclass knowledge for future research but itself may not a perfect clustering
method.

6 Discussion

We developed LSIR method for dimension reduction by incorporating local information into the
original SIR. It can prevent degeneracy, increase estimation accuracy, and automatically identify
subcluster structures. Regularization technique is introduced for computational stability. A semi-
supervised version is developed for the use of unlabeled data. The utility is illustrated on synthetic
as well as real data sets.

Since LSIR involves only linear operations on the data points, it is straightforward to extend it
to kernel models [17] via the so-called kernel trick. An extension of LSIR along this direction
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can be helpful to realize nonlinear dimension reduction directions and to reduce the computational
complexity in case ofp ≫ n.

Further research on LSIR and its kernelized version includes their asymptotic properties such as
consistency and statistically more rigorous approaches for the choice ofk, the size of local neigh-
borhoods, andL, the dimensionality of the reduced space.
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